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ABSTRACT 

Inflammation is associated with obesity and insulin resistance. Proinflammatory cytokines 

produced by adipose tissue in obesity could alter insulin signaling and action. Recent studies 

have shown a relationship between interleukin (IL)-1amount and metabolic syndrome or 

type 2 diabetes.  However, the ability of IL-1 to alter insulin signaling and action remains to 

be explored. We demonstrated that IL-1 sligthly increased Glut 1 translocation and basal 

glucose uptake in 3T3-L1 adipocytes. Importantly, we found that prolonged-IL-1 treatment 

reduced the insulin-induced glucose uptake whereas an acute treatment had no effect. 

Chronic treatment with IL-1 slightly decreased the expression of Glut 4 and markedly 

inhibited its translocation to the plasma membrane in response to insulin. This inhibitory 

effect was due to a decrease in the amount of IRS-1 but not IRS-2 expression both in 3T3-L1 

and human adipocytes. The decrease in IRS-1 amount resulted in a reduction in its tyrosine 

phosphorylation and in the alteration of insulin-induced PKB activation and AS160 

phosphorylation. Pharmacological inhibition of ERK totally inhibited IL-1–induced down 

regulation of IRS-1 mRNA. Moreover, IRS-1 protein expression and insulin-induced PKB 

activation, AS160 phosphorylation and Glut 4 translocation were partially recovered 

following treatment with the ERK inhibitor. These results demonstrate that IL-1reduces 

IRS-1 expression at a transcriptional level through a mechanism that is ERK dependent and at 

a posttranscriptional level independently of ERK activation. By targeting IRS-1, IL-1 is 

capable of impairing insulin signaling and action, and could thus participate in concert with 

other cytokines, in the development of insulin resistance in adipocytes. 
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INTRODUCTION 

The prevalence of obesity and type 2 diabetes characterised by an insulin resistance 

has increased considerably in recent years (1). Although the molecular mechanisms leading 

to insulin resistance are not fully understood, accumulation of adipose tissue appears to be 

closely related to the development of insulin resistance (2). It is now clearly established that 

adipose tissue is not only a storage organ for excess calories but also an endocrine organ that 

secretes various factors collectively called adipokines that regulate glucose homeostasis, food 

intake, and energy expenditure (2). It has been recently determined that obesity and insulin 

resistance are associated with a low-grade chronic systemic inflammation.  The origin of this 

inflammation could be related to adipose tissue expansion because the expression of pro-

inflammatory cytokines including TNF-, IL-1 and IL-6 is increased in this tissue in obese 

state (3, 4). Increased macrophage population in adipose tissue is thought to be responsible 

for this elevated production of cytokines (5, 6). Proinflammatory cytokines produced in 

adipose tissue could alter the endocrine function of the tissue and could impinge insulin 

signaling and action in adipocytes, liver and muscles leading to the development and/or the 

aggravation of insulin resistance (4). 

 Insulin regulates blood glucose level through suppression of hepatic endogenous glucose 

production and stimulation of glucose uptake in muscle and adipocyte. These biological 

responses require the tyrosine phosphorylation of the IRS-1 and /or IRS-2 proteins that in 

turn bind and activate PI 3-kinase. Downstream effectors of PI 3-kinase such as protein 

kinase B (PKB) are involved in insulin metabolic effects (7). Several reports have shown that 

TNF- and IL-6 alter insulin signaling by targeting IRS-1 proteins. TNF- increases the 

serine phosphorylation of IRS-1. This mechanism reduces its tyrosine phosphorylation by the 



 - 4 - 

insulin receptor (8-10) and several kinases including JNK (11), mTOR (12, 13)  and ERK 

(13-15) have been implicated in the serine phosphorylation of IRS-1. TNF- and IL-6 

also enhance the expression of SOCS (Suppressor of Cytokine Signaling) proteins that 

can attenuate insulin signaling by binding to the insulin receptors and reducing their ability to 

phosphorylate IRS proteins (16, 17). Alternatively, SOCS proteins can bind directly to IRS 

proteins leading to their degradation (18, 19). Finally, TNF- and IL-6 could inhibit IRS-1 

expression at the transcriptional level (20-22). In obesity, alteration of IRS-1 tyrosine 

phosphorylation in muscle is not linked to a change in its expression. By contrast, a down-

regulation of IRS-1 mRNA expression seems to be the major mechanism involved in 

alteration in IRS-1 tyrosine phosphorylation in adipocytes of obese rodents and in adipocytes 

from type 2 diabetic subjects, obese patients and relatives of diabetic subjects (23, 24).  

 Whereas the implication of TNF- and IL-6 insulin resistance is well documented, little is 

known about a potential  role of IL-1. IL-1 is one of the major pro-inflammatory cytokines 

that is produced by monocytes and macrophages (25). IL-1 exerts its biological function by 

binding to IL-1 type I receptor and activates the IKK/NF-B pathway and the three types of 

mitogen-activated protein (MAP) kinases ERK, JNK and p38MAPK (25). Recent studies 

suggest that IL-1 could also belong to the network of cytokines involved in insulin 

resistance. Indeed, in a case/control study, individuals with detectable circulating levels of 

IL-1and elevated levels of IL-6 have an increased risk to develop type 2 diabetes compared 

with individuals with increased concentrations of IL-6 but undetectable levels of IL-1 (26). 

Further, IL-1 concentration is elevated in non-diabetic offspring of diabetic individuals and 

is correlated with the metabolic syndrome (27). Finally, expression of both IL-1and its 

receptor is increased in visceral adipose tissue of obese subjects (28).  

However, whether and how this overproduction of IL-1 could alter the metabolic function of 

insulin in adipocytes remains unclear. In the present study, we found that IL-1 markedly 
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inhibits insulin-induced glucose transport in adipocytes by decreasing IRS-1 expression. 

Further, we demonstrate that activation of the ERK pathway is involved in the inhibitory 

action of IL-1on insulin signaling.       

 

 

MATERIAL AND METHODS 

Materials- Dulbecco’s modified Eagle’s medium (DMEM), fetal calf serum, and calf serum 

were obtained from Life Technologies (St Louis, MO, USA). Insulin was  from Lilly (Paris, 

France). Recombinant murine IL-1β and IL-6 were from AbCys S.A (Paris, France). U0-126 

and PD-169316 were from Calbiochem (La Jolla, CA, USA). Polyvinylidene difluoride 

(PVDF) membranes were purchased from Millipore (Bedford, MA, USA). BCA reagent was 

obtained from Pierce Biotechnology (Rockford, I11, USA). Protease inhibitors cocktails were 

obtained from Roche Diagnostics (Mannheim, Germany). Enhanced chemiluminescence 

reagent was purchased from PerkinElmer Life Sciences (Boston, MA, USA). All other 

chemical reagents were purchased from Sigma (St Louis, MO, USA). 

Antibodies against IRS-2 and phosphotyrosine were purchased from Upstate Biotechnology 

(Lake Placid, NY, USA). Polyclonal IRS-1 antibody used in immunoprecipitation 

experiments was raised against a peptide corresponding to the last 14 amino-acids of IRS-1 

(Eurogentec, Seraing, Belgium). Monoclonal anti-IRS1 antibody used in immunoblotting 

experiments was purchased from BD Biosciences (Pharmingen, San Diego, CA). Antibodies 

against the β subunit of Insulin Receptor, Glut 4, Glut 1 and IкB were obtained from Santa 

Cruz Biotechnology (Santa Cruz, CA).  Antibodies against phospho-PKB(Thr308), PKB, 

phospho-ERK, ERK, phospho-JNK1/2, JNK1/2, phospho-p38MAPK, and p38MAPK were 

purchased from Cell Signaling Technology (Beverly, MA, USA). Anti- phospho-AS160 

(T642) was purchased from Biosource (Biosource International Inc, Camarillo, CA) and anti-
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AS160 (TBC1D4) antibody was from Abcam (Abcam Ltd, Cambridge, UK).  Horseradish 

peroxydase-conjugated and FITC-coupled secondary antibodies were obtained from Jackson 

Immunoresearch Laboratories (West Grove, PA). 

 

Animals- ob/ob, db/db mice and their lean control littermates were purchased from Charles 

River Laboratories (St. Aubin les Elbeuf, France) and housed at the animal facility of the 

Faculty of Medicine  (Nice, France). Mice were maintained on a 12h:12h light:dark cycle and 

were provided free access to water and standard rodent show. Mice were killed by cervical 

dislocation, and epididymal fat pads were removed and freeze-clamped in liquid nitrogen. 

Principles of laboratory animals care were followed and the Ethical Committee of the Faculty 

of Medicine approved the animal experiments. 

 

Cells culture- 3T3-L1 fibroblasts were grown at 7 % CO2 and 37 C in 35 or 100 mm dishes in 

DMEM, 25 mM glucose, 10% calf serum, and induced to differentiate in adipocytes as 

previously described (13). Briefly, 2 days after confluence, medium was changed for DMEM, 

25 mM glucose, 10% fetal calf serum (FCS), supplemented with isobutylmethylxanthine 

(0.25 mM), dexamethasone (0.25 µM), insulin (5 µg/ml), and pioglitazone (10 µM). The 

medium was removed after 2 days and replaced with DMEM, 25 mM glucose, 10% FCS, 

supplemented with insulin (5 µg/ml) and pioglitazone (10 µM)  for 2 days. Then, the cells 

were fed every 2 days with DMEM, 25 mM glucose, 10% FCS. 3T3-L1 adipocytes were used 

8-15 days after the beginning of the differentiation protocol. 

Human preadipocytes (Biopredic, Rennes, France) were grown at 5% CO2 and 37 C in 12-

wells collagen-coated plates in DMEM Ham’s F12 containing 15 mM Hepes, 2 mM L-

Glutamine, 5% fetal calf serum, 1% antimycotic solution, ECGS/H-2, hEGF-5, and HC-500 

from Supplement Pack Preadipocyte Growth Medium (Promocell). Differentiation in 
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adipocytes was induced after confluence by changing the  medium for DMEM Ham’s F12 15 

mM Hepes, 2 mM L-glutamine, 3% fetal calf serum,  supplemented with biotin (33 µM), 

insulin (100 nM), pantothenate (17 µM), isobutylmethylxanthine (0.2 mM), dexamethasone 

(1 µM), rosiglitazone (10 µM). The medium was removed after 3 days and replaced with 

Ham’s F12 containing 15 mM Hepes, 2 mM L-glutamine, 10% FCS, supplemented with 

biotin (33 µM), insulin (100 nM), pantothenate (17 µM) and dexamethasone (1 µM). Then, 

the cells were fed every 2 days with the same medium. Human adipocytes were used 15 days 

after the beginning of the differentiation protocol. 

 

Immunoprecipitation and immunoblotting- 3T3-L1 adipocytes were treated as indicated in 

figure legends for different periods of time at 37 C, 7% CO2  in DMEM 25 mM glucose, 10% 

fetal calf serum (FCS). The cells were washed with ice-cold buffer (20 mM Tris pH 7.4, 150 

mM NaCl, 10 mM EDTA, 100 mM NaF, 10 mM pyrophosphate, 2 mM sodium 

orthovanadate) before solubilization for 1 hour at 4°C in lysis buffer (20 mM Tris pH 7.4, 

150 mM NaCl, 10 mM EDTA, 100 mM NaF, 10 mM pyrophosphate, 2 mM sodium 

orthovanadate, 100 nM okadaic acid, protease inhibitors, and 1% Triton X-100 (v/v)). 

Following centrifugation at 14 000 g for 10 min at 4 C, the supernatant (cells lysates) was 

incubated for 4 hours at 4 C with  antibody of interest (5-10 µg/sample) preadsorbed on 

protein-A-Sepharose beads. The beads were washed 3 times with the lysis buffer and boiled 

for 5 min in Laemmli buffer. The proteins were separated by SDS-PAGE using a 7.5 or 10% 

resolving gel. Proteins were transferred to PVDF membrane and the membrane was blocked 

with saline buffer (10 mM Tris pH 7.4, 320 mM NaCl, 0.1 % Tween) containing  5% (w/v) 

non-fat dry milk for 1 hour at room temperature and incubated overnight at 4 C with the 

indicated antibody. Following incubation with horseradish-peroxydase conjugated secondary 

antibodies, proteins were detected by enhanced chemiluminescence (ECL). Some membranes 
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were subsequently incubated at 55 C for 30 min in stripping buffer (62 mM Tris pH 6.7, 100 

mM 2-mercaptoethanol, and 2% SDS) and reprobed with the indicated antibody. 

 

Glucose transport- 3T3-L1 adipocytes were incubated or not with IL-1β at 20 ng/ml for 48 

hours as indicated in the figure legends. Cells were then washed twice with Krebs-Ringer 

phosphate buffer (10 mM phosphate buffer, pH 7.4, 1.25 mM MgSO4, 1.25 mM CaCl2, 136 

mM NaCl, 4.7 mM KCl) and incubated without or with 0.5 or 100 nM insulin for 20 min in 

Krebs-Ringer phosphate buffer supplemented with 0.2% bovine serum albumin. Glucose 

transport was determined by the addition of 2-[
3
H]deoxyglucose (0.1 mM, 0.5 µCi/ml) as 

described previously (29). The reaction was stopped after 3 min at 37 C by washing the cells 

four times with ice-cold PBS. Cells were lysed in lysis buffer, and glucose uptake was 

assessed by scintillation counting. Results were normalized for protein content measured by 

BCA assay. 

 

Real-time quantitative PCR- Total RNAs from 3T3-L1 adipocytes or white adipose tissues 

were prepared using Trizol reagent (Life Technologies Inc, UK). The integrity of the RNA 

was confirmed by electrophoresis in ethidium bromide containing agarose gels and the RNA 

concentration was determined spectrophotometrically. cDNA was synthesized using MMLV 

transcriptase (Invitrogen) from 1 µg of total RNA. PCRs were performed using an AbiPrism 

7700 Sequence Detection System instrument and software (Applied Biosystems). The PCR 

conditions were: 2 min at 50 C, 10 min at 95°C followed by forty cycles of a two-step PCR 

reaction denaturation at 95 C for 15 s and annealing extension at 60°C for 60 s. Each sample 

contained 0.5 to 5 ng cDNA in 1X SYBR®Green PCR Master Mix (Eurogentec, Seraing, 

Belgium) and 200 or 400 nM of each primer (Invitrogen) in a final volume of 25 µl. A 

control without cDNA was performed for each experiment. The number of cycles (CT) 
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required for the fluorescence to reach a threshold limit was determined in duplicate for each 

sample. For each target an efficiency of the PCR method between 95 and 100%, a 

reproducibility of Ct values with a standard error less than 3% and a linear range of covering 

more at least 7 log units were obtained. To exclude the contamination of nonspecific PCR 

products such as primer dimers, melting curve analysis was applied to all final PCR products 

after the cycling protocols.  The relative  amounts of the different mRNAs were quantified by 

using the second derivative maximum method. 36B4 was used as an invariant control, and the 

relative quantification for a given gene was corrected to 36B4 mRNA values.  The results 

were expressed relative to the control condition, which was arbitrary assigned a value of 1.  

Primers used for IRS-1 were (sense) 5’-GTGAACCTCAGTCCCAACCATAAC-3’, (anti 

sense) 5’-CCGGCACCCTTGAGTGTCT-3’; for IRS-2 (sense) 5’-

TCCCACATCGGGCTTGAA-3’, (anti sense) 5’-CTGCACGGATGACCTTAGCA-3’; for 

PPAR(sense) 5’-CTGTTTTATGCTGTTATGGGTGAAA-3’; (anti sense)  5’-

CGACCATGCTCTGGGTCAA-3; for C/EBP (sense) 5’-

GACCATTAGCCTTGTGTGTACTGTATG-3’, (anti sense) 5’-TGGATCGATTGTGCTTCAAGTT-

3’; for 36B4 (sense) 5’-TCCAGGCTTTGGGCATCA-3’, (anti sense) 5’-

CTTTATCAGCTGCACATCACTCAGA-3.  

 

Preparation of plasma membrane sheets and immunofluorescence labelling- 3T3-L1 cells 

were grown on glass coverslips and differentiated into adipocytes as described above.  Cells 

were treated without or with IL-1β at 20 ng/ml for 48 hours, and stimulated or not with 

insulin (100 nM) for 20 min. Plasma membrane sheets were prepared as previously described 

(30). Cells were washed twice with ice-cold PBS, and fixed with 0.55 mg/ml Poly- L-lysine 

for 1 min at 4°C and then swollen by three successive rinses with an hypotonic buffer (30 

mM HEPES pH 7.5, 70 mM KCl, 5 mM MgCl2,  3 mM EGTA). The swollen cells were 
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sonicated in hypotonic buffer containing 1 mM DTT and proteases inhibitors and the bound 

membrane sheets were fixed with 4% paraformaldehyde and blocked with PBS containing 

1% BSA and 4% calf serum. Plasma membrane sheets were then incubated with anti-Glut 4 

or anti-Glut 1 antibodies (5 µg/ml in blocking buffer) for 1 hour at room temperature and
 

washed three times 10 min with blocking buffer. Following washes, lawns were incubated for 

1 hour at room temperature with FITC-conjugated anti-goat antibodies and WGA-Texas Red 

to normalize, then
 
rinsed out with three 10 min washes with blocking buffer. The coverslips 

were mounted
 
in Mowiol onto glass slides. Plasma membrane sheets were

 
analyzed with an 

Axiovert 200 microscope using a Plan-Neofluar 40 X 1.3 numeral aperture oil objective (Carl 

Zeiss, Göttingen, Germany). Images were acquired using a cooled digital camera (Coolsnap 

HQ, Roger Scientific Princeton Instruments, Evry, France) and quantification was made 

using Metamorph image analysis software (Universal Imaging Corporation, Downington, 

PA) with autothreshold detection of pixels as previously described (30) . 

 

Statistical Analysis- Statistical analysis was performed by Student’s t test or Mann-Whitney 

test.  A  p value <0.05 was considered significant 

 

RESULTS 

 

Effect of acute and chronic IL1- treatments on insulin-induced glucose transport in 3T3-L1 

adipocyte- The likelihood that 3T3-L1 adipocytes are target cells for IL-1 was investigated 

by incubating 3T3-L1 adipocytes with IL-1 for 20 min. IL-1 incubation induced the 

degradation of IB and the phosphorylation of the MAP kinases ERK, JNK and p38MAPK 

(Fig. 1A). These data indicate that 3T3-L1 adipocytes are responsive to IL-1 stimulation.  
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We then determined whether IL-1was able to induce an insulin-resistant state for glucose 

transport in 3T3-L1 adipocytes. Cells were incubated with IL-1 (20 ng/ml) and then 

incubated without or with insulin ( 0.5 or 100 nM). Treatment of  3T3-L1 adipoytes with IL-

1for 20 min slightly increased the basal rate of  glucose uptake but  did not modify  insulin-

induced glucose uptake (Fig. 1B, upper panel).  Importantly, IL-1 treatment of 3T3-L1 

adipocytes for 48 h reduced the absolute response at both insulin concentration (Fig. 1B, 

lower panel). Thus, the increment in glucose uptake at 0.5 nM insulin was 3.91 + 0.21 and 

1.71 + 0.12 nmol.mg
-1

. 3 min
-1 

for control or IL-1 treated cells respectively and at 100 nM 

insulin, this increment was 6.90 + 0.48 and 4.01 + 0.42 nmol.mg
-1

. 3 min
-1

 for the same 

conditions. Further, 0.5 nM insulin induced  56.6 + 0.8 % versus 42.6 + 0.4 % of the maximal 

insulin effect in the absence or presence of IL-1respectively, indicating that the insulin 

sensitivity was decreased. 

 

Effect of IL-1 on glucose transporters expression and insulin-induced glucose transporters 

translocation- We first examined whether the inhibitory effect of IL-1 on glucose uptake 

was due to a change in glucose transporters expression. 3T3-L1 adipocytes were treated 

without or with IL-1 for 48 h and the amount of Glut 1 and Glut 4 in cell lysate was 

quantified by immunoblotting with specific antibodies. As shown in Fig. 2A, IL-1 treatment  

increased the amount of Glut 1 and  slightly decreased Glut 4 expression but did not modify 

the differentiation state of adipocyte because C/EBP PPARand aP2 mRNAs expression 

was not altered (Fig. 2B). The increased Glut 1 expression induced by IL-1 was associated 

with an increase in the amount of the transporter at the plasma membrane (Fig. 2C, left panel) 

and could explain the enhancement of glucose uptake induced by IL-1 alone.  Importantly, 

prolonged IL-1treatment did not modify the basal amount of Glut 4 at the plasma 
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membrane but inhibited by 50 %  the amount of Glut 4 at the plasma membrane following 

insulin stimulation. (Fig. 2C, right panel). These results indicated that IL-1 can  trigger an 

insulin resistant state for glucose transport by altering insulin-induced Glut 4 translocation.  

 

 Differential effect of IL-1 on insulin-induced tyrosine phosphorylation of IRS proteins- 

Because IL-1 altered insulin-induced Glut4 translocation, we studied the effect of the 

cytokine on proximal insulin signaling steps involved in this process.  We first analyzed the 

effect of IL-1 on the insulin receptor tyrosine phosphorylation. 3T3-L1 adipocytes were 

pretreated or not with 20 ng/ml IL-1 for 48 h and then stimulated or not with insulin. The 

insulin-induced tyrosine phosphorylation of the insulin receptor, which was analyzed by 

immunoblotting using anti-phosphotyrosine antibodies, was not altered following IL-

1treatment (Fig. 3). We then determined whether IL-1 could alter the insulin-induced IRS 

tyrosine phosphorylation. IRS-1 or IRS-2 were immunoprecipitated from 3T3-L1 adipocytes 

with specific antibodies and their tyrosine phosphorylation was quantified by immunoblotting 

with anti-phosphotyrosine antibody. As shown in Fig. 3, IL-1 alone did not induce IRS-1 or 

IRS-2 tyrosine phosphorylation. Importantly, IL-1 inhibited insulin-induced IRS-1 tyrosine 

phosphorylation by 60% but did not modify insulin-induced IRS-2 tyrosine phosphorylation.  

In parallel to the decrease in IRS-1 tyrosine phosphorylation, less IRS-1 was 

immunoprecipitated in IL-1-treated cells suggesting that IL-1 could alter IRS-1 expression. 

To directly assess this possibility, we analyzed IRS-1 expression in homogenates prepared 

from 3T3-L1 adipocytes treated for 24 or 48h with IL-1. IL-1 decreased IRS-1 protein 

expression by 50% and 60% at 24 and 48 h, respectively (Fig. 4A) whereas IRS-2 amount 

was unchanged (data not shown).  

 Because IRS-1 amount is dramatically decreased in adipocytes of  obese patients, we 

investigated whether IL-1 could also down-regulate IRS-1 expression in human adipocytes. 
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As shown in Fig. 4A, IL-1 markedly reduced IRS-1 amount in human adipocytes suggesting 

that IL-1 could participate in the negative regulation of IRS-1 in adipocyte of obese 

subjects.  

We then found,  by using real-time PCR, that IL-1 treatment decreased IRS-1 mRNA 

amount by 40% (Fig 4B) indicating that the decrease in IRS-1 protein was partly linked to a 

reduced gene expression. In agreement with these in vitro finding, IL-1 mRNA expression 

was increased in two models of obese mice and IRS-1 mRNA was decreased whereas IRS-2 

mRNA level was not markedly reduced (Fig. 5). 

Taken together, these results indicate that IL-1 specifically reduced the amount of IRS-1 

leading to a decrease in the amount of tyrosine phosphorylated IRS-1 following insulin 

stimulation.  

 

IL-1 is more potent than IL-6 to inhibit IRS-1 expression- Because IL-1 increases IL-6 

production in fat cells (31) and because IL-6 was shown to down-regulate IRS-1 expression 

(20), we compared the ability of IL-1 and IL-6 to regulate IRS-1 expression. Treatment of  

3T3-L1 adipocytes with IL-6 (20 ng/ml) for 24 h slightly decreased IRS-1 amount whereas  

in the same conditions, IL-1 induced a 50% inhibition in IRS-1 expression (Fig. 4C). These 

data indicate that IL-1 is more potent than IL-6 to down-regulate IRS-1 expression and from 

these data, it is unlikely that the observed effect on IRS-1 expression is mediated by an 

increase in IL-6 production.  

 

Insulin-induced PKB activation and AS160 phosphorylation are reduced in IL-1 treated 

3T3-L1 adipocytes- Activation of PKB following tyrosine phosphorylation of IRS-1 or IRS-2 

is a critical step for insulin-induced glucose transport and Glut 4 translocation (7). Because 

IL-1 differentially regulated the expression and the tyrosine phosphorylation of these 
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proteins, we aimed at determining the effect of IL-1 treatment on insulin-induced PKB 

activation. PKB activation was monitored by immunoblotting with a phosphospecific 

antibody against Threonine 308 located in the activation loop of PKB, phosphorylation which 

correlates with PKB activation. Importantly, following IL-1 treatment, the insulin-induced 

phosphorylation of PKB was reduced by 50% without any change in the total amount of PKB 

(Fig. 6). We then assessed the effect of IL-1 on phosphorylation of the PKB substrate 

AS160 (Akt substrate 160). Indeed, PKB-induced phosphorylation of AS160, a protein 

containing a Rab GAP (GTPase activating protein) domain promotes Glut 4 translocation to 

the plasma membrane (32, 33). Using a phosphospecific antibody against the PKB 

phosphorylation site on AS160, we found that IL-1 treatment markedly reduced insulin-

induced AS160 phosphorylation (Fig. 6). This data confirmed that PKB activity was reduced 

following IL-1 treatment, and the reduced AS160 phosphorylation may provide a 

mechanism for IL-1–induced insulin resistance on Glut 4 translocation and glucose uptake. 

 

ERK pathway is involved in IL-1 induced alteration in insulin signaling- The activity of the 

MAPK kinases family members ERK, JNK and p38MAPK is increased in adipose tissue of 

insulin resistant type 2 diabetic patients or in obese animals. Further, several studies have 

evidenced down-regulatory effect of the MAP kinases on insulin signaling (8). Because IL-

1 activates the MAP kinases family (25), we investigated whether their activation could be 

involved in the inhibition of insulin signaling. Amount of phosphorylated ERK-1 and -2 or 

p38MAPK was significantly higher in 3T3-L1 adipocytes treated with IL-1 compared to 

control cells (3 + 0.8 fold; p = 0.03 for ERK-1/-2 and 4.4 + 1.5 fold; p = 0.02 for p38MAPK, 

Fig. 7), whereas phosphorylated JNK was not detected (data not shown). For directly 

assessing the role of ERK and p38MAPK in IL-1-induced down-regulation of IRS-1 

expression and PKB activation, 3T3-L1 adipocytes were treated with 10 M U0126 or 
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PD169316, potent inhibitors of  ERK or p38MAPK pathways respectively, and incubated 

without or with IL-1 for 48 h. Incubation with PD169316 did not prevent the down-

regulation of IRS-1 expression induced by IL-1 (data not shown). By contrast, U0126 that 

totally inhibited ERK activation (Fig. 8A) fully prevented the decrease in IRS-1 mRNA 

amount induced by IL-1 treatment (Fig. 8B) but only partially prevented the decrease in 

IRS-1 protein expression (Fig. 8C). These data indicate that ERK activation plays a major 

role in the negative regulation of IRS-1 expression induced by IL-1. To determine whether 

insulin-induced PKB activation could be rescued by blocking ERK pathway, adipocytes were 

treated as described above and stimulated without or with insulin for 5 min. Inhibition of 

ERK with U0126 partially overcame the inhibitory effect of IL-1. (Fig. 9 A, B) on PKB and 

AS160 phosphorylation. Further,  inhibition of ERK with U0126 also partially prevented the 

inhibitory effect of IL-1 on insulin-induced Glut 4 translocation to the plasma membrane 

(Fig. 9C). These data are in favour of the importance of ERK activation by IL-1 in the 

inhibition of insulin signaling and Glut 4 translocation. 

 

DISCUSSION 

Recent studies demonstrate that expression of IL-1 is increased in adipose tissue of both 

obese rodents and humans (28), an observation that we confirmed in this study. However 

whereas the involvement of TNF and IL-6 in insulin resistance is well documented, the 

potential role of IL-1 in the alteration of insulin signaling and metabolic effects is poorly 

documented.  

 In the present study, no acute inhibitory effect of IL-1 was observed on insulin-induced 

glucose uptake or on insulin signaling in accordance with a recent report with IL-1(34). 

By contrast, in the  pancreatic cell line RINm5F, IL-1 was shown to rapidly induce SOCS-

3 expression that evoked a decrease in insulin receptor phosphorylation and IRS 
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phosphorylation (35). Moreover, the effect of IL-1 is clearly different from the 

TNFeffect that promotes a rapid inhibition of IRS-1 tyrosine phosphorylation through its 

serine phosphorylation (11, 36). 

We found  that prolonged IL-1 treatment induces an inhibition of insulin effect on glucose 

uptake as also recently published (37) during the revision process of this manuscript. A 

sustained increase in the expression of IL-1 in adipose tissue during obesity could thus 

participate in the development of the insulin resistance. This inhibitory effect was mainly due 

to the down-regulation of the expression of IRS-1 and to a lesser degree of Glut 4. TNF and 

IL-6 have also been shown to negatively regulate the expression of these two proteins (20-

22). However, whereas TNF markedly suppressed Glut 4 expression (20), we found that IL-

1 had only a modest effect. Further, upon prolonged exposure to TNF, mature adipocytes 

loose their terminally differentiated phenotype whereas we found no effect of IL-1 on 

PPARor C/EBP mRNAs expression in our experimental conditions indicating that IL-1 

did not induce a change in the differentiation state of the 3T3-L1 adipocytes. In agreement 

with these findings, it was recently reported that treatment of mature 3T3-L1 adipocytes with 

IL-1 for 6 days did not modify their differention state (37) whereas addition of the cytokine 

during the differentiation process markedly altered the adipocyte phenotype (37, 38).  

  IL-1 increases the expression of IL-6 in fat cells (31) but it seems unlikely that the 

inhibition of IRS-1 expression was totally mediated by IL-6. Indeed, we found that a high 

level of IL-6 modestly decreased IRS-1 expression compared to IL-1. By contrast, IL-6 was 

more potent than IL-1 to decrease Glut 4 and PPAR expression (20, 21) suggesting that IL-

1 could regulate IRS-1 expression independently of its effect on IL-6 expression.  

 Whereas, IRS-1 amount was decreased following IL-1 treatment, the expression of IRS-2 

was unchanged. Despite normal IRS-2 amount and tyrosine phosphorylation, we found that 
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insulin-induced PKB activation was markedly altered leading to a decreased phosphorylation 

of its substrate AS160, a Rab GTPase-activating protein recently described to play a role in 

insulin-stimulated Glut 4 translocation (32, 33). These data support that IRS-1 rather IRS-2 is 

involved in insulin-induced glucose uptake. In agreement with this finding, previous studies 

have shown that insulin-induced glucose uptake is altered in adipocytes from IRS-1 deficient 

mice (39). Further, in L6 myotube, knockdown of IRS-1 by siRNA strategy markedly 

impaired glucose transport, and knockdown of IRS-2 was without effect (40).  

Elevated activities of the MAP kinases ERK, JNK and p38MAPK are found in adipocytes or 

muscles of obese and insulin resistant rodent and humans (8) and  IL-1 is known to activate 

these protein kinases (25). We found that prolonged IL-1 treatment induced a sustained 

activation of ERK and p38MAPK but not JNK suggesting that an increase in IL-1 

expression in adipose tissue could thus participate in the elevated activity of these kinases in 

obesity.  Such activation of these kinases could be involved in the inhibitory effect of IL-1 

on insulin-induced glucose transport. Indeed, activation of p38MAPK was shown to be 

involved in the down regulation of Glut 4 expression (41). Thus, the small decrease in Glut 4 

amount in IL-1 treated cells could be due to the sustained activation of p38MAPK. In the 

other hand, we found that pharmacological inhibition of ERK pathway totally prevented the 

decrease in IRS-1 mRNA and partially prevented the inhibition of IRS-1 protein expression 

induced by IL-1 treatment. In parallel, the insulin-induced activation of PKB, 

phosphorylation of AS160 and Glut 4 translocation were improved.  These results indicate 

that activation of ERK pathway by IL-1 negatively regulates IRS-1 mRNA transcription and 

underscore an important role of ERK pathway activation in IL-1-induced down regulation 

of the IRS-1/PI 3-kinase/PKB signaling pathway necessary for insulin-induced Glut 4 

translocation  and  glucose transport. A negative cross-talk between these two pathways was 

evidenced by different studies. For example, activation of ERK through expression of 
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constitutively MEK inhibits IRS-1 expression  to a greater extent than activation of 

p38MAPK or JNK (42). Other studies, using pharmacological inhibitors, demonstrate that 

ERK activation altered IRS-1 function by promoting its serine phosphorylation and that 

inhibition of ERK pathway could improved insulin resistance (13-15, 43-45). In agreement 

with an important role of ERK in insulin resistance,  a recent report demonstrates that ERK1-

deficient mice are more sensitive to insulin on a high fat diet regimen (46). Thus, ERK 

activation in response to different stimuli could be one important event to impair normal 

insulin metabolic effect by altering  IRS-1 function.  

The fact that ERK inhibition only partially prevents the decrease in IRS-1 expression induced 

by IL-1 indicates that another ERK-independent pathway is involved at a posttranscriptional 

level to regulate IRS-1 protein amount. Such a mechanism could be a regulated degradation 

of IRS-1 that has been shown to be a long term inhibitory mechanism involved in insulin 

resistance (8). For example, prolonged insulin treatment reduces the level of IRS-1 through 

proteasome dependent process (47, 48) whereas osmotic (49) or oxidative (50) stresses 

induce IRS-1 degradation through a proteasome-independent pathway. Some studies have 

proposed that SOCS-3 proteins by binding to IRS proteins could promote their ubiquitin-

mediated degradation (18) but this finding is controversial (51). We found that IL-1 was 

able to induce SOCS-3 in 3T3-L1 adipocytes (data not shown) as previously shown in some 

other cell types (35, 52). Thus, it is plausible that SOCS-3 are involved, at a 

posttranscriptional level, in IL-1-induced down-regulation of IRS-1 protein amount in 

adipocytes.  

In conclusion, our data show that IL-1 decreases insulin-induced glucose transport in 

adipocytes mainly by inhibiting IRS-1 expression through a reduction in IRS-1 mRNA 

amount that is dependent on ERK pathway activation and by a posttranscriptional mechanism 

that is independent of ERK. Thus, IL-1 that is produced by resident macrophages in adipose 
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tissue could act in synergy with TNF and IL-6 to impair adipocytes biology that could be 

an important event for the development of the insulin resistance. Indeed, an attenuation of 

insulin signaling in adipocytes can impaired the lipid buffering capacity of the adipocytes that 

could favour accumulation of lipids in muscle and liver with deleterious effects on insulin 

action. Moreover, modification of glucose transport in adipocytes could alter the secretory 

function of adipocyte in a way that is detrimental to insulin action in muscle and liver.  
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FIGURE LEGENDS 

 

 

 Figure 1.  Effect of short or long-term IL-1β treatment on insulin-induced glucose transport 

in 3T3-L1 adipocytes. A, 3T3-L1 adipocytes were treated with IL-1 for 20 min or left 

untreated and proteins from cell lysates were prepared as described in “Material and 

Methods”. IkB and the phosphorylated forms of ERK, JNK and p38MAPK were detected 

using specific antibodies. Typical autoradiographs representative of three independent 

experiments are shown. B, 3T3-L1 adipocytes were treated without (empty bars) or with 

(black bars) IL-1β (20 ng/ml) for 20 min (upper panel)  or 48 h (lower panel) and then cells 

were incubated without or with insulin (0.5 or 100 nM) for 20 min at 37°C. Uptake of [2-

3
H]deoxyglucose was measured during a 3-min period as described under “Materials and 

Methods”. Means + SEM of five independent experiments are shown. *, IL-1effect 

significant with  p < 0.01. **, IL-1β effect significant with p < 0.05 . 

 

Figure 2.  Effect of IL-1β treatment on Glut 4 and Glut 1 expression and insulin-induced 

Glut 4 and Glut 1 translocation to the plasma membrane in 3T3-L1 adipocytes. A, 3T3-L1 

adipocytes were incubated without (empty bars) or with (black bars) IL-1β (20 ng/ml) for 48 

h. A, Glut 4 and Glut 1 were detected in cell lysates by immunoblotting with anti-Glut4  or 

anti-Glut 1 antibodies (-Glut 4, α-Glut 1).  Glut 4 and Glut 1 amounts were quantified by 

densitometry scanning analysis. Data are expressed as percentage of Glut 4 and Glut 1 

amounts in untreated cells and presented as the means + SEM of four independent 

experiments. (* p < 0.01). B, total RNAs from cells treated as described in A were extracted 

and the amount of  C/EBPα, aP2 and PPAR mRNA were quantified by real-time 

quantitative PCR. mRNA expression was normalized using 36B4 RNA levels and expressed 

in arbitrary units, with the control cells taken as 1. Results are expressed as the means + SEM 
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of three independent experiments. C, Plasma membrane sheets were prepared from 3T3-L1 

adipocytes incubated without (empty bars) or with IL-1β (20 ng/ml) (black bars) for 48 h and 

then without or with insulin (100 nM) for 20 min. Glut 1 (Left) and Glut 4 (Right) were 

detected in plasma membrane (PM) by immunofluorescence using goat anti-Glut 1 or anti-

Glut 4 antibodies followed by incubation with FITC-coupled anti-goat antibodies. 

Quantification of fluorescence level was performed with MetaMorph software as described in 

“Materials and Methods”. Results are expressed as fold stimulation of control cells and 

presented as the means  + SEM of three independent experiments. *, IL-1 effect significant 

with p < 0.05. 

 

Figure 3. Differential effects of IL-1β treatment on insulin-stimulated tyrosine 

phosphorylation of the insulin receptor, IRS-1 and IRS-2.  3T3-L1 adipocytes were treated 

without or with IL-1β (20 ng/ml) for 48 h and then without or with insulin for 5 min. Proteins 

were immunoprecipitated (IP) using anti-insulin receptor (α-IR) antibodies, anti-IRS1 (α-

IRS1) or anti-IRS2 (α-IRS2) antibodies and immunoprecipitated proteins were resolved by 

SDS-PAGE and blotted (IB) using anti-phosphotyrosine (α-pY) antibodies. The membrane 

was then stripped and probed using α-IR, α-IRS1, or α-IRS2 antibodies. Typical 

autoradiographs representative of four to five experiments are shown. The absolute Tyr-

phosphorylation of IRS-1 or IRS-2 was quantified by densitometry scanning analysis. Results 

are expressed as percentage of insulin effect in control cells and presented as the means + 

SEM of  five independent experiments. *,  IL-1 effect significant with p < 0.01. 

 

Figure 4. IL-1β treatment decreases IRS-1 expression in 3T3-L1 adipocytes and in human 

adipocytes. Mouse 3T3-L1 adipocytes (empty bars) or human preadipocytes-derived 

adipocytes (black bars)  were incubated without or with  IL-1β (20 ng/ml) for 24 or 48 hours. 

Proteins from cell lysates were blotted using anti-IRS1 (α-IRS1) antibodies. A, 
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Representative autoradiograph is shown, and IRS-1 amount was quantified by densitometry 

scanning analysis. Results are expressed as percentage of IRS-1 protein amount in control 

cells and presented as the means + SEM of four independent experiments. *, IL-1 effect 

significant for 3T3-L1 adipocytes or human adipocytes respectively with p < 0.01. B, Total 

RNAs were extracted and the relative amounts of IRS-1 mRNA were determined by real-time 

PCR. mRNA expression was normalized using 36B4 RNA levels. Results are expressed in 

arbitrary units, with the control values taken as 1 and are the means + SEM of three 

independent experiments. *, IL-1 effect significant with p < 0.01. C,  3T3-L1 adipocytes 

were left untreated (empty bar) or incubated with IL-1β (20 ng/ml) (black bar) or IL-6 (20 

ng/ml) (hatched bar) for 24 hours and IRS-1 amount was determined as described in A. 

Results are expressed as percentage of  IRS-1 protein amount in control cells and presented 

as the means + SEM of four independent experiments. * p < 0.05 control versus IL-1 , ** p 

<0.05 IL-1 versus IL-6. 

 

Figure 5. mRNA expression of IL-1, IRS-1 and IRS-2 in adipose tissue of obese mice. 

Total RNA were prepared  from adipose tissue of lean (white bars) and obese mice (db/db, 

black bars or ob/ob, hatched bars). The expression level of mRNA were analyzed by real-

time quantitative PCR, normalized to the level 36B4 mRNA and expressed in arbritary units, 

with the control values taken as 1. Results are the means + SEM of n=6/group. *, 

Significantly different from lean mice with p < 0.05.  

 

Figure 6. IL-1β decreases insulin-induced PKB and AS160 phosphorylation. 3T3-L1 

adipocytes pretreated or not with IL-1β (20 ng/ml) for 48 h were stimulated or not with 

insulin (0.5 nM) for 5 min. Cells were then lysed. Top,  Phosphorylation of PKB and AS160 

were monitored by immunoblotting with anti-phospho-PKB (Thr
308

) (α-P-PKB) or with anti-

phospho-AS160 (Thr
642

) (α-P-AS160) antibodies respectively. Representative 
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autoradiographs are shown. Bottom, PKB phosphorylation was normalized for the total 

amount of PKB and results are expressed as the means + SEM of four independent 

experiments.  *, IL-1 effect significant with p < 0.01.  

 

Figure 7. Prolonged IL-1β treatment induces ERK1/2 and p38MAP Kinases 

phosphorylation. 3T3-L1 adipocytes were treated without or with  IL-1β (20 ng/ml) for 48 

hours. Proteins from cell lysates were blotted using anti-phospho ERK1/2 (α-P-ERK) or anti-

phospho-p38MAPK (α-P-p38) antibodies. The membranes were then stripped and probed 

using anti-ERK1/2 (α-ERK1/2) or anti-p38 (α-p38) antibodies. Representative immunoblots 

and means + SEM of four independent experiments are shown. Results are expressed as fold 

phosphorylation over basal set to 1 in untreated cells (* p < 0.05). 

 

Figure 8. Inhibition of ERK1/2 activity prevents the inhibitory effect of IL-1β on IRS-1 

expression.  3T3-L1 adipocytes were treated with vehicle (0.1 % DMSO) or U0126 (10 µM) 

and without or with IL-1β (20 ng/ml) for 48 hours. A, ERK activation was assessed by 

immunoblotting with anti-phospho ERK1/2 (α-P-ERK) antibodies. Typical autoradiographs 

representative of three experiments are shown. B, IRS-1 mRNA level was determined by 

real-time quantitative PCR. mRNA expression was normalized using 36B4 RNA levels. 

Results are expressed  in arbitrary units, with the control values taken as 1 and are the means 

+ SEM from three independent experiments. C, IRS-1 amount in cell lysate was determined  

using anti-IRS1 (α-IRS1) antibodies. Typical autoradiograph is presented and graph shows 

the means + SEM of four independent experiments. *, significantly different between control 

and IL-1 with p < 0.01, ** significantly different between IL-1 and IL-1 + U0126 with 

p < 0.01. 

 

Figure 9. Inhibition of ERK1/2 activity partially prevents the inhibitory effect of IL-1β on 

insulin-induced PKB and AS160 phosphorylation and on insulin-induced Glut 4 
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translocation. A, 3T3-L1 adipocytes were treated with vehicle (0.1 % DMSO) or U0126 (10 

µM) and without or with IL-1β (20 ng/ml) for 48 hours. Then cells were stimulated or not 

with insulin  for  5 min.  Phosphorylation of PKB was monitored by immunoblotting with 

anti-phospho-PKB (Thr
308

) (α-P-PKB) antibodies. The membrane was then stripped and 

probed using anti-PKB (α-PKB) antibodies. Representative autoradiographs are presented, 

PKB phosphorylation was normalized for the total amount of PKB and graph shows the 

means + SEM of four independent experiments. *, significant different between control and 

IL-1 with p < 0.05, **, significant different between IL-1 and IL-1 + U0126 with p < 

0.05.  B, Level of AS160 phosphorylation in cell lysates was determined following 

immunoblotting with anti-phospho-AS160 (Thr
642

) (α-P-AS160) antibodies in cells treated as 

described above. A typical autoradiograph representative of four independent experiments is 

shown. C, 3T3-L1 adipocytes were incubated with vehicle (0.1 % DMSO) or U0126 (10 µM) 

in absence (empty bars) or presence of IL-1β (20 ng/ml) (black bars) for 48 hours, and then 

incubated without or with insulin (100 nM) for 20 min. Plasma membrane sheets were 

prepared and Glut 4 was detected in plasma membrane (PM) as described in Fig. 2. 

Quantifications of fluorescence level was performed with MetaMorph software as described 

in “Materials and Methods”. Results are the means  + SEM of three independent experiments. 

*, significantly different between insulin and IL-1insulin with p < 0.01, ** significantly 

different between IL-1insulin and IL-1 + insulin + U0126 with p < 0.01. 

 

 

 

 

 


