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Abstract: 

 

The best characterized biochemical feature of apoptosis is degradation of genomic DNA 

into oligonucleosomes.  The endonuclease responsible for DNA degradation in caspase-

dependent apoptosis is Caspase Activated DNase (CAD). In caspase-independent 

apoptosis, different endonucleases may be activated according to the cell line and the 

original insult. Among the known effectors of caspase-independent cell death, L-DNase II 

(LEI derived DNase II) has been previously characterized by our laboratory. We have thus 

shown that this endonuclease derives from a serpin super-family member LEI (Leukocyte 

Elastase Inhibitor) by post-translational modification [Torriglia et al, (1998) Mol. Cell. Biol 

18, 3612-3619]. In this work we assessed the molecular mechanism involved in the 

change of the enzymatic activity of this molecule from an anti-protease to an 

endonuclease. We report that the cleavage of LEI by elastase at its reactive center loop 

abolishes its anti-protease activity and leads to a conformational modification that exposes 

an endonuclease active site and a Nuclear Localization Signal (NLS). This represents a 

novel molecular mechanism for a complete functional conversion induced by the 

conformational change of a serpin. We also show that this molecular transformation affects 

cellular fate and that both endonuclease activity and nuclear translocation of L-DNase II, 

are needed to induce cell death. 
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Introduction 

 

Apoptosis is a form of cell death characterized by specific morphological features. At early 

stages of the process, DNA is cleaved into large fragments (50-200 kb) that will be later on 

degraded into oligonucleosomes (180 bp). Degradation of genomic DNA into 

oligonucleosomes is one of the most studied features of apoptosis. In many cases, 

apoptosis is triggered by the activation of specific proteases, called caspases. Upon 

activation of caspases, DNA degradation is triggered by the activation of CAD (Caspase 

Activated DNase). Nevertheless, in systems where caspases are not activated, other 

proteases, like serine proteases or cathepsins, and different endonucleases are activated 

also leading to a cell death, morphologically indistinguishable from caspase-dependent cell 

death (19). Indeed, many enzymes have been proposed as responsible for DNA 

degradation, such as DNase I (29), DNase II (3), DNase γ� (35) and NUC18/cyclophilin A 

(24). However, none of them appeared to fulfill completely the criteria for an apoptotic 

DNase. Besides, recent studies of apoptotic degradation in vivo and in vitro indicate that 

two independent systems are involved in DNA degradation during programmed cell death 

(26): a cell-autonomous system that functions in dying cells (involving the enzymes 

mentioned above) and another system taking place after dying cells are engulfed by 

phagocytes.  

In mammalian cells, caspase-independent apoptotic DNA degradation has been 

associated with two mitochondrial proteins: endonuclease G (20) and Apoptosis Inducing 

Factor (AIF) (37). These proteins are translocated to the nucleus upon release from the 

mitochondria. They may be involved in a pathway alternative to CAD/ICAD leading to 

genomic DNA fragmentation in a caspase-independent manner.  

Another effector of caspase-independent apoptosis-like cell death recognized nowadays  

is LEI/L-DNase II (LEI derived DNase II) (34), a protein characterized in our laboratory 

(41). The activation of this DNase II (acid, cation-independent DNase) was first discovered 

in lens during its terminal differentiation (39), which is an apoptosis-related cellular process 

(12). The activation of this enzyme is also seen in other physiological models, such as 

neural apoptosis during retinal development (38),  as well as in different cell lines (5, 9).  

As most enzymes involved in apoptosis, L-DNase II is synthesized as a precursor. This 

precursor is LEI (Leukocyte Elastase Inhibitor), a protein of the serpin superfamily, which 

has a protease inhibitor activity and a cytoplasmic localization. After cleavage by elastase 
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(41) or Apoptotic Protease 24 (1) (but not caspases (40)), LEI looses its anti-protease 

activity and is transformed into L-DNase II, a nuclear protein with an endonuclease activity. 

Proteins of the serpin superfamily share conformational features present in all crystal 

structures of serpins and serpin-protease complexes that have been reported to date (36, 

42). The key feature for all serpins is the reactive center loop (RCL). The relevant amino 

acids are tethered between A and C �-sheets which exists in an exposed conformation. 

The specificity of the serpin is determined by the amino acid sequence encompassed by 

the RCL. With few exceptions, serpins inhibit serine proteases by an irreversible suicide-

substrate inhibitory mechanism. Protease attacks on the P1 residue of the RCL, leading to 

a covalent ester linkage between P1 residue of the RCL and the active site of the serine. 

This will cause cleavage of the P1-P1' peptide bond of the serpin. Thus, the RCL inserts 

into the A�-sheet, thereby imparting enhanced stability upon the complex, disrupting 

protease structure and rendering it inactive. This mechanism, called the "Stressed to 

Relaxed Transition", is associated with a change in the apparent molecular weight of the 

serpin. The preferable conformation of serpin is its relaxed form, more stable from a 

thermodynamic point of view. Here, we investigate the molecular basis of the change in 

LEI activity from a protease inhibitor to an endonuclease, as well as the nuclear 

translocation linked to this transformation. We show that the conformational modification 

typical of serpins is responsible for this transformation and that both, endonuclease activity 

and nuclear translocation, are key events for the induction of cell death (2).  

 

Materials and Methods 

 

Anti-protease and endonuclease activities. Site directed mutagenesis was performed 

on a wild type-LEI-pET 23d(+) construction using the Quick-Change mutagenesis kit from 

Stratagene. An alanine residue at P10 position of the hinge region of the reactive loop of 

LEI (AP10T mutant) or histidine 368 (H368A mutant) were changed into threonine and 

alanine, respectively.  

Recombinant proteins were produced in BL21pLysS E. coli strain and purified using His-

select cartridges (Sigma). 

 Increasing concentrations of wild type or mutant LEI (17.5 to 280 µg/ml) were incubated 

with elastase (0,1 µg/ml) in the presence of 2 mM of pNaMAAPV, a synthetic substrate. 

The resulting colored reaction was measured at 405nm.  
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DNase activity was measured after overnight cleavage of LEI with equimolar quantities of 

elastase at 37°C (this step was omitted with 358Stop LEI). 841 ng of wild type, AP10T, 

H368A or 358stop LEI were incubated with 2,5 µg of plasmid DNA in a time dependent 

manner at 37°C in 20 mM Tris-EDTA pH 5,5. Untreated wild type LEI was incubated with 

DNA as a negative control. 

Nuclear translocation. BHK cells were grown as monolayer at a density of 45 000 

cells/cm2 in Dulbecco’s modified Eagle’s medium (D-MEM, Life Technology) supplemented 

with 10% fetal calf serum (FCS), 4 mM glutamine, 200 U/ml penicillin and 0.2 mg/ml 

streptomycin (all from Life Technology) at 37°C in a humidified atmosphere containing 5% 

CO2. 

Porcine LEI cDNA was subcloned into the XhoI/SalI restriction sites of pDsRed2-C1 

plasmid (Clonetech) and mutated by site directed mutagenesis, as before.  

BHK cells were transfected with jetPEI (PolyPlus Laboratories) according to the 

manufacturer protocol. The pCDNA3-1/NTGFP topo construction contained wild type LEI. 

Apoptosis was induced with 40µM 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) and pictures 

taken 16h after induction. All the apoptotic cells present on the well (24 wells plate) were 

morphologically identified. Cells displaying red and green (colocalized) fluorescence in the 

nucleus were considered as expressing LEI constructions displaying no impairment in 

nuclear translocation. A dissociation of fluorescence with an increase of green 

fluorescence in the nucleus was considered as impaired for nuclear translocation. 

Cell survival. Porcine LEI cDNA was subcloned into the BamHI/XhoI restriction sites of 

pZeoSV2 plasmid (Invitrogen). BHK cells were seeded at a density of 20 000 cells/cm2 in 

24-well plates. 2h before transfection the culture medium was replaced by fresh medium 

without FCS. The transfection medium contained 0.4µg of pZeo-LEI and 3µl of Lipofectin 

reagent (Life Technologies, Inc.) per well. The transfection process occurred at 37°C for 

4h and was stopped with DMEM containing 20% FCS.  

Apoptosis was induced with 40µM 5-(N,N-Hexamethylene)-Amiloride (HMA). Survival was 

measured by the MTT method. At the end of cell treatment, culture medium was removed 

and 250µl of MTT (1 mg/ml) were added to each well. The plate was kept in a CO2 

incubator for 1h. Cells were then lysed by the addition of 250µl of isopropanol. The degree 

of MTT reduction in each sample was subsequently assessed by measuring absorption at 

570 nm versus 630 nm using a microplate reader (BioRad). 

Pull down. Recombinant proteins (wild type LEI, K225A LEI mutant and calmodulin) were 
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produced in BL21pLysS E. coli strain and loaded into His-select cartridges (Sigma) 

according to the manufacturer protocol. HeLa cells were grown at confluence for three 

days in 75cm2 flasks before lysis in RIPA buffer (50mM Tris, pH 7.2, 150mM NaCl, 1% 

Triton X-100, 1% DOC, 1% SDS, 2mM PMSF, 1µg/ml leupeptine, 5�µg/ml pepstatine, 

5�µg/ml aprotinine) and loaded onto the column. Bound material was quantified with 

Bradford assay (Bio Rad), 25µg of each one was resolved by SDS-PAGE and 

immunoblotted for importin α (monoclonal clone IM-75, Sigma). Calmodulin was used as a 

negative control and crude extract of HeLa cells (25µg) as a positive control. 

Protein Explorer. Proteins were analyzed using the Protein Explorer site 

(http://www.umass.edu/microbio/chime/pe_beta/pe/protexpl/frntdoor.htm). Introducing the 

Protein Data Base (PDB) code of each protein, the Molecular Electrostatic Potential was 

calculated with the Advanced Explorer tools. 

 

RESULTS 

Conformational change of LEI 

In previous studies we have shown that a limited cleavage transforms LEI into L-DNase II 

(41). However, the mechanism leading to the production of L-DNase II was not fully 

established. To assess these mechanisms, we first tested whether the transition from LEI 

to L-DNase II involves proteolytic cleavage of the N- or C-terminal regions. Previous 

published data show that LEI (42kDa) is preferentially cleaved by elastase, at amino acid 

358, in the C-terminal region of the protein (Fig. 1) leading to a protein with an apparent 

molecular weight of 35kDa (32). Even though this cleavage induces LEI transformation, it 

does not lead to the release of the C-terminal peptide. Indeed, the Edman’s degradation 

indicated the presence of this peptide in L-DNase II (41). Moreover, trypsin digestion of 

p42 and p35 followed by mass spectrometry of the obtained peptides showed no 

significant difference between digests (data not shown), other than the changes expected 

from a cleavage described earlier (32). This suggested that, in spite of their different 

apparent molecular weights, the peptide content was comparable in these proteins. 

Besides, we introduced a stop codon at nucleotide 1074 corresponding to residue 358, 

which is the cleavage point of elastase in LEI (32). This produced an inactive 

endonuclease, although its ability to bind DNA was preserved (Fig. 2b, 358 stop mutant). 

Indeed, a shift effect but not a plasmid degradation was observed when the 358stop 

mutant was incubated with DNA at different times (compare with LEI wild type before and 

H
A

L author m
anuscript    inserm

-00140748, version 1



������������������������������������������������������������������������������������������������������������������������������������������	����

after cleavage by elastase on Fig. 2b). This result suggested that the DNA binding site 

was in the peptide upstream of residue 358. It also might suggest that the C-terminal 

peptide supported the endonuclease active site.  

We then asked whether the change in LEI activity might be associated with splicing of the 

protein (43). This post-translational modification has already been described in 

prokaryotes and lower eukaryotes (6) and concerns proteins which are often related to 

DNA metabolism (11). This possibility was not assessed further since no consensus site 

for protein splicing was found in LEI.  

 

We finally studied a possible conformational change as a source of the enzymatic switch in 

LEI activity. Concerning this possibility, it is worth noting that LEI, as all serpins, is a 

metastable protein. Its reactive center loop (RCL) (P5-P15 for LEI) is flexible and can 

assume different conformations (Supplementary Fig 1). We have previously shown that 

cleavage of LEI (42kDa) by elastase results in the appearance of a 35kDa band in 

denaturizing gels. This is a mandatory condition for the molecule to display an 

endonuclease activity. Treatment of wild type LEI with an inactivated elastase (heat 

treated or inhibited with PMSF) (13) did not cause its cleavage and transformation into L-

DNase II (data not shown). This indicated that only active elastase can induce 

endonuclease activity. 

In order to further investigate this hypothesis we introduced a single base mutation in the 

hinge region of LEI (Fig. 1). This mutation resulted in the replacement of a small non 

charged alanine into a bigger polar threonine (AP10T). This transforms LEI interaction with 

its substrate from a tight binding to a competitive inhibition. This mutant lost its anti-

protease activity (Fig. 2a, AP10T compared with WT). Nevertheless, after overnight 

treatment with elastase the endonuclease activity was conserved (Fig. 2b, AP10T). It is 

worth noting that incubation of this mutant with elastase overnight has been done in order 

to keep identical experimental condition with the wild type molecule. In fact the same 

activity is obtained with shorter incubations (2-3 hours). 

Taken together, these experiments show that cleavage of the RCL of LEI is involved in the 

appearance of the endonuclease activity. They also suggest that endonuclease and anti-

protease activities are not physically linked in the molecule. 

Therefore, from the three hypotheses rose before, the conformational modification induced 

by the cleavage of the RCL appears the most likely to explain the change in LEI activity. 
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Endonuclease activity of L-DNase II 

Three possibilities may then explain the emergence of the endonuclease activity 

generated by the insertion of the RCL into the Aβ-sheet: first, the RCL establishes new 

interactions in the Aβ−sheet; second, it creates a new interaction elsewhere in the 

molecule; or, third, it uncovers a preexisting active site hidden underneath. 

In order to distinguish between these possibilities, we analyzed the three-dimensional 

crystal structure of cleaved horse LEI. This was done by using Protein Explorer and 

structural data from the Protein Data Bank (PDB entry 1HLE) which pointed to the charge 

distribution of cleaved LEI. The molecule seems quite polarized (top panel of Fig. 3) with a 

higher number of positive charges in the RCL pole. The negative charge of DNA would 

better interact with this region which is, in addition, exposed after cleavage of the RCL. 

Moreover, comparison of LEI with two well characterized endonucleases, DNase I and 

CAD, shows a similar charge distribution (Fig. 3). By consequence, the uncovering of a 

preexisting endonuclease active site should be investigated in priority.  

All apoptotic endonucleases show a DH doublet in their active site. Analysis of LEI three-

dimensional structure shows the presence of two histidines (H287 and H368) in the more 

positively charged region. From these histidines, we retained His368 that is conserved in 

all species, while His287 is absent in human (Fig. 1). We therefore introduced a point 

mutation on His368 and replaced it by an alanine (H368A). We expressed it in bacteria, 

produced the mutant protein and measured its endonuclease activity (Fig. 2b, lower 

panel). As seen on this figure, no endonuclease activity was detected in this mutant when 

exposed to DNA. This was not due to a lack of efficient cleavage of the mutant, as it was 

able to inhibit elastase. Therefore, this mutation did not affect the anti-protease activity of 

LEI (Fig. 2a, lower panel).  

 

Nuclear translocation of L-DNase II is due to its binding to importin � 

The change in the enzymatic activity of LEI induced during its transformation into L-DNase 

II is also followed by a change in its cellular localization (41). We therefore analyzed the 

LEI structure looking for a Nuclear Localization Signal (NLS). We found a consensus 

bipartite NLS in positions 212-213 and 224-226 (Fig. 1). In order to verify that these 

lysines are really responsible for the nuclear import of L-DNase II, we systematically 
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mutated them into alanine. This led to the generation of 31 constructs with 1 to 5 mutated 

lysines in different combinations. To be able to follow subcellular localization of the protein, 

we performed the mutation on a DsRed2-LEI chimera. In order to exclude artifactual 

nuclear translocation due to a change in the nuclear envelope permeability, we made a 

GFP (Green Fluorescent Protein) wild type LEI construct that we systematically 

cotransfected with the red chimeras. A mutant was considered as impaired for nuclear 

translocation when cells expressing both plasmids presented a green nucleus and a yellow 

or red cytoplasm after induction of apoptosis with 40µM 5-(N-ethyl-N-isopropyl)-amiloride 

(EIPA) (Fig. 4a). Right panel of Fig 4a shows a default in nuclear translocation of a 

DsRed2-LEI NLS mutant (the K225A LEI mutant). Analysis of the cotransfected cells 

allowed us to classify mutants as having a “normal” or an “altered” nuclear translocation 

pattern during apoptosis. Relevant results are presented on the table (Fig. 4b). In these 

experiments, some red and/or green aggregates rendered difficult to evaluate the nuclear 

translocation of a few LEI mutants. There were also mutants that did not fluoresce 

sufficiently to give a score. Nevertheless, by counting the mutants impaired for nuclear 

translocation for a given amino acid and using this table as a support, we were able to 

score, the importance of the different lysines of the NLS (Fig. 4c).  

Proteins bearing a bipartite NLS are transported to the nucleus by carriers, as importin α 

(16). In order to verify the ability of the K225A LEI mutant to bind importin α, we pulled 

down importin α �with recombinant LEI. To do this, His-tagged wild type and K225A mutant 

were produced in bacteria, fixed to a Ni2+ column and a protein extract from HeLa cells 

was added to each column. Extraction was loaded on an acrylamide gel and western blot 

was revealed with an anti-importin α antibody (Fig. 4d). As seen on this figure, when 

compared with wild type LEI, the K225A mutant has an impairment on its ability to bind 

importin α. His-tagged calmodulin was used as a negative pull down control.  HeLa cells 

whole extract was used as a positive control for immunoblot.  

 

LEI must be transformed into L-DNase II to mediate apoptosis 

The apoptotic effect of L-DNase II probably depends on its endonuclease activity, but also 

on its nuclear translocation. In order to explore this point, LEI/L-DNase II inactivated for the 

endonuclease activity (H368A mutant) or presenting an impairment of the nuclear 

translocation (K225A mutant) were transfected into BHK cells. After induction of apoptosis 
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with 5-(N,N-Hexamethylene)-Amiloride (HMA, a Na+/H+ pump inhibitor), cells transfected 

with wild type LEI show a significant decrease on their survival rate (Fig. 4e), in agreement 

with previously shown data (2). On the contrary, the NLS mutant (K225A) and the 

endonuclease active site mutant (H368A) showed a higher survival recovery compared to 

the wild type. It is worth noting that the K225A mutation does not modify significantly 

endonuclease or anti-protease activities (Fig. 4f and data not shown).  

 

 

DISCUSSION 

 

LEI belongs to the intracellular sub-group of ov-serpins (17). With the exception of 

ovalbumin, all members of this sub-group contain conserved residues in the hinge region 

that are essential for their inhibitory activity (Fig. 1). Modification of cellular behavior is the 

main function throughout this sub-group (8): some regulates lysosomal proteases 

(squamous cell carcinoma antigen), monocyte/granulocyte proteinases (Proteinase 

Inhibitor-6 (PI-6)), fibrinolysis (plasminogen activator inhibitor 2), bone marrow 

differentiation (bomapine); others are tumor suppressors (maspin) or are implicated in 

angiogenesis (10). Several serpins can inhibit apoptosis, as the viral serpin Crm A inhibits 

Fas or TNFα-induced apoptosis (14). Overexpression of PAI-2 or PI-9 protects cells from 

TNFα (15) or granzyme B induced apoptosis (7), respectively. All of these data and some 

of our results suggested that LEI, as a member of this serpin sub-group, could act as a 

molecular switch between life and death by apoptosis.  

In previous studies we have shown that a limited cleavage transforms LEI into L-DNase II 

(41). Three hypotheses were initially raised to explain the change in LEI activity: 1) the 

transition may result from proteolytic cleavage of the N- or C-terminal regions; 2) it may be 

linked to a splicing of the protein (43); 3) the transition may involve a conformational 

change. From these hypotheses the first was not proven. Many experiments were 

performed in our laboratory to find the released peptide, without success (not shown). The 

second hypothesis was also rejected since no consensus site for protein splicing was 

found in LEI (43). Proteins that undergo post-translational splicing have junction 

sequences flanked by two cysteines and these are only found in pig LEI (Fig. 1). 

Moreover, peptides between these cysteines were found in both LEI and L-DNase II by 
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Edman degradation (41) (Fig. 1) 

The third hypothesis was first investigated by introducing a single base mutation in the 

hinge region of LEI (Fig. 1). Previous studies showed that this replacement slows down 

the insertion of the RCL into the Aβ-sheet (30), without changing protease specificity. This 

LEI mutant looses its anti-protease activity but keep its endonuclease activity after 

elastase cleavage (Fig. 2). This indicates that endonuclease and anti-protease activities 

are not physically linked in the molecule and suggest that the insertion of the RCL in LEI’s 

Aβ−sheet is involved in establishment of the endonuclease activity.  

The endonuclease activity may be generated from new interactions in the Aβ−sheet either 

locally or in other parts of the molecule or by uncovering a preexisting active site. From 

these hypotheses the last one was explored, since the cleavage of the RCL uncovers a 

basic region and transforms LEI in a polarized molecule, a property common to many 

endonucleases. This region of the molecule that could potentially interact with DNA should 

then carry the DNase active site. Studies performed in our group did not reveal any 

consensus sequence for endonuclease activity (22). However, it is worth noting that the 

active site of endonucleases activated in apoptosis displays a DH doublet. From these two 

amino acid residues, the histidine moiety is involved in the proton exchange during DNA 

cleavage (28). Two histidines (H287 and H368) were good candidates. We retained 

His368 because it is conserved in the species shown on fig 1, as well as in mouse 

(UniProtKB/TrEMBL entry Q5SV42), rat (UniProtKB/TrEMBL entry Q4GG075) and 

zebrafish (UniProtKB/TrEMBL entry Q6DG30). This histidine is surrounded by a basic ring 

that may bind DNA. Mutation of this histidine completely abolishes endonuclease activity 

and pro-apoptotic properties of L-DNase II, suggesting that this histidine is essential for the 

endonuclease activity. It is interesting to note that the entire basic region is exposed by the 

RCL insertion in the Aβ sheet and this insertion also uncovers a bipartite nuclearization 

signal. This is not surprising since L-DNase II has to be translocated to the nucleus where 

its new target is located. This feature is not due to the increase of nucleus permeability in 

late apoptosis (33), since in apoptosis induced by caspases LEI remains in the cytoplasm 

(2).   

Bipartite NLS are formed by 5 lysines divided in two groups and are thought to interact 

with importin α. Here we showed that mutation of these lysines impairs nuclear 

translocation and binding to importin α. However, it should be stressed that the highest 
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nuclearization impairment corresponds to the lysine on position 225, the central lysine of 

the major cluster. This result is in agreement literature data concerning the relevance of 

the second lysine cluster of a bipartite NLS to bind importin α (16).  

We have previously shown that under certain apoptotic conditions LEI is transformed into 

L-DNase II (2). In addition, several authors have demonstrated that the overexpression of 

a DNase in a cell may induce apoptosis (18, 21, 25, 27, 31). This is also true for L-DNase 

II (2) (and Fig. 4). The apoptotic effect of L-DNase II depends on its endonuclease activity, 

but also on its nuclear translocation because overexpression of the K225A mutant 

decreases the pro-apoptotic activity of L-DNase II as much as the endonuclease inactive 

protein. This effect depends upon the disability of the K225A mutant to be nuclearized, 

since this mutation does not affect endonuclease activity. 

Taken together, these results indicate that the active endonuclease site of L-DNase II is 

located underneath the RCL. This site is flanked by a positive charged region that contains 

a bipartite NLS. Transformation of LEI into L-DNase II is then explained by the 

conformational modification induced by the cleavage of the RCL, which uncovers the 

endonuclease active site. Besides, this conformational modification also unmasks a 

bipartite NLS that allows the nuclear translocation of L-DNase II by binding to importin α 

(Fig. 5a). 

Current data concerning dual activity of LEI/L-DNase II, including those obtained in the 

present study, are summarized in Fig. 5b. They indicate that LEI, as well as other 

members of the intracellular sub-family of serpin, is highly implicated in cellular fate. Thus, 

LEI mediates caspase-independent apoptosis in some particular conditions, i.e. when 

serine proteases having LEI as a target are massively activated. This takes place during 

metabolic and oxidative stress, when cells are unable to activate caspases, due to terminal 

differentiation (like in retinal pigmented epithelium cells (9)) or to acquired mutations in 

cancer cells (4, 5).  In this work we show that the change in activity of LEI is mediated by 

the classical conformational modification mediating anti-protease activity of serpins. This is 

a novel example of the use of the conformational modification of serpins to confer tasks 

different from protease inhibition. 

The involvement of this serpin in the activation of a cell death program might turn to be of 

interest in the development of therapeutic strategies against cancer cells, for instance. 

Malignant transformation is sometimes followed by lost of apoptotic effectors, leading to 
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chemotherapy resistance. Induction of apoptosis by stimuli leading to the transformation of 

LEI into L-DNase II may overcome this resistance.  The LEI AP10T mutant described in 

this work could also be used to increase the efficiency of anti-cancer therapy. Indeed, this 

mutant is not very efficient to inhibit its target protease and releases it quickly. The 

protease is no longer trapped in a covalent complex as opposed to wild type LEI. As a 

result, equilibrium will be displaced towards production of L-DNase II, as the released 

target protease will be able to cleave more LEI molecules. This would trigger apoptosis in 

cancer cells. Moreover, a point mutation of the RCL might allow changing the protease 

specificity of the serpin, which may then be adapted to the protease expression of the 

target cell.  

The existence of a protein being able to induce apoptotic-like cell death by a single 

conformational modification should encourage research on other key molecules involved in 

cell fate decisions. 

 

 

ACKNOWLEDGEMENTS  

We thank Dr Paolo Perani and Miss Samia Zeggai for help in LEI wild type and 358stop 

constructions. Dr Sabine Chahory, Dr Yves Courtois, Dr. Marie-Thérèse Dimanche-Boitrel, 

Dr Patricia Lassiaz, Prof. Bernard Mignotte, Dr Flore Renaud, Dr Evelyne Segal and Dr 

Ivana Scovassi for critical reading of the manuscript. This work was supported by Retina 

France, Fondation Raymonde et Guy Strittmatter and Fondation Singer-Polignac. The 

authors acknowledge Dr Slavica Kantric for editing the English manuscript. 

 

 

References 

�
� ���������	 
��	 
�	 ��	 
������	 ��	 ���������	 ���	 ��	 ����������� ����
� �������� ���

�������������������������� � ������ !�������"#$��%����&�'�( �����)*��)�� � �����
�

+�((���������,,�!�����������
�

�
� ���������	
��	
�	�������	��	�������	��	���������	���	��	���������������
�# � ������

��)*��)������-�.-����� �!����������������������������/������������� ���0��
�+�((�

��������,,�!������
��	
�

�
� ������	� �	���	���	��	 ���!��������
��)����,���������,�)��1�!����*�(��������������

��)��*�(���������(��)����� � �����
�#!���2�����3�2�� ����"���������
�

�
� ���!�#�����	 ��	 ���	 $�	 %�������	 ��	 &��������	 
�	 '����������	 � �	 '��(���	 � �	

)�������	���	 �	
����*�������+����� ����
�# � ����3����)� ��)���� ���0���,�!�

H
A

L author m
anuscript    inserm

-00140748, version 1



������������������������������������������������������������������������������������������������������������������������������������������������

� � �����
�2�����3���(����(������,�#$#'���)�,�������)����(�4���(��*���3��
�5�2��(�

+��3�,-.����	��
�
�

�
� ���!�#�����	 ��	 ���	 ��	 ����������	 � �	 '�	 �������	 ��	 ���������	 ��	 $��/��!��*


�0����	 ���	  �	 
����*�������+����� ����
� �*�(��!� �!���(�������� �,� �� (�*�������

�(���������������!�/(���������3 (�1�)*!��4����*!�� �!������)*��)�� � �����6�!�(�����

����4���!�������,��*�(��!��������������������
�/1 �+�((�7���,12�������
�

�
� ��3�����	
�	� ��	��	��	���4�����	��	� ������	5���	���	��	��	6��������������
�

/����(���3�����,�������!�(�4�*�������3�,�!������1 !��������,�+�����(����!���(�������

(�����6���3�)�(�,�!�������*)���,� !������� (����4
�8�����9�(�7���1�������
�

	
� �����	 ��	 %��	 7�	 5�	 
������	 $�	 
���	 ��	  �	 %�����	 ��	 8�4�#�	 
�	 9�!���	 $�	 ��	

���:����	 ���	 ��	 ;�	 ������ ���

� :�(������� !�4*(������ �,� � � �����6� ���� ������1���

(�3 ������� ��! ���  !��������� ��������!� ��  !������� �4������ 4!��;�3�� 2�3�)����)�

� � ������0����*�� �!�*!���4�����'�����((�)����� ���0��
�9�(�+�((�2��(��.���
	��

�



� �����	��	;������
�7�4*(�������,� !��� � ������(�*�������4!��*(����!���� !����������

������!���((*(�!���! ���
��33*��(�+�((�2��(�--��	��	
�

�
� ��������	$�	���	5�	�������	'�	��������*���������	��	���������	��	����������	���	

$�	������������
���������������������)�0����������� !������)*!��4�������(���)*��)�

��((�)��������#7$/���
�9�(�<���������	�
�

��
� ����	 ��� ����
� /�)�4���*�� ��4��4������� ��������!�� ��)� ����!� ���!� �*����

�3 (��������
�����5�2�����3�+�((�2��(�""���	���
�

��
� ���:���	��	���	��	$�	�����	� �	��	)�����<���	���	��	%�	
��4����� ����
�$!������

� (����4��,�����������&'$������!�����4� !��������=*����6���3�)�(�,�!���(,��1������
�

/3���5��,���	��
�
�

��
� �������	� �	'��	 �	��������	��	�������	)�	=��4���	� �	
��>���	��	���������	���	

��	��������������

�#��(������,��*�(��!�)�4!�)������)*!��4�(������((�)�,,�!���������
�

+�((���������,,�!�1�������
�

��
�  �	=���������	'��	%�	'�+�>����	$�	$�	�����������	6�	
����������	8�	%������	���	

��	 $�	 ��������� ����
� ��*�!� ��(� �(������� ��;�3�����((�� ����4���;��� ���� ��� ���!��

��������,�8�+:'6��3 (���������,�!�����!�4*(�������,�4!��*(� ������
�2(��)������	���



�

��
�  �����	� ��	%�	%���	���	
�	8�����������
�����(��3�����,�����+/�(���� !����������

'���3�)����)�� � �����
����*!��"-1�	
�
�
�

��
� '�������	;�	$��	5�	�������	��	)�:�3	5�4���	���	� �	9�	������������	
����!���((*(�!�

���)�,����������)*����� � ������������3*(����4��+/�(���� !���������������
�5�+�((�:���

���	?	��	1@�������
�

��
� %�����	 � �	 5��	 ��	 %�	 ���0����	 ���	 ��	  �	 %������ ����
�������������,� ���*�(��!�

(���(�;��������4��(
�5�2��(�+��3�,-A����	���
�

�	
� ;�4����	$�	���	5�	8�	��#��	��	� �	)��#�	���	$�	��	
�������#������
�$��(�4�����,�

���� ��! ��� �* �!,�3�(�6� �3 (��������� �,�  ����!��� �,� �3���� ���)� �����!������� ,�!�

��!*��*!����)�,*������
�8���3��7�������
�����
�

�

� 9�������	 5�	 $��	 ���	 ��	  ���!���� ���

� &��� �(����4� ��)� �1 !������� �,� �*3���

)��1�!����*�(�������
�#� �����(��!�(������ � �����
�5�2��(�+��3�,-"���������
�

��
� )�����	 � ��	 ���	 � �	 $��������� ����
� '�*!�)������ ��)� �� ,*��!�(6�,!�3���� ����� ���

�(��!�������3�������3�
�����7���9�(�+�((�2��(�,��
���

�

��
� )��	)�	���	B�	)���	 ���	B�	
����� ����
�/�)��*�(�����8�������� � ������������

H
A

L author m
anuscript    inserm

-00140748, version 1



������������������������������������������������������������������������������������������������������������������������������������������������

0����!�(����)�,!�3�3�������)!��
����*!��2�,�����
�

��
� )���	 � ��	 &�	 8��0�����	 $�	 '�	 ����	 � �	 � �3���#�	 ��	 �����#��	 ���	 9�	 
����3�*

=����<<�� ����
� '*�������(� ���!����!�;������ �,� ������ >?� �� ����(� ��)��*�(�����

�1 !����)����3*��(����((�
�2�����3���!��"C�	����	�
�

��
� �������	 ��	� �	'�	�������	��	�������	��	���������	���	��	���������������
��/����

���������6�(����3 (��������� ��!*��*!�(���)@*��)A��*!��3����)��,�������
�9A)������

:���������.��������
�

��
� ����3�	 ������
�$!������/1 (�!�!6���������� �0�!,*(�3��!�3�(��*(�!����*�(�;�����
�

&!��)��2�����3�:���,-���	��
�

��
� ���������	$�	
��	� �	)�	6�����	��	'����	���	$�	��	�����>�#�������
�#���(��*3�

)� ��)�����*�(�����,!�3�� � ������!������3������������3�(�4�*��0�������(� ��(��
�

7���3������� ���(� ��(���� #?� 2?� ��)� +� ����� �*�(����� ��������
� 5� 2��(� +��3�

,AC��

		�
�
�

��
� ��#���	 8��	 � �	  �����	 %�	 
�#������	 ��	 '�#����	 $�	 ;��3�>��	 %�	 ����	 ���	 
�	

8����������

�9�(��*(�!��(����4���)����!����!�;�������,��*3������ ������������)�

�����
�$!������(�#��)�:���B�:�#�C1������

�

��
� 8������	 
�� ����
���#�)�4!�)���������)���(� 3������)� !�4!�33�)���((�)����
�

#��*�7����33*��(�,"�
���	�
�

�	
� =��4����	� ��	��	&����	��	��������	��	)�������	5�	� �����	���	��	��������������
�

��������3�)����������!�*�(����3�(���#�)�4!�)����������*3�����((��*�)�!4���4�

)!*4���)*��)�� � �����
�/*!�5��33*��(�"��	�����
�

�

� ����	��	D��	$�	
�	E�!���	��	%��3#��	���	5�	��	)�3���������

�9*�������(����(�����

�,��*3��������������������#����)��4�����!,���6��3 (���������,�!���#�!���4������?�

����(����?���)�3���(�����)� ��)����
�$!������:���-���
���
�

��
� ��������	� �	���	��	���3���	%�	
��:����	��	���!:����	%�	5�	� ��&������	%�	6�	

� ������3�	 ���	 $�	 �����::�� ����
� +��!����!�;������ �,� ���� ��)�4���*��

)��1�!����*�(����� ����(��)� ��� �*�(��!� ��#� )�4!�)������ )*!��4� � � ������

" !�4!�33�)���((�)����%
�/3���5��,��	��	
�

��
� �������	 ���	 
�	 �������	 ��	 ����������	 ���	 ��	 ���������� ����
� 9*�������� ��� ����

.��4�� 7�4���� �,� ��*������� /(������� ��������!� ����!3���� ���� ����� �,� ��������!��

'*��������2�����3���(���)�2�� ������(�7����!���+�33*����������,-2�
���
��
�

��
� ���3���	 ���	 � �	 ��	 ��������	 5�	 )����	 $�	 �����::�	 ���	 %�	 6�	 � ������3�� ����
�

C��!�1 !��������,�)��1�!����*�(����� �� "������ �%��!���,����)������+C:���((�6�����

)���!��*�����)*!��4�� � ��������((�)����
�/*!�5�+�((�2��(�A,���	����
�

��
� ����!:��	$��	��	&�0���	
�	
�����#�	���	$�	���4������


�#���(���������������!�

,!�3� �=*���� (�*������� ������(� ��(��4�� ��� ���� ��! ��� �* �!,�3�(�
� '*!���!�

���!����!�;������ ��)� �3���� ���)� ��=*����� �,� ���� !�������� �����!
� 5� 2��(� +��3�

,A"�	�����
�

��
� 5�������	
��	��	��00����	 ���	 �	'�������*����� ����
�������!��3���*!�3�����,�

�*�(��!� �!3����(��������4������� � �����
�#��(�2�����3�"�.�������
�

��
� 
�!�+�!��	 9��	 ���	 
�	 ��	  ������>�� ����
� &!�����4� ���� 4���3�6� ���� !�(�� �,�

�*�(������)*!��4�� � �����
�����7���9�(�+�((�2��(�A��		�


�

��
� 
���#�>��	&��	%�	=���!��	��	��!����	9�	��#�������	 ���	
�	����!��� ����
�

�)����,���������,������)��*�(�����!�� �����(��,�!�� � ���������!������3������
�/*!�5�

2�����3�,,A������
�

H
A

L author m
anuscript    inserm

-00140748, version 1



������������������������������������������������������������������������������������������������������������������������������������������������

��
� 
��4��!���	6�	���	��	;�	�����	5�	
�	��������	'�	��	�������	��	��	���������	��	6�	

6�������	$�	��	;�4����	&�	��	)�!���	��	$�	)�#��	5�	
�	� �����	��	��	��!0������	

 �	5�!���*=F&�������	6�	
�	
��4�����	$�	���4���	���	$�	��	
�������#������
�&���

��! �����!������1 ��)��4��* �!,�3�(���,���!*��*!�((����3�(�!��*��,*�������((��)���!���

 !������
� /��(*����?� 3�������3� �,� ����������?� ����(� ,*�������?� ��)� �� !�����)�

��3���(��*!�
�5�2��(�+��3�,-A��������
�

�	
� 
�����	 
�	 ���	 %�	 9�	 )����3��	 8�	 ��!3�!��	 ;�	 � ��3��	 ��	  �	 
��>�	 6�	 � �	

���������	$�	� �������	 �	$�������	��	�����������	� �	)��<<����	8�	)����������	&�	

5�	6��������	5�	��0�������	&�	��	
�����4�#��	$�	� �	����������	���	6�	9���!����
����
� 9�(��*(�!� ���!����!�;������ �,� 3�������)!��(� � � ��������)*���4� ,����!
�

���*!��"C-������
�

�

� ����������	���	 �	��������	'�	�����*'��������	��	���������	���	� �	'�	��������

����
� ����(��3���� �,� �������� ��� ��� �*�(��!� )�4���!������ )*!��4� ������ !������

)���(� 3���
�/1 �/���7���-,�������
�

��
� ����������	���	 �	��������	'�	�����*'��������	$�	��	$������	��	���������	���	

� �	'�	������������
�����(��3�����,��������������*�(��!�)�4���!������)*!��4�(����

��((�)�,,�!���������
�5�2��(�+��3�,-���
�	��
�
�

��
� ����������	���	��	8�����	 �	��������	 �	����:����	��	���������	� �	'�	�������	

���	 ��	 ;�	 
��4������ ����
� ��,,�!�����(� ����(��3���� �,� ������� ��� .���� ��((�

� � ��������)*��)������� ���)����)�(��4���!3��*(�*!�
�+�((���������,,�!�A�������
�

��
� ����������	���	��	�������	$�	��	��������	 �	��������	$�	�������	��	���������	���	

� �	'�	�����������

�����������?���3�(��*(�������(����� !����������)���)��*�(������

���� � �����?�)�!�����,!�3�����*��=*���*�� ��! ���(�*��������(���������������!
�9�(�

+�((�2��(��.�������
�

��
� 4��	6����	&��	��	
���:�	9�	� ������	���	8�	9�����#��������
�:�! ���6���!*��*!�?�

,*���������)�3�(��*(�!����(*����
�����5�2�����3�+�((�2��(�"1�������	
�

��
� 
�������	 ��	 $�� ����
� &��� �*!��*�� ����� �,�  !������ � (����46� 3����������� ����4����

�*44����)���� !��������3����������
�$!������:���,���	�	��
�

�
 

H
A

L author m
anuscript    inserm

-00140748, version 1



�������������������������������������������������������������������������������������������������������������������������������������������	����

Figure 1 Sequence alignment of LEI protein in horse, human and pig. By convention, 

amino acids numbering refers to the PDB nomenclature of serpins that aligns all the 

serpins to α1-antitrypsin. UniProtKB/Swiss-Prot entries: horse LEI P05619, human LEI 

P30740 and pig LEI P80229. Hinge region (green) with inhibitory consensus pattern (dark 

green); P1-P1’ elastase cleavage site (blue). Bold, reactive center loop integrated in the 

main β-sheet of LEI after cleavage; single elastase recognition site is underlined. Cyan, 

His 287 lost in human LEI and replaced by Ser. The two cysteines of pig LEI are in purple. 

The sequences obtained by Edman degradation are indicated in yellow (41). Nuclear 

localization bipartite signal (red); endonuclease active site (orange). Red arrowheads, 

points of site directed mutagenesis: 1) main nuclear localization signal mutant, 2) hinge 

region mutant and 3) endonuclease active site mutant.  

 

Figure 2 Anti-protease and endonuclease activities of three different LEI mutants. 

Site directed mutagenesis was performed on a wild type-LEI-pET 23d(+) construction 

using the Quick-Change mutagenesis kit (Stratagene). An alanine residue of the hinge 

region of the reactive center loop of LEI (AP10T mutant) or histidine 368 of the 

endonuclease active site (H368A mutant) were changed into threonine and alanine, 

respectively. Recombinant proteins were produced in BL21pLysS E. coli strain, purified 

using His-select cartridges (Sigma). Increasing concentrations of wild type or mutant LEI 

(17.5 to 280 µg/ml) (magenta and blue lines) were incubated with elastase (0,1 µg/ml) in 

the presence of 2 mM of a synthetic substrate, pNaMAAPV. The resulting colored reaction 

was measured at 405nm (A). As a control, elastase and its substrate were incubated alone 

(red). In the AP10T mutant, the anti-protease activity is strongly affected compared to wild 

type LEI. On the contrary, this activity is not affected in the H368A mutant. 

DNase activity (B) was measured after overnight cleavage of LEI with equimolar quantities 

of elastase at 37°C. 841 ng of wild type, AP10T or H368A LEI were incubated with 2,5 µg 

of plasmid DNA at different times at 37°C in 20 mM Tris-EDTA pH 5,5. Untreated wild type 

LEI was incubated with DNA as a negative control. AP10T mutant shows a DNase activity 

comparable to wild type, while H368A has no endonuclease activity. No endonuclease 

activity could be detected for the 358stop mutant but DNA was slowed down with 

incubation time suggesting its binding to this protein. 
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Figure 3 Comparison of charges of different endonucleases. LEI, DNase I and CAD 

structures were analyzed using Protein Explorer (23). Perpendicular views of cleaved LEI 

(PDB number 1HLE) (top), DNase I (PDB number 3DNI) (middle) and Caspase Dependent 

DNase or CAD (PDB number 1V0D) (bottom) were charge colored (basic regions in blue, 

acid in red). DNA binding regions of the three molecules are more basic than the opposite 

side. That area would easily interact with acidic charges of DNA. Aspartate and histidine 

residues that seem important for endonuclease activity are indicated in yellow. DNA 

associated with DNase I is indicated in green. CAD seems to be polarized slightly different, 

maybe because it is the only one that works as a dimmer.  

 

Figure 4 Site directed mutagenesis of the consensus bipartite NLS signal. (a) 

Impairment of nuclear translocation is shown for K225A NLS LEI mutant. A cotransfection 

was made with a GFP-LEI plasmid to validate nuclear translocation of wild type LEI. Right 

panel shows different distribution of wild type and NLS/K225A mutant LEI. Pictures were 

taken 16h after induction of apoptosis by 40µM 5-(N-ethyl-N-isopropyl)-amiloride (EIPA). 

Nuclei or apoptotic bodies containing nuclear material are indicated by a dotted line.  (b) 

The lysines of L-DNase II putative NLS were changed into alanines and co-transfected 

with a wild type LEI construct in BHK cells (as described on methods). Evaluation of the 

constructs nuclearization during apoptosis induced by 40µM EIPA is summarized in the 

table. Numbers on the left correspond to the last number of the mutated lysine. Green 

squares represent a “wild type” behavior of the mutated protein and red squares, impaired 

translocation. Black and grey squares represent no florescent or little fluorescent proteins, 

hatched squares indicate the presence of fluorescent aggregates in cells. (c) The 

impairment of nuclear translocation of a mutated lysine was scored 1. This allowed giving 

a score to each mutant represented on the histogram. Lysine 225 is the most important for 

L-DNase II nuclearization. (d) K225A LEI mutant is impaired in its ability to fix importin α, 

compared to wild type LEI. Calmodulin was used as a negative pull down control, as it 

does not bind directly to importin α; and a brut extract of HeLa cells was used as a positive 

control of importin α presence and molecular weight. (e) Pro-apoptotic activity of wild type 

LEI. The rate of survival of BHK cells overexpressing different LEI constructs show an 

increased cell death for wild type LEI, compared to mutated constructions. Vectors: empty 

(yellow), LacZ (dark blue), wild type LEI (green), H368A/endonuclease active site LEI 
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mutant (pink), K225A/NLS LEI mutant (light blue) and non transfected cells (red). Data 

represents means ± standards deviations, * Student’s test p < 0,001 versus H368A and 

K225A. (f) Endonuclease activity of the K225A NLS LEI mutant. Site directed mutagenesis 

was performed on the middle lysine of the major cluster of lysines of the nuclear 

localization signal (NLS). K225A LEI mutant was then incubated with elastase overnight at 

37ºC to obtain the LEI cleaved form. Incubation of this cleaved form with a plasmid DNA 

for 10 to 30 minutes allowed us to measure the endonuclease activity of the K225A LEI 

mutant and compare it with wild type (wt) LEI.  K225A LEI showed an endonuclease 

activity comparable to the one displayed by wild type LEI previously treated with elastase. 

NLS mutant or wild type LEI were not able to cleave DNA if they were not treated 

previously with elastase. Plasmid DNA showed no autodegradation or cleavage by 

elastase. 

 

Figure 5.  Molecular structure of LEI and its implication in cellular fate. (a) LEI 

structure was analyzed using Protein Explorer. Native LEI (upper panel) shows the 

reactive center loop (RCL, green) covering the major cluster of lysines of the bipartite 

nuclear localization signal (NLS, red). The endonuclease active site is indicated in orange. 

This three-dimensional structure was obtained from pig LEI sequence. Lower panel shows 

cleaved horse LEI (PDB number 1HLE) with unmasked NLS (red), after insertion of the 

RCL in the Aβ−sheet of the serpin. (b) In unstressed cells, LEI is localized in the cytoplasm 

and has an anti-protease activity, inhibiting preferentially elastase. When the cell receives 

a stress that will allow transformation of LEI into L-DNase II, the anti-protease activity will 

be released. L-DNase II will enter the nucleus, cleave DNA and finally lead to apoptosis. 

Different LEI mutants have been done to understand the LEI/L-DNase II pathway. The 

NLS mutant (K225A, red) is not able to enter the nucleus. And the endonuclease active 

site mutant (H368A, green) is able to enter the nucleus but unable to degrade DNA. In 

both cases apoptosis is reduced. LEI has to be cleaved into L-DNase II and translocated 

to the nucleus to induce apoptosis. 
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Supplementary data 

 

Figure 1S: General molecular mechanism of serpins. (a) The Stressed to Relaxed 

Transition: inhibitory serpins are molecules that fold into a native metastable state (here, 

native antithrombin, PDB number 1E03) and go through a complex conformational change 

to achieve protease inhibition. Upon docking with a target protease, a flexible exposed 

region, termed the reactive center loop (RCL) (green), is cleaved on its P1’-P1 site 

(cleaved antithrombin, PDB number 1ATT). The N-terminal region to the site of proteolysis 

(termed P2-P15 for antithrombin) inserts then into the center of the large A�-sheet 

(magenta) of the serpin, forming an additional β-strand and causing a large conformational 

change throughout the molecule. Loop insertion in the absence of cleavage may also 

occur. The resulting conformation is called the latent form. The serpin acquires more 

stability in this way. This latent form is only known for a few serpins in vivo, like 

antithrombin (PDB number 1E04) represented in this figure. Orange lines represent 

disulfide bridges. (b) Tight binding inhibition of a protease by a serpin: the complex 

formation between a serpin (grey) and a protease (cyan) is mediated by the reactive 

center loop (RCL) (green) of the serpin (PDB number of the α1-antitrypsin - trypsin 

complex 1K9O). When the protease cleaves the serpin on its P1-P1’ recognition site, RCL 

will be inserted and form an additional β-strand in the A�-sheet of the serpin. The protease 

will then be displaced to the opposite pole of the serpin (PDB number of this cleaved α1-

antitrypsin + trypsin 1EZX). Orange lines represent disulfide bridges. 
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