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Whereas hepatitis C virus (HCV) in cell culture has a density compatible with that of the 

Flaviviridae family, in vivo infectious particles are partly found in low density fractions, associated 

with triacylglycerol (TG)-rich lipoproteins (TRL). In the blood of infected patients, HCV circulates 

as heterogeneous particles among which are Lipo-Viro-Particles (LVP), globular particles rich in 

TG and containing viral capsid and RNA. The dual viral and lipoprotein nature of LVP was further 

addressed with respect to apolipoprotein composition and post-prandial dynamic lipid changes. 

TRL exchangeable apoE, CII, CIII, but not the HDL apoA-II, were present on LVP as well as the 

viral envelope proteins. ApoB100 and B48, the two isoforms of the non-exchangeable apoB, were 

equally represented on LVP, despite the fact that apoB48 was barely detectable in the plasma of 

these fasting patients. This indicates that a significant fraction of plasma HCV was associated with 

apoB48-containing LVP. Furthermore, LVP were dramatically and rapidly enriched in 

triglycerides after a fat meal. As apoB48 is exclusively synthesized by the intestine, our data 

highlight the preferential association of HCV with chylomicrons, the intestine-derived TRL. These 

data raise the question of the contribution of the intestine to the viral load, and suggest that the 

virus could take advantage of TRL assembly and secretion for its own production and of TRL fate 

to be delivered to the liver.  
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INTRODUCTION 

 

HCV has been classified within the Flaviviridae family according to the structure of its genome (Pringle, 

1999). However, in contrast to flaviviruses and closely related viruses, cell culture of HCV remained 

problematic for fifteen years and this lack of an appropriate in vitro replication system and of a small 

animal model impeded the understanding of HCV structure and replication cycle. Therefore, most of our 

knowledge of the virus cell receptors and of the HCV RNA replication relied on pseudotyped viruses and 

on biscistronic and subgenomic replicons, which do not allow the study of HCV assembly and secretion 

and the identification of the elusive nature of the virion. Recently, complete replication and production of 

infectious HCV particles in tissue culture were performed with HCV genotype 2a full length replicons 

derived from a patient with fulminant hepatitis (Lindenbach et al., 2005, Wakita et al., 2005, Zhong et al., 

2005). This major breakthrough identified a viral structure with size, morphology and density (1.15g/ml) 

appropriate for a member of the Flaviviridae family. The structure of these virions most likely match that 

of virions found in the plasma of chronically infected patients, with a density of 1.15g/ml and recognized 

by anti-HCV envelope antibodies (Kaito et al., 1994, Petit et al., 2005, Takahashi et al., 1992).  

Several forms of HCV particles coexist in the plasma of infected patients (Carrick et al., 1992, Kanto et 

al., 1994, Miyamoto et al., 1992) with a wide range of density (from 1.30g/ml to an unusual low density 

<1.06g/ml). Low density viral particles are of particular interest since they correlate with plasma 

infectivity in chimpanzees (Bradley et al., 1991, Hijikata et al., 1993). Interestingly, chimpanzee infection 

with in vitro produced HCV with a density of 1.14 g/ml led to plasma HCV particles whose specific 

infectivity was recovered in fractions of lower density indicating that a shift to lower buoyant density was 

correlated with an increased specific infectivity of HCV grown in vitro  (Lindenbach et al., 2006). The 

low density of some HCV particles was attributed to an association of the virus with triacylglycerol (TG)-

rich lipoproteins (TRL) (Prince et al., 1996, Thomssen et al., 1992). Proportions of plasma HCV RNA 

found associated with TRL vary from patient to patient, with a mean value close to 40% but can reach 

almost 100% for some patients (Andre et al., 2002, Nielsen et al., 2004, Nielsen et al., 2006, Thomssen et 

al., 1992, Thomssen et al., 1993). Some of these TRL-like structures have been described as lipo-viro-

particles (LVP), whose structure and origin remain to be better defined (Andre et al., 2002, Nielsen et al., 

2006).  

TRL are very low density particles (d≤ 1.006 g/ml) made of a hydrophobic core of neutral lipids, TG and 

cholesterol esters, surrounded by a monolayer of phospholipids (PL) and free cholesterol, associated with 

apoB and other apolipoproteins (Fisher & Ginsberg, 2002). TRL are formed by the assembly of one 

molecule of  apo B with TG within the endoplasmic reticulum lumen. ApoB is a non exchangeable 

apolipoprotein which remains associated to the particle until its capture and internalization by lipoprotein 
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receptors. In humans, hepatocytes secrete very low density lipoproteins (VLDL), which comprise one 

apoB100 molecule per particle, whereas enterocytes secrete another class of TRL, chylomicrons, which 

contain one molecule of apoB48, the truncated form of apoB resulting from the enterocyte-specific editing 

of apoB mRNA (Patterson et al., 2003). In the circulation, TRL are subjected to TG hydrolysis  by 

lipoprotein lipase releasing free fatty acids, the remodelling of surface lipids and of exchangeable 

apolipoproteins A, C and E. These modifications give rise to particles of smaller size and higher density, 

i.e. remnants from chylomicrons, and intermediate density lipoprotein (IDL) and low density lipoprotein 

(LDL) from VLDL.  

LVP are low density globular HCV RNA-containing particles covered with natural antibodies allowing 

their purification from plasma low density fractions (d<1.055 g/ml) (Andre et al., 2002). They are rich in 

TG and contain internal structures which appeared as capsids recognized by anti-core protein antibodies 

after delipidation. Binding and entry of purified LVP into cells was competed by native VLDL and by 

anti-apoB and anti-apoE antibodies and increased by upregulation of the LDL receptor (Agnello et al., 

1999, Andre et al., 2002). Therefore, LVP appear to display some features of TRL-like structures. To 

further characterize the TRL-like nature of LVP, the apolipoprotein composition of LVP was analysed, as 

well as its lipid composition during the dynamic transition from the pre-prandial to the post-prandial 

period.  

 

METHODS 

 

Material - Unless indicated, all chemicals were from Sigma (Saint-Quentin-Fallavier, France). Silica gel 

thin-layer chromatography plates were from Whatman (Maidstone, United Kingdom). Anti-E1 (A4) or E2 

(H52 and H47) monoclonal antibodies and 293T cells expressing E1 and E2 were obtained from Dr. 

J. Dubuisson (Institut de Biologie de Lille-Institut Pasteur de Lille, France). Anti-apoB (clone 1D1) 

monoclonal antibody was from the Heart Institute (University of Ottawa, Ontario), and peroxidase-

conjugated goat anti-apoB antibodies from Biodesign. Anti-apoCII polyclonal antibody was purchased 

from Merck Calbiochem (Darmstadt, Germany). Anti-apoAII, anti-apoCIII polyclonal antibodies and anti-

apoE monoclonal antibody were obtained from Chemicon (Temecula, California).  

Blood samples and patients - Plasma from HCV negative and HCV positive blood donors were obtained 

from the Etablissement de Transfusion Sanguine, Lyon, France. Eight volunteers attending the Service 

d’hépato-gastro-entérologie at the Hôtel Dieu Hospital, Lyon, France, were selected in accordance with 

hospital ethics committee statements and enrolled in the study of the transition from the pre- to post-

prandial states and of the lipidomic analysis of their plasma viral population (Table 1). These patients 

were chronically HCV-infected and had not been given antiviral therapy for at least 6 months. HCV 
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genotypes were determined by sequencing of the 5’ untranslated region and presence of cryoglobulinemia 

was checked by routine laboratory examination. Patients were given a breakfast of 900 kcal meal 

containing 30% fat after an overnight fasting. Peripheral blood was drawn just before breakfast and 90min 

after the first phlebotomy. EDTA was added to 0.1 mM final concentration and samples were immediately 

processed.  

Preparation of low-density fractions - Plasma were adjusted to 1.055 g/ml with NaBr and centrifugated 

for 4 h at 4°C and 543,000 x g with a TL100  (Beckman Instruments S. A., Gagny, France). Upper low 

density fraction was extensively dialyzed at 4°C against 150 mM NaCl-0.24 mM EDTA (pH 7.4) buffer, 

filtered through 0.22-µm-pore-size filters, and stored at 4°C in the dark, in presence of 2% of inhibitor 

cocktail.  

LVP purification - LVP purification was performed as previously described (Andre et al., 2002). Briefly, 

protein A-coated magnetic beads (Miltenyi Biotec, Paris, France) were incubated at room temperature 

with 2 ml of the low-density fractions in PBS with gentle rocking for 30 min. Samples were then passed 

through a magnetic column (Miltenyi Biotec), washed with PBS and collected in 500 µl of DMEM-0.2% 

bovine serum albumin (BSA). Immunocaptured particles  (purified LVP) were stored at 4°C in dark in the 

presence of 2% of inhibitor cocktail. 

Protein, ApoB, and lipid quantitation - Protein concentration was determined according to Lowry method 

and calculated from a calibration curve using BSA as a standard. ApoB concentration in low-density-

fraction and sera was determined by using immunochemical kits (ApoB kit; bioMérieux S. A., Marcy 

l'Etoile, France or ApoB kit, SFRI Diagnostics, St-Jean d'Illac, France). Total cholesterol, phospholipid, 

and triacylglycerol concentrations in sera were calculated with Cholesterol RTU, Phospholipides 

Enzymatique PAP 150, and Triacylglycerols Enzymatic PAP 150 kits (bioMérieux) with the inclusion of 

standard curves to calculate the concentrations.  

ApoB concentrations in purified LVP were determined by ELISA. Ninety-six-well flat-bottom enzyme-

linked immunosorbent assay plates (Maxisorb; Nunc) were coated overnight at 4°C with 100 µl of 

monoclonal anti-human apoB antibody (5 µg/ml; clone 1609) in PBS and then saturated with 2% BSA for 

1 h. Samples were first incubated for 30 min at RT in PBS-0.2% BSA supplemented with 10 µg of human 

IgG/ml before being distributed at 100 µl/well. After 2 h of incubation at 37°C and washing with PBS-

0.05% Tween 20, peroxidase-conjugated goat anti-human apoB antibody (1.6 µg/ml) 100 µl/well in PBS-

0.2% BSA was added for 90 min at 37°C. The plates were washed and ortho-phenylenediamine substrate  

was added (150 µl/well). The reaction was revealed for 10 min and read at 490 nm. Standard curves were 

established with LDL dilutions ranging from 2 to 100 ng of ApoB/ml. Controls included human IgG-

saturated protein A-coated magnetic beads prepared under the same conditions.  
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Phopholipids and triacylglycerol compositions of LVP and low-density-fractions were determined by gas 

chromatography quantitation of their fatty acid content. Diheptadecanoyl phosphatidylcholine and 

triheptadecanoyl glycerol were added to LVP and low-density-fraction before lipid extraction as internal 

standards. Lipid extracts obtained from 200µl of LVP or 100µl of low-density-fraction were separated on 

Silica Gel G60 plates (Merck) with the solvent system hexane/diethyl ether/acetic acid (60:40:1, v/v/v). 

The silica gel areas corresponding to phospholipids and triacylglycerols were scraped off and 

transmethylated. Briefly, 1 volume of 5% H2SO4 in methanol was added to the scraped silica gel, and 

transmethylation was carried out at 100 °C for 90 min in screw-capped tubes. The reaction was terminated 

by the addition of 1.5 volume of ice-cold 5% (w/v) K2CO3, and the fatty acid methyl esters were extracted 

with isooctane and analyzed using a PerkinElmer Life Sciences chromatograph model 5830, equipped 

with a capillary column (30 m × 0.32 mm, Supelco) and a flame ionization detection. The column was 

two-step programmed from 135 to 160 °C at 2 °C/min and from 160 to 205 °C at 1.5 °C/min; the detection 

temperature was maintained at 250 °C. The vector gas was helium at a pressure of 0.8 pounds/square inch 

(5520 pascals). Peaks were identified using standard fatty acid methyl esters and the absolute amounts of 

fatty acid methyl esters present in PL and TG were determined relative to the known amount of added 

17:0. 

HCV RNA quantitation - RNA was extracted from 150 µl of serum, 10 µl of low-density fraction or 

purified LVP with a QIAamp viral RNA kit (Qiagen S. A., Courtaboeuf, France); RNA was eluted in 50 

µl of water and stored at -80°C. HCV-RNA quantitation was performed by real-time PCR of the 5' HCV 

noncoding region as previously described but with minor modifications (Komurian-Pradel et al., 2001). 

Briefly, RNA (4 µl) was reverse transcribed with Thermoscript reverse transcriptase kit (Gibco/BRL) with 

the RC21 primer (Besnard & Andre, 1994). Real-time PCR were carried out with 2 µl of cDNA and the 

RC1 and RC21 primers by using an LC FastStart DNA Master SYBR Green I kit and a LightCycler 

apparatus (Roche Diagnostics, Meylan, France). Proportion of HCV-RNA in low-density fractions was 

defined as previously described (Andre et al., 2002).  

Western blotting - 15µl of purified LVP and 15µl of 100 fold diluted low-density fraction were 

denaturated in Laemmli buffer and separated on a 5% (apoB) or 10% (E1 and E2) acrylamide gel. 

ApoB100 and apo48 used as control of migration were obtained respectively from LDL and chylomicrons 

isolated from healthy plasma donors. Briefly, for apoB100, plasma density was adjusted at 1.055g/ml with 

NaBr and ultracentrifuged as described above. 15µl of 100 fold diluted low-density fraction were 

denaturated in laemli buffer and load on the gel. For ApoB48, a post-prandial plasma from one healthy 

volunteer was immediately ultracentrifuged for 4 h at 4°C and 543,000 x g with a TL100  (Beckman 

Instruments S. A., Gagny, France). 20µl of 20 fold diluted ApoB48 rich very-low-density chylomicrons 

fraction were denaturated in Laemmli buffer and load on the gel. After migration, proteins were 

 6

H
A

L author m
anuscript    inserm

-00139590, version 1



172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 

185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 

electrotransfered onto an Immobilon P membrane (Millipore, St. Quentin Yvelines, France). Membranes 

were incubated in blocking solution (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.05% Tween 20, 5% skim 

milk) overnight at 4 °C. All following steps were performed in TBS-Tween 0.05% at RT. After washing, 

blots were incubated for 90 min with 1D1 anti-human apoB monoclonal antibody (1/10000) or with anti-

E1 (A4) or E2 (H52) (1/1000). After washing, membranes were incubated for 1 h with HRP-conjugated 

goat anti-mouse antibody (Perbio Science, Brebières, France, 1/5000). Immunoreactive proteins were 

visualized using the ECL detection system (Amersham Biosciences) or SuperSignal FEMTO system 

(Perbio Science, Brebières, France) and Biomax MR-film (Kodak, Chalon-Sur-Saône, France). Bands 

were quantified with a videodensitometric software analyzer (Imagemaster, Amersham Biosciences). 

HCV envelope ELISA - 96 well ELISA plates (Nunc MaxiSorp,  Roskilde, Denmark) were coated with 

10ng/well of protein A (Sigma) in 100µl of PBS over night at 4°C. Plates were washed three times with 

washing buffer (PBS containing 0.02% v/v Tween 20) and unspecific binding was blocked by addition of 

200µl/well of blocking buffer (PBS containing 2% w/v BSA) for 2 h at 37°C. Low density fractions 

(d<1.055g/ml), prepared as described in the low density fraction preparation section above from infected 

(patient) or non-infected plasma (control) , were  diluted from 10 to 0µg prot./ml in PBS (10, 5, 3.33, 2.5, 

1.67, 1.25, 0.63 and 0). 100µl of each dilution were transferred to the protein A-coated plate and incubated 

during 60min at 37°C. After washing, free protein-A binding site were blocked by 150µl of human IgG 

(2.5µg/ml) during 2h at 37°C. An additional wash was performed and 100µl of monoclonal anti-E1 A4 

(upper panel), anti-E2 H47 (lower panel) or anti-Measles virus H protein (clone 55)(negative control) 

antiserum (diluted 1/1000 in PBS) were added to each well and incubated at 37°C for 1 h. A further wash 

step was performed and 100µl of alkaline phosphatase conjugated anti-mouse IgG (Sigma A2429) diluted 

1/1500 in PBS was incubated in each well for 1 h at 37°C. After a final wash step, 100µl of a 2mg/ml 

PNPP (Sigma N2765) substrate solution was added to each well and developed for 45 min. Absorbance 

was read at 405 nm.  

 

RESULTS 

 

Apolipoprotein distribution in purified LVP and in the whole d<1.055 g/l plasma fraction. ApoB are non 

exchangeable apolipoproteins and apoB100 and 48 are specific of hepatic VLDL or intestinal 

chylomicrons, respectively, in humans. We first determined if HCV was randomly associated to TRL by 

looking at the composition of LVP in apoB isoforms. As expected, in the whole d<1.055 g/l plasma 

fraction, apoB100 was the major form of apoB while apoB48 was barely detectable, reflecting the massive 

predominance of liver-derived lipoproteins in the plasma of fasting patients (fig. 1A and B). In contrast, 

apoB100 and 48 were equally represented in LVP purified from the same whole fraction. Considering that 
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apoB is a non exchangeable apolipoprotein, these data indicated that viral low density particles are 

preferentially associated with intestine-derived lipoproteins. For the eight patients studied (Table 1), the 

proportion of plasma HCV RNA found in the <1.055g/ml fraction varied from patient to patient from 10 

to 95% (mean 39%), accordingly with previously report (Andre et al., 2002). Therefore, we could estimate 

that 5 to 45% (average 18%) of the total viral load in the plasma of these patients was in the form of  

chylomicron-like particles, considering that apoB48 was found in half of purified LVP. The presence of 

apoE, CII and CIII, but not of apoAII, in purified LVP further supported the TRL-like nature of these 

particles (fig. 2), whereas their viral nature was confirmed by western blot experiments with anti-envelope 

antibodies showing the presence of both E1 and E2 glycoproteins in purified particles (fig. 3A). In 

addition, anti-envelope antibodies recognized native LVP captured by protein A in an ELISA assay, 

indicating that E1 and E2 viral glycoproteins are localized at the surface of the particle (fig. 3B).  

 

Post-prandial modifications of LVP. In order to further support the hypothesis of a preferential association 

of HCV to chylomicrons which contributes to LVP production, we studied the dynamic transition between 

the pre-prandial and the post-prandial periods. For that means, seven HCV-infected volunteers were given 

a 900 kcal breakfast with 30% fat after an overnight fasting. Peripheral blood was drawn before breakfast 

and 90 min after the first phlebotomy. The increase observed in plasma TG in all post-prandial samples 

indicated that fat absorption and chylomicron secretion had occurred during this time period for all 

patients (table 2). The TG/apoB and PL/apoB ratios of purified LVP significantly increased in 90 min 

(table 2). By contrast, the TG/PL ratio did not significantly differ in the inter and post-prandial periods 

indicating that the TG and PL contents of the particle increased in the same proportion. Moreover, the 

TG/apoB mass ratios in both the pre-prandial and post prandial periods were largely higher in LVP than in 

the d <1.055g/ml fraction from which LVP were purified (fig. 4A), indicating that LVP are TG-enriched 

circulating particles in plasma. The fatty acid composition of TG and PL in purified LVP and in the 

d<1.055 g/ml) fraction was similar in the pre-prandial and in the post-prandial periods (table 3), and very 

similarly between the two periods (fig.5). These results confirmed the lipoprotein nature of LVP. The 

rapid and dramatic post-prandial changes observed in the composition of LVP while the composition of 

the corresponding whole d<1.055 g/l fraction remained steady, further suggested an active contribution of 

the intestine to LVP production.  

 

DISCUSSION 

 

In the plasma of HCV chronically infected patients, infectious particles are partly found in low density 

fractions, associated with TRL forming LVP. Some of these LVP are naturally coated with antibody and 

 8

H
A

L author m
anuscript    inserm

-00139590, version 1



240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 

can be protein A precipitated. Previous analysis of these captured LVP showed that they are globular 

particles, rich in TG and contain HCV core protein and RNA. In the present study, we show that, in 

addition to HCV RNA, similarly purified LVP contain at their surface HCV envelope glycoproteins and 

TRL apolipoproteins, apoB, apoE, apoCII and apoCIII, but not apoAII which is a component of HDL. A 

major findings is that among TRL apolipoproteins, the two isoforms of apoB, apoB100 and 48, are equally 

represented, while apo48 is barely detectable in the fasting patient plasma. A direct indication of the 

association of HCV RNA with apoB48 would require an immunoprecipitation with an anti-apoB48 

antibody and the detection of HCV RNA in the captured material. However, ApoB48 results from the 

edition in enterocytes of a stop codon within the open reading frame of the apoB mRNA (Patterson et al., 

2003) leading to a protein lacking the C terminal end of the complete apoB100 molecule. As a result, there 

is no direct way to capture apoB48 containing lipoproteins and therefore to directly demonstrate the 

association of HCV RNA with apoB48-containing lipoproteins. Despite this limitation, the strong apoB48 

enrichment in protein A captured, HCV RNA positive LVP compare to the plasma lipoproteins strongly 

suggest a direct association of HCV RNA with apoB48-containing lipoprotein. The rapid and dramatic 

increase in TG of these purified LVP after lipid ingestion further strengthens the HCV-apoB48 

association. These results raise the question of the nature, origin and functions of such particles.  

The strong relationship between apoB-containing lipoproteins and viral particles is a specificity of HCV 

and related virus (Sato et al., 1996). Although ultrastructural analysis of LVP is necessary, these data 

suggest that LVP are TRL-like particles, in which the two hydrophobic domains of the core protein could 

be embedded in the neutral lipids of the lipoprotein core (Hope & McLauchlan, 2000, McLauchlan et al., 

2002). Glycoprotein E1 and E2, may display an amphipathic helix conformation (Charloteaux et al., 2002) 

as apolipoproteins, and insert into the surface layer of the particle. With respect to apoE which is born by 

LVP, it has recently been shown that E2,E3 and E2,E4 genotypes were respectively associated with a 

significant 3- and 5-fold reduction in the risk of chronic HCV infection compared with E3E4 or E3 and E4 

homozygotes (Price et al., 2006). In addition, E2,E2 genotype, was never found in HCV positive patients. 

The E2 isoform of apoE poorly binds to the LDL receptor (Mahley & Rall, 2000). Since LVP binding to 

cell can be blocked by anti-apoE antibody (Agnello et al., 1999, Andre et al., 2002), it is likely that the 

defective binding of apoE2 isoform could result in a poor uptake of LVP. Moreover, these data support a 

biological role for LVP which, like TRL, may have their fate and their site of clearance directed by their 

apolipoprotein composition (Field & Mathur, 1995).  

Several mechanisms could be involved in the production of LVP. First, LVP could be formed within the 

blood circulation by the association of mature HCV virions to circulating TRL. However, a recent study 

reported that HCV RNA quasispecies found in LVP corresponded to a subgroup of the whole plasma viral 

population (Deforges et al., 2004). This indicates, at least, that LVP are not issued from a random fusion 
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of circulating HCV viruses with plasma lipoproteins. Although natural antibodies against LVP may 

introduce some bias in selecting a particular LVP subpopulation, the most likely hypothesis is that LVP 

are formed within the endoplasmic reticulum of lipoprotein-secreting cells, in which apoB and TG are 

assembled to form TRL. Indeed, immunoprecipitation of TRL with an anti-apoB antibody precipitated 

50% of HCV RNA from HCV infected liver macerate, indicating that a substantial amount of HCV RNA 

was already associated with apoB in hepatocytes (Nielsen et al., 2004). Altogether, these studies suggest 

that HCV association with apoB-containing lipoproteins likely occurs within lipoprotein-secreting cells 

rather than results from binding of HCV to TRL in the circulation. 

Therefore, one should consider the hypothesis of an intestinal production of LVP, based on the association 

of HCV-RNA and envelope glycoproteins with apoB48-containing TRL. Indeed, the expression of 

Apobec1, the editing enzyme of the apoB mRNA leading to apoB48 synthesis, is strictly restricted to 

enterocytes (Patterson et al., 2003) and HCV infection has not been reported to induce Apobec1 

expression in hepatocytes (Jacobs et al., 2005, Smith et al., 2003, Su et al., 2002). This hypothesis is 

further supported by the variation in the lipid enrichment of circulating LVP between the pre- and the 

post-prandial period of the patient, as expected for intestinal TRL after food intake (Field & Mathur, 

1995). Such an hypothesis is consistent with a previous study reporting that the quasispecies populations 

of LVP and liver HCV RNA did not completely match suggesting a second reservoir beside the liver and 

with the presence of HCV proteins in enterocytes of chronically-infected patients (Deforges et al., 2004). 

Further investigations of chronically infected patients for detection of HCV RNA in intestinal biopsies and 

comparative quasispecies analysis between gut, LVP and plasma are necessary to precisely quantify the 

contribution of enterocytes to the circulating viral load. 

Besides the fundamental challenge to decipher the mechanisms leading to the production of LVP, 

considering the intestine as a reservoir and replication site of HCV in the form of LVP have important 

pathophysiological consequences. Proportion of intestinal LVP might be substantial, mean calculated 

value 18% of the plasma viral load. Since the final destination of intestinal lipoprotein remnants is the 

liver (Field & Mathur, 1995), an intriguing possibility could be a permanent inoculation of the liver with 

LVP from the intestine. Binding and internalization of naturally antibody-coated LVP was shown to be 

mediated by lipoprotein receptors which recognize apolipoproteins on the viral particles (Andre et al., 

2002). Neutralizing antibodies directed to the envelope glycoproteins may therefore not be sufficient to 

control infection of the liver by LVP. Therefore, classical virions, like those produced in vitro, and LVP, 

could deliver the virus with the possibility to both acutely and chronically infect the host, a feature not 

achieved by other flaviviruses. 
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LEGENDS 

 

Fig. 1. ApoB100 and apoB48 are present in purified LVP. A, Nature of apoB in purified LVP. Plasma 

from HCV-infected or healthy donors were adjusted to a 1.055g/ml density and centrifugated for 4h at 4°C 

and 543,000xg. LVP were immunopurified from the low-density fraction as described in experimental 

procedures. Samples of LVP and of the whole fraction were analyzed by 5% SDS-PAGE under reducing 

conditions and immunoblotted with 1D1 anti-apoB monoclonal antibody. Lane 1 and 2,  the d<1.055g/ml 

fraction and chylomicrons isolated from a healthy blood donor; respectively; lane 3, mocked-prepared 

LVP from a healthy blood donor; lane 4 and 5, purified LVP from patient H; lane 6 and 7, the 

d<1.055g/ml fraction from which LVP were purified  from the same patient and a healthy subject, 

respectively. B, Relative proportions of apoB48 and apoB100 in purified LVP and in the d<1.055g/ml 

fraction prepared from eight infected patients. ApoB48 and apoB100 spots were quantified by 

videodensitometry and expressed as % of total apoB.  The proportion of apoB48 was significantly higher 

in purified LVP than in the whole d<1.055g/ml fraction (Student T test  p<0.01).  

 

Fig. 2. Presence of apoE, CII and CIII in LVP. LVP were immunopurified from the d<1.055g/ml fraction, 

as described in experimental procedures, analysed by 12% (apoE) or 15% (apoAII, apoCII and apoCIII) 

SDS-PAGE under reducing conditions, and immunoblotted with anti-apoE, anti-apoAII or anti-apoCIII 

monoclonal antibodies (Chemicon International) or anti-apoCII polyclonal antibody (Merck Calbiochem). 

Lane 1 and 2, mocked-prepared LVP and the d<1.055g/ml fraction from a non infected blood donor, 

respectively;lane 3 and 4, LVP and the d<1.055g/ml fraction from a chronically infected patient, 

respectively; lane 5, control plasma from a blood donor. ApoE, CII and III were present in the 

d<1.055g/ml fraction where apoB-containing lipoproteins reside and in purified LVP. ApoAII, a 

component of HDL, was neither detected in the d<1.055g/ml fraction nor in LVP.  

 

Fig. 3. Presence of envelope glycoproteins in LVP. A, LVP were immunopurified from the d<1.055g/ml 

fraction, as described in the experimental procedures, analyzed by 10% SDS-PAGE under reducing 

conditions, and immunoblotted with the A4 anti-E1 (lower panel) or the H52anti-E2 (upper panel) 

monoclonal antibodies. Lane 1 and 2, lysates of 293T cells expressing  or not E1 and E2 glycoproteins, 

respectively; lane 3, mocked-prepared LVP from plasma of a healthy blood donor; lane 4, purified LVP 

from a chronically infected patient; lane 5 and 6, the d<1.055g/ml fraction  from which LVP were purified 

from a HCV patient or a healthy subject, respectively. Western blots are representative of experiments 

performed with plasma from 3 infected individuals. Note that both viral glycoproteins were detected in 

purified LVP. B, Detection of protein A-captured LVP in an ELISA with anti-E1 and anti-E2 antibodies . 
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The d<1.055g/ml fractions were prepared as described in material and methods from chronically infected 

patients and from non-infected blood donors. The d<1.055g/ml  fraction from infected (closed square) or 

non infected (open square) patients were revealed by anti-E1 A4 (a) or anti-E2 H47 (b). As a control, the 

d<1.055g/ml  fraction from infected (open triangle) or non infected (open circle) patients, stained by anti-

H measles clone 55, are presented. Results are means of duplicates (×). Note that protein A-captured LVP 

from infected patient were only recognized by anti-HCV E1 and E2 envelope antibodies and not by anti-

measles virus H envelope antibodies. No material from non infected control was recognized by any 

antibody.  

 

Fig. 4. Evolution of TG/apoB mass ratio in LVP between the pre-prandial and the post-prandial periods. 

(a), Mean (dash) and individual TG/apoB mass ratios (spots) in both fractions from 7 patients.. Lipids 

from purified LVP and the whole <1.055g/ml fraction were extracted and separated by TLC. TG spots 

were scraped off, and the fatty acids were transmethylated and quantified by gas chromatography, and the 

apoB content of purified LVP was determinated by ELISA, as described under “Experimental 

Procedures”. Note that the TG/apoB was significantly higher in LVP than in their respective whole 

fraction (Wilcoxon T test, p≤0.05). (b), TG/ApoB mass ratio in LVP increase between the pre-prandial to 

post-prandial periods. Results are expressed as the ratio between the TG/apoB mass ratio in LVP in the 

post-prandial period vs that in the pre-prandial period for each patient. Patients are identified as patient A 

to G and indicated by arrows in (a). Note that the TG/apoB mass ratio was significantly increased in LVP 

during the post-prandial period (distribution-free Wilcoxon T test, p≤0.05). 

 
Fig. 5. Effect of lipid intake on LVP characteristics. A, Lipid and protein mass ratios in the whole 

d<1.055g/ml  fractions and purified LVP in the pre-prandial and post-prandial periods. Results are means 

from seven patients. B, Parallel modifications of fatty acid composition of LVP and of the fraction 

d<1.055g/ml between the pre-prandial to post-prandial periods. n-6 and saturated fatty acids were 

quantified by gas chromatography as described in material and methods and expressed as mol% in 

triacylglycerol (TG) and phospholipids (PL) of purified LVP and of the whole d<1.055g/ml fraction. 

Results are means from 11 patients. Note that the fatty acid composition of TG and PL vary in the same 

proportion in LVP and the whole d<1.055g/ml density fraction between the pre-prandial and the post-

prandial periods. 
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Figure 4 
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Figure 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 21

H
A

L author m
anuscript    inserm

-00139590, version 1



T
ab

le
 1

 
   C

lin
ic

al
 c

ha
ra

ct
er

is
tic

s o
f p

at
ie

nt
s w

ith
 c

hr
on

ic
 h

ep
at

iti
s C

 
 

H
C

V
 R

N
A

 lo
ad

 
  

Pa
tie

nt
s 

(H
C

V
 g

en
ot

yp
e)

 
 

Pl
as

m
a 

(c
op

ie
s/

m
g 

ap
oB

) 
Lo

w
-D

en
si

ty
-F

ra
ct

io
n 

(c
op

ie
s/

m
g 

ap
oB

) 
Pr

ui
fie

d 
LV

P 
(c

op
ie

s/
m

g 
ap

oB
) 

(1
)  

in
de

x 
of

 H
C

V
 R

N
A

 
as

so
ci

at
io

n 
(%

) †
 

(2
)  

(a
po

B
48

 / 
to

ta
l a

po
B

) x
 1

00
 

in
 L

V
P 

(3
)  

%
 o

f p
la

sm
a 

H
C

V
 R

N
A

 
as

so
ci

at
ed

 to
 a

po
B

48
 ‡

 

 
A

 
 

(1
a)

 
 

3.
76

 ×
10

7  
 

5.
63

 ×
10

6  
 

9.
98

 ×
 1

08  
 

15
.0

 
 

41
.9

 
 6.
3 

B
 

(1
a)

 
9.

97
 ×

10
6  

7.
95

 ×
10

6  
1.

45
 ×

 1
08  

79
.8

 
47

.2
 

37
.7

 
C

 
(1

a)
 

6.
02

 ×
10

5  
1.

13
 ×

10
6  

7.
32

 ×
 1

07  
95

.0
 

40
.0

 
40

.0
 

D
 

(1
a)

 
5.

62
 ×

10
7  

1.
28

 ×
10

7  
4.

39
 ×

 1
09  

13
.7

 
56

.4
 

7.
7 

E 
(1

b)
 

8.
02

 ×
10

6  
8.

13
 ×

10
5  

1.
56

 ×
 1

08  
10

.1
 

50
.3

 
5.

1 
F 

(1
b)

 
1.

98
 ×

10
7  

6.
83

 ×
10

6  
4.

52
 ×

 1
08  

34
.5

 
51

.3
 

17
.7

 
G

 
(1

b)
 

1.
15

 ×
10

7  
2.

65
 ×

10
6  

3.
19

 ×
 1

09  
23

.1
 

53
.2

 
12

.3
 

H
 

(1
b)

 
 

3.
93

 ×
10

6  
2.

08
 ×

10
6  

9.
60

 ×
 1

07  
52

.9
 

51
.8

 
27

.4
 

 † 
In

de
x 

of
 H

C
V

 R
N

A
 a

ss
oc

ia
tio

n 
w

ith
 L

D
F:

 se
e 

m
et

ho
ds

 
 ‡ 

co
lu

m
n 

3 
ca

lc
ul

at
ed

 a
s v

al
ue

 o
f (

co
lu

m
n 

1 
x 

co
lu

m
n 

2)
/1

00
 

            
22

H
A

L author m
anuscript    inserm

-00139590, version 1



T
ab

le
 2

 
ff

ec
t o

f l
i

E
pi

d 
in

ta
ke

 o
n 

LV
P 

ch
ar

ac
te

ris
tic

s:
 li

pi
d 

an
d 

pr
ot

ei
n 

m
as

s r
at

io
 

 
23

H
A

L author m
anuscript    inserm

-00139590, version 1



T
ab

le
 3

 

  Fa
tty

 a
ci

d 
co

m
po

si
tio

n 
of

 p
ho

sp
ho

lip
id

s a
nd

 tr
ia

cy
lg

ly
ce

ro
ls

 fr
om

 p
ur

ifi
ed

 L
V

Pa  a
nd

 w
ho

le
 lo

w
-d

en
si

ty
-f

ra
ct

io
na  b

ef
or

e 
(P

re
-p

ra
nd

ia
l) 

an
d 

af
te

r t
he

 m
ea

l (
Po

st
-

pr
an

di
al

). 
                          

   A
bb

re
vi

at
io

n:
 P

L,
 p

ho
sp

ho
lip

id
s;

 T
G

, t
ria

cy
lg

ly
ce

ro
l; 

N
D

, n
ot

 d
et

ec
te

d 

a 
 b

y 
w

ei
gh

t %
. V

al
ue

s r
ep

re
se

nt
 m

ea
ns

 ±
 S

EM
 

   
Pu

rif
ie

d 
LV

P 
(n

=7
) 

 
W

ho
le

 fr
ac

tio
n 

(n
=7

) 

  

Fa
tty

 a
ci

ds
 

PL
 

TG
 

 
PL

 
TG

 

 
m

ol
 %

 

 
Pr

e-
pr

an
di

al
 

Po
st

-p
ra

nd
ia

l 
Pr

e-
pr

an
di

al
 

Po
st

-p
ra

nd
ia

l 
 

Pr
e-

pr
an

di
al

 
Po

st
-p

ra
nd

ia
l 

Pr
e-

pr
an

di
al

 
Po

st
-p

ra
nd

ia
l 

14
:0

 
5.

91
 ±

 2
.2

6 
5.

75
 ±

 1
.7

8 
   

   
3.

56
 ±

 0
.9

0 
   

  5
.1

6 
± 

1.
47

 
 

  0
,6

1 
± 

0.
11

 
  0

.5
5 
± 

0.
11

 
  2

.9
1 
± 

0.
68

 
  4

.8
4 
± 

0.
37

 
16

:0
 

   
  3

8.
82

 ±
 2

.3
0 

   
  3

5.
61

 ±
 2

.5
7 

   
 3

6.
36

 ±
 2

.1
4 

   
36

.6
3 
± 

2.
74

 
 

38
,3

2 
± 

1.
27

 
   

   
35

.8
5 
± 

2.
63

 
34

.9
0 
± 

1.
44

 
35

.8
4 
± 

2.
13

 
16

:1
n-

7 
0.

49
 ±

 0
.1

7 
1.

19
 ±

 0
.2

5 
   

   
6.

46
 ±

 1
.9

2 
   

  5
.3

0 
± 

1.
28

 
 

  0
,6

5 
± 

0.
20

 
  0

.8
7 
± 

0.
19

 
  3

.1
6 
± 

0.
61

 
  3

.3
5 
± 

0.
63

 
18

:0
 

   
  1

5.
51

 ±
 2

.3
6 

   
  1

4.
98

 ±
 2

.4
2 

   
 1

0.
18

 ±
 3

.5
0 

   
  9

.0
9 
± 

3.
77

 
 

12
,9

5 
± 

1.
39

 
   

   
16

.3
2 
± 

2.
29

 
  6

.2
0 
± 

1.
31

 
  4

.8
9 
± 

0.
31

 
18

:1
n-

9 
   

  1
6.

90
 ±

 4
.0

7 
   

  1
3.

64
 ±

 1
.4

7 
   

 3
2.

42
 ±

 3
.4

8 
   

32
.3

5 
± 

2.
78

 
 

11
,0

4 
± 

1.
04

 
10

.2
5 
± 

1.
25

 
35

.3
9 
± 

3.
68

 
37

.1
4 
± 

2.
14

 
18

:2
n-

6 
   

  1
6.

24
 ±

 1
.7

4 
   

  1
6.

78
 ±

 1
.6

1 
   

 1
1.

85
 ±

 1
.7

7 
   

  9
.4

3 
± 

1.
71

 
 

   
 2

0,
05

 ±
 1

.1
8 

   
   

19
.2

7 
± 

1.
45

 
14

.7
0 
± 

1.
61

 
10

.6
7 
± 

1.
13

 
18

:3
n-

6 
   

   
   

   
  N

D
 

   
   

   
   

  N
D

 
   

   
   

   
 N

D
 

   
   

   
   

N
D

 
 

  0
,1

8 
± 

0.
10

 
  0

.6
6 
± 

0.
37

 
   

   
 0

.1
4 
± 

0.
05

 
   

   
 0

.1
3 
± 

0.
05

 
20

:3
n-

6 
3.

38
 ±

 1
.3

4 
1.

89
 ±

 0
.4

1 
   

   
0.

97
 ±

 0
.4

5 
   

  0
.1

4 
± 

0.
07

 
 

  2
,3

5 
± 

0.
27

 
  2

.3
8 
± 

0.
32

 
  0

.5
4 
± 

0.
29

 
  0

.2
2 
± 

0.
07

 
20

:4
n-

6 
6.

56
 ±

 0
.9

5 
6.

64
 ±

 0
.6

4 
   

   
1.

82
 ±

 0
.4

7 
   

  1
.5

4 
± 

0.
44

 
 

  6
,7

2 
± 

0.
87

 
  6

.5
8 
± 

0.
63

 
  2

.2
4 
± 

0.
64

 
  1

.1
2 
± 

0.
23

 
20

:5
n-

3 
0.

40
 ±

 0
.1

1 
1.

27
 ±

 0
.4

8 
 N

D
 

   
  0

.6
4 
± 

0.
36

 
 

  1
,6

2 
± 

0.
90

 
  2

.0
4 
± 

1.
37

 
   

   
N

D
 

   
   

  N
D

 
22

:4
n-

6 
9.

87
 ±

 2
.1

9 
7.

48
 ±

 2
.6

7 
   

   
2.

46
 ±

 1
.0

6 
   

  1
.1

3 
± 

0.
29

 
 

  5
,5

3 
± 

1.
11

 
  1

.7
0 
± 

0.
78

 
  0

.3
3 
± 

0.
13

 
  0

.2
4 
± 

0.
08

 
22

:5
n-

3 
0.

44
 ±

 0
.1

1 
2.

92
 ±

 0
.7

8 
   

   
1.

56
 ±

 0
.6

9 
   

  0
.8

8 
± 

0.
24

 
 

  0
,6

4 
± 

0.
10

 
  0

.6
6 
± 

0.
09

 
  0

.3
4 
± 

0.
07

 
  0

.2
3 
± 

0.
06

 
22

:5
n-

6 
1.

01
 ±

 0
.0

7 
7.

06
 ±

 1
.4

0 
   

   
1.

11
 ±

 0
.2

7 
   

  1
.7

5 
± 

0.
85

 
 

  1
,0

7 
± 

0.
48

 
  3

.4
5 
± 

1.
81

 
  0

.6
7 
± 

0.
39

 
  0

.1
2 
± 

0.
03

 
22

:6
n-

3 
2.

19
 ±

 0
.4

9 
2.

82
 ±

 0
.6

2 
   

   
0.

68
 ±

 0
.2

6 
   

  0
.5

6 
± 

0.
24

 
 

  2
,3

3 
± 

0.
41

 
  3

.2
3 
± 

0.
70

 
  0

.9
2 
± 

0.
26

 
  0

.5
0 
± 

0.
14

 
 

 
 

 
 

 
 

 
 

 
Σs

at
FA

 
   

  5
8.

10
 ±

 3
.3

4 
   

  5
4.

78
 ±

 3
.8

1 
   

 4
9.

17
 ±

 4
.7

3 
   

50
.8

7 
± 

3.
42

 
 

 6
1.

82
 ±

 0
.8

9 
 5

2.
72

 ±
 1

.7
6 

43
.4

5 
± 

1.
50

 
45

.5
7 
± 

2.
11

 
Σn

-3
 

   
  2

3.
98

 ±
 3

.1
5 

   
  2

7.
68

 ±
 4

.2
1 

   
 1

2.
93

 ±
 2

.5
4 

   
11

.3
4 
± 

2.
02

 
 

32
.9

9 
± 

1.
68

 
30

.6
0 
± 

2.
28

 
16

.7
8 
± 

2.
94

 
12

.4
8 
± 

1.
35

 
Σn

-6
 

   
   

 1
.1

0 
± 

0.
53

 
3.

21
 ±

 0
.9

8 
   

   
0.

61
 ±

 0
.3

9 
   

  0
.9

5 
± 

0.
43

 
 

  3
.5

6 
± 

0.
71

 
  5

.3
7 
± 

1.
00

 
  1

.0
4 
± 

0.
32

 
  0

.7
8 
± 

0.
21

 

 
24

H
A

L author m
anuscript    inserm

-00139590, version 1


