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Abstract⎯Discrete orthogonal moments such as Tchebichef moments have been successfully used in the 

field of image analysis. However, the invariance property of these moments has not been studied mainly 

due to the complexity of the problem. Conventionally, the translation and scale invariant functions of 

Tchebichef moments can be obtained either by normalizing the image or by expressing them as a linear 

combination of the corresponding invariants of geometric moments. In this paper, we present a new 

approach that is directly based on Tchebichef polynomials to derive the translation and scale invariants of 

Tchebichef moments. Both derived invariants are unchanged under image translation and scale 

transformation. The performance of the proposed descriptors is evaluated using a set of binary characters. 

Examples of using the Tchebichef moments invariants as pattern features for pattern classification are also 

provided. 

 

Keywords: Discrete orthogonal moments; Tchebichef polynomials; Translation and scale invariants; 

Pattern classification; Image normalization 
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1. Introduction 

Since Hu [1] first introduced the moment invariant, moments and moment functions have been widely 

used in the fields of image analysis and pattern recognition [2-8]. Hu’s moment descriptors are invariant 

with respect to translation, scale and rotation of the image. However, the kernel function of geometric 

moments of order (p + q), qp
pq yxyx =),(ψ , is not orthogonal, thus the geometric moments suffer from 

the high degree of information redundancy [9-10], and they are sensitive to noise for higher-order 

moments. Zernike and Legendre moments were later introduced by Teague [11] who used the 

corresponding orthogonal polynomials as kernel functions. Another related orthogonal moments, denoted 

as pseudo-Zernike moments [9], was derived based on the basis set of pseudo-Zernike polynomials. These 

orthogonal moments have been proved to be less sensitive to image noise as compared to geometric 

moments, and possess better feature representation ability [12-18]. 

Recently, the invariance problem of the orthogonal moments has been investigated by several research 

groups. The translation and scale invariants of Zernike and Legendre moments were achieved by using 

image normalization method [19-20]. An efficient method for constructing the translation and scale 

invariants of Zernike and Legendre moments from their corresponding orthogonal polynomials was 

developed by Chong et al. [21-22]. A similar method was applied to obtain the scale invariants of 

pseudo-Zernike moments [23]. Both the Zernike and Legendre moments, as well as the pseudo-Zernike 

moments, are defined as continuous integrals over a domain of normalized coordinates. The computation 

of these moments requires a coordinate transformation and suitable approximation of the continuous 

moment’s integrals, leading thus to further computational complexity and discretization error. To 

overcome the shortcoming of the continuous orthogonal moments, Mukundan et al. proposed a set of 

discrete orthogonal moment functions based on the discrete Tchebichef polynomials [24]. Another new 

set of discrete orthogonal moment functions based on the discrete Krawtchouk polynomials was presented 

by Yap et al. [25]. The use of discrete orthogonal polynomials as basis functions for image moments 

eliminates the need for numerical approximations, and satisfies perfectly the orthogonality property in the 

discrete domain of image coordinate space. This property makes the discrete orthogonal moments 

superior to the conventional continuous orthogonal moments in terms of image representation capability. 
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Recently, the rotational invariants of Tchebichef moments were proposed by Mukundan [26]. He 

constructed the rotational invariants using the one-dimensional Tchebichef polynomial along radial 

direction and a circular-harmonic function along the angular direction. To the best of our knowledge, until 

now, no report has been published on how to derive the translation and scale invariants of discrete 

orthogonal moments. Traditionally, this can be done by one of the two following ways: (1) Image 

normalization; (2) Indirect method, i.e., making use of translation and scale invariants of geometric 

moments to form the corresponding invariants of Tchebichef moments. However, as indicated by Chong 

et al. [21], the two above mentioned methods have some drawbacks. Moments computed using the 

normalization scheme may differ from the true moments of the standard image because the normalization 

parameters may not always correspond to an exact transformation of the scaled image. On the other hand, 

the indirect method is time expensive due to the long time allocated to compute the polynomial 

coefficients. 

In this paper, we propose a new approach to derive the translation and scale invariants of Tchebichef 

moments based on the corresponding polynomials. This approach eliminates the requirement of 

calculating the normalization parameters of the shifted and scaled image, or utilizing other indirect 

methods to achieve the translation and scale invariance. The method described in this paper is general 

enough so that it can be easily extended to the construction of moment invariant of other discrete 

orthogonal moments from their orthogonal polynomials via a slight modification of our method. 

The remainder of the paper is organized as follows. In Section 2, we review the definition of 

Tchebichef moments, and briefly describe how to derive the translation and scale invariants of Tchebichef 

moments from the geometric moments. Section 3 presents the mathematical framework to algebraically 

derive these invariants. The experimental results for evaluating the performance of the proposed 

descriptors are given in Section 4. Finally, some concluding remarks are provided. 

 
2. Tchebichef moments 

  In this section, we first review the theory of Tchebichef moments, and then give a brief description on 

how to derive the translation and scale invariants of Tchebichef moments from the geometric moments. 
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2.1. Tchebichef polynomials 

The discrete Tchebichef polynomial of order n is defined as [24] 

∑
= −

+−−
−=

−+−−−=
n

k k

kkk
n

nn

Nk
nxn

N

NnxnFNxt

0
2

23

)1()!(
)1()()(

)1(

)1;1,1;1,,()1()(
,   n, x = 0, 1, …, N – 1,              (1) 

where )(23 ⋅F  is the generalized hypergeometric function given by 
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and N × N is the image size, (a)k is the Pochhammer symbol given by 

     )1()2)(1()( −+++= kaaaaa k , k ≥ 1, and (a)0 = 1                 (3) 

For notation simplicity, let us introduce 
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   The Tchebichef polynomials satisfy the following orthogonal property in discrete domain 
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where δnm denotes the Kronecker symbol and the squared-norm ρ(n, N) is given by 
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2.2.Tchebichef moments 

As indicated by Mukundan et al. [24], the set of polynomials given by Eq. (5) is not suitable for 

defining the moments because the value of tn(x) grows as Nn. To overcome this shortcoming, they 

proposed to use the following scaled Tchebichef polynomials 

      
),(

)(
)(~

Nn
xt

xt n
n β

=                                                (9) 

where β(n, N) is a suitable constant which is independent of x. 

   Under the transformation given by Eq. (9), the squared-norm of the scaled polynomials is modified as 
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A particular and interesting choice of β(n, N) is [27] 
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In the rest of the paper, β(n, N) defined by Eq.(11) will be used. This selection makes the scaled 

polynomial set orthonormal, with the property 1),(~ =Nnρ . 

   The two-dimensional (2D) Tchebichef moment of order n+m of an image intensity function, f(x, y), is 

defined as 
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This equation leads to the following exact image reconstruction formula (inverse moment transform) 
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2.3.Derivation of invariants using geometric moments 

To obtain the translation and scale invariants of Tchebichef moments, a common way is to express the 

Tchebichef moments as a linear combination of geometric moments, and then makes use of translation 

and scale invariants of geometric moments. According to [28], < x >k can be expanded as 
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where s(k, i) are the Stirling numbers of the first kind satisfying the following recurrence relations 
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Using Eq.(14), the scaled Tchebichef polynomial )(~ xtn  can be expressed as a polynomial of x as 
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where Bn, k is given by Eq. (6). 

With the help of Eq. (17), the Tchebichef moments Tnm can be expressed as a linear combination of 

geometric moments of the same order or lower. 
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where mij is the geometric moment of order i + j, defined as 
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    Based on Eq. (18), one can derive the translation and scale invariants of Tchebichef moments using 

the corresponding invariants of geometric moments. Let μnm be the translation invariants of geometric 

moments, and νnm be the geometric moment invariants under both translation and scale transformations. 

They are defined as [22] 
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where (x0, y0) denotes the coordinates of centroid of the image given by 

H
A

L author m
anuscript    inserm

-00139337, version 1



 8

      
00

10
0 m

mx =      and   
00

01
0 m

my =                                 (22) 

   If we replace the geometric moments mij on the right-hand sides of Eq. (18) by μnm and νnm, we obtain 

the translation invariants and both translation and scale invariants of Tchebichef moments, respectively. 

However, such a method needs to compute the coefficients Bn, k and s(k, i) which is a time consuming task. 

To avoid this, we develop in the next section a new approach for deriving the invariants of Tchebichef 

moments which is directly based on the Tchebichef polynomials. 

 

3. Methods 

   We first demonstrate some interesting properties of Tchebichef polynomials and then show that the 

translation invariants of Tchebichef moments can be derived using these properties. The scale invariants 

are subsequently provided. 

 

3.1.Some properties of Tchebichef polynomials 

In this subsection, we are interesting in the following problem: For two integer numbers x and a, we 

want to express the Tchebichef polynomial tn(x+a) into the separable form 
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As can be easily seen, the key step is the calculation of vn, n-k(a), so we turn to it in the following. 

Theorem 1. For a given integer n, and for any integer number k less than or equal to n, vn, n-k(a) can be 

deduced by the recursive relation 
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where Bp, q is defined by Eq. (6). 

The proof of Theorem 1 is given in Appendix A. 

   The following relations can be derived from Theorem 1 
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By examining Eqs. (25)-(28), one can observe that )(, av knn −  is a linear combination of ika −>< , for 0 ≤ i 

≤ k – 1. This leads to the following assumption 
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The next theorem can be used to calculate fi (n, k). 

Theorem 2. For a given integer k less than or equal to n, and for 0 ≤ i ≤ k – 1, we have 
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The proof of Theorem 2 is deferred to Appendix A. 

Theorem 2 shows that fi(n, k) can be calculated by the recursive relation. Since we are interested in the 

normalized Tchebichef polynomials defined by Eq. (9), we generalize the two above theorems to )(~ xtn  

without proofs. 

From Eq. (9) and Eq. (5), we have 

     ∑
=

− ><=
n

k
kknnn xBxt

0
,

~)(~                                             (31) 

where 

        
),(

~ ,
, Nn

B
B kn

knn β
=−                                                   (32) 

Let 

H
A

L author m
anuscript    inserm

-00139337, version 1



 10

        ∑
=

−−=+
n

k
knknnn xtavaxt

0
, )(~)(~)(~                                         (33) 

then we have 

Theorem 3. For a given integer n, and for any integer number k less than or equal to n, )(~
, av knn −  can be 

deduced by the recursive relation 

     ⎥
⎦

⎤
⎢
⎣

⎡
−><⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +−
= ∑ ∑

=

−

=
−−−+−

−−
−

k

l

k

i
innkninllknn

knkn
knn avBaB

l
lkn

B
av

0

1

0
,,,

,
, )(~~~

~
1)(~          (34) 

where pqB~  is given by Eq.(32). 

    Suppose that 
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Theorem 4. For a given integer k less than or equal to n, and for 0 ≤ i ≤ k – 1, we have 
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3.2.Translation invariants 

Based on these results, we are now ready to propose a new approach for constructing the translation 

invariants of Tchebichef moments. The direct description of translation invariants of 2D Tchebichef 

moments can be obtained by evaluating their central moment nmT ′ , which is defined by 
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where (x0, y0) denotes the image centroid coordinates given by Eq. (22). 

   With the help of Eqs. (33) and (35), Eq. (37) can be rewritten as 
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where Tpq is defined by Eq. (12). 

   Equation (38) shows that the 2D Tchebichef central moments nmT ′  can be expressed as linear 

combination of normal Tchebichef moments Tpq with 0 ≤ p ≤ n and 0 ≤ q ≤ m, so that the translation 

invariants of Tchebichef moments can be directly derived from the normal Tchebichef moments. 

   Note that Eq. (38) deals with both non-symmetrical and symmetrical images when the Legendre and 

Zernike moments do not. As indicated by Chong et al. [21-22], both Legendre central moments and 

Zernike central moments give zero values for odd order moments when they are used for images with 

symmetry along x and/or y directions, and symmetry at centroid. These limitations may cause difficulties 

in pattern classification. A solution was proposed by Chong et al. to surmount this shortcoming (for 

further detail, refer to [22]). Since the Tchebichef central moments do not encounter this problem, they 

should be more suitable for use as pattern feature descriptors compared to the Legendre and Zernike 

moments. 

 

3.3.Scale invariants 

The scale invariant property of image moments has a high significance in pattern recognition. Scaling 

can be either uniform or non-uniform in the x direction and y direction. As indicated in the introduction, 

the scale invariants of Tchebichef moments can be usually achieved by image normalization method or 

indirect method. This subsection presents a new approach to derive the scale invariants of Tchebichef 

moments when an image is scaled. Let us assume that the original image is scaled with factors a and b, 

along x and y-directions, respectively. The scaled Tchebichef moments can be defined as follows 
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where 
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with 
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Similarly, the scaled Tchebichef polynomials along x-direction can be expressed as a series of decreasing 

powers of x as follows 
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It can be easily deduced from Eq. (40) and Eq. (43) that 
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With the same approach, we can deduce the scaled Tchebichef polynomials along the y-direction as 

follows 
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The relationship between the original and scaled Tchebichef moments can then be established as 
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By eliminating the scale factors, a and b, we can construct the following scale invariants of Tchebichef 

moments 
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Selecting the different values of a and b, one can get either uniform scaled or non-uniform scaled images. 

When the negative value is used, the image may be inverted or reflected. Note that the scale invariants 

can also be used together with the translation descriptors proposed in the previous subsection to obtain 

both translation and scale invariants. 

In order to reduce the computational complexity in the calculation of C(n, i) defined by Eq. (41), we 

use the following recurrence relations to compute Ck(n, i) in Eq. (42). 

0),( =inCk    for i > n – k                                    (50) 

and 
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with 

0,
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4. Experimental results 

Several experiments are carried out to validate the effectiveness of the proposed method using a large 

set of simple to complex patterns, with and without symmetries, submitted or not to different scaling, 

corrupted or not by noise. We first evaluate the performance of the translation invariants described in Sec. 

3.2. A Chinese character whose size is 32×32 pixels is shifted up, down, left and right as well as 

diagonally within the image frame. The set of Tchebichef central moments of order up to 3 is calculated 

for each translation, the results are depicted in Table 1. We also use the deviation of the central moments 

as proposed by Chong et al. [21-22], represented by the percentage spread from the corresponding means 

of central moments σ/μ, to measure the performance of the proposed invariant descriptors. Here σ and μ 

denote respectively the standard deviation and mean of the Tchebichef central moments. As one can see 

from this table, the values of the Tchebichef central moments remain unchanged for all the translations 

and σ/μ is zero. In the second experiment, an English letter of size 32×32 pixels is used. The image is 

transformed under different translation factors. Table 2 shows the values of some selected orders of the 

Tchebichef central moments. It can be seen that excellent results are obtained with the proposed method. 

H
A

L author m
anuscript    inserm

-00139337, version 1



 14

Moreover, we observe that the translation invariant descriptors take different values for Chinese character 

and Latin character. Therefore, the translation invariants derived in this paper could be a useful tool in 

pattern recognition tasks that require the translation invariance. In the third example, we apply both the 

Tchebichef central moments and Legendre central moments to an English letter ‘E’ of size 32×32 pixels 

that is symmetric about x-axis. The corresponding results are shown in Tables 3 and 4, respectively. As it 

can be seen from Table 4, the Legendre central moments pqL'  take all the zero value for odd order q, 

while this is not the case for Tchebichef central moments. Thus, our descriptors are more robust than the 

Legendre moments. 

We then test the efficiency of the scale invariant descriptors. The original image shown in Table 5 is 

expanded or contracted with a set of scaling factors along x and y directions. The results are depicted in 

Table 5. Note that the coefficient γ in Eq. (49) is set to 2 in this experiment. We also compare our 

descriptors with the Legendre scale invariants proposed by Chong et al. [22], the results obtained with 

latter descriptors being shown in Table 6. From these tables, we can see that the values of the descriptors 

remain almost unchanged under different non-uniform scaling transformations, and that the scale 

invariants based on Tchebichef moments perform better than those derived from Legendre moments. 

In the third experiment, we test the performance of the proposed descriptors on both translation and 

scale invariance. A 70×70 resolution binary Chinese character, as shown in Table 7, is arbitrary shifted 

from the original position, and then non-uniformly expanded, contracted or reflected. Tables 7 and 8 show 

respectively the computed values using the invariant descriptors proposed in this paper and those derived 

by Chong et al. [22] based on Legendre moments. The results again indicate the improvement brought by 

the present method. 

We also compare the computational speed of the new approach with that of the indirect method, i.e., the 

method described in Subsection 2.3. A Chinese character of size 100×100 is used in this experiment. The 

original image is transformed with a uniform scale factor varied from 0.5 to 2 along x and y axis. The 

computation times required for our method and the indirect method to calculate the set of invariants of 

order up to 10, 20 and 30 are listed in Table 9. Note that the program was implemented in C++ on a PC 

Pentium IV 2.4 GHz, 256 Mb RAM. It can be seen that the new approach for deriving the moment 
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invariants is much faster than the method based on the geometric moment invariants. 

  The last experiment provides the experimental study on the classification accuracy of Tchebichef 

moments in both noise-free and noisy conditions. For the recognition task, we use the following feature 

vector 

]  , , ,, ,[ 033012210220 ΨΨΨΨΨΨ=V                              (53) 

where Ψnm are the Tchebichef moment invariants defined in the previous Section. The objective of a 

classifier is to identify the class of the unknown input character. During classification, features of the 

unknown character are compared against the training information being assigned to a particular class. The 

Euclidean distance is used as the classification measure and is defined by 

∑
=

−=
T

j
tjsj

k
ts vvVVd

1

2)( )(),(                             (54) 

where sV is the T-dimensional feature vector of unknown sample, and )(k
tV is the training vector of class 

k. In this experiment, the classification accuracy η is defined as 

%100
 testin the used images ofnumber   totalThe

images classifiedcorrectly  ofNumber 
×=η              (55) 

Fig. 1 shows a set of binary English characters and numbers served as the training set. The reason for 

choosing such a character set is that the elements in subset {B, F}, {I, J}, {S, 5}, and {O, 0} can be easily 

misclassified due to the similarity. The testing set is generated by scaling and translating the training set 

with scale factors a and b ∈ {–1.5, –1, –0.5, 0.5, 1, 1.5}, and translation Δi, Δj = –1, 0, 1 in both 

horizontal and vertical directions where the case of Δi = Δj = 0 is not used, forming a testing set of 2304 

images. This is followed by adding salt-and pepper noise with different noise densities. Fig. 2 shows some 

of the testing images contaminated by 4% salt-and-pepper noise. The feature vector based on Tchebichef 

moment invariants are used to classify these images and its recognition accuracy is compared with that of 

Legendre moment invariants [22]. Table 10 shows the classification results using the full set of features. 

One can see from this table that 100% recognition results are obtained in noise-free case. Note that the 

recognition accuracy decreases with the increase of noise. However, the proposed approach performs 

better than the invariant descriptors based on Legendre moments in terms of the recognition accuracy for 

H
A

L author m
anuscript    inserm

-00139337, version 1



 16

noisy images. 

The original images of the second experiment are downloaded from Website [29].The second testing 

set is generated in a similar way as that of the first testing set. The classification results of the image with 

translation and scaling transformation are depicted in Table 11. Table 11 again indicates that the 

Tchebichef invariant descriptors perform better in noisy conditions. 

 

5. Discussion and conclusion 

The recently proposed discrete orthogonal moments such as Tchebichef moments and Krawtchouk 

moments have better image representation capability than the traditional continuous moments. Because 

the moment invariants are useful feature descriptors for pattern recognition, we have investigated in this 

paper the invariance problem of Tchebichef moments. A new method to derive the translation and scale 

invariants of discrete Tchebichef moments was proposed. The derivation of these invariant descriptors is 

directly based on the Tchebichef polynomials, so that the image normalization process can be avoided. We 

have compared the Tchebichef moment invariants with Legendre moment invariants. Experimental results 

showed the superiority of Tchebichef moment invariants. This is probably due to the fact that the 

orthogonality of Legendre polynomials is affected when the image is discretized. On the other hand, the 

discretization may cause numerical errors in the computed moments. 

We have only considered in this paper the translation and scale invariance properties of Tchebichef 

moments. The rotation invariance is not readily achieved because the Tchebichef moments, as well as the 

Legendre moments, fall into the same class of orthogonal moments defined in the Cartesian coordinate 

space [22]. 

We have also applied the proposed moment invariants to recognition tasks. The object recognition 

experiments show that the Tchebichef moment invariants perform better than the Legendre moment 

invariants in both noise-free and noisy conditions. Therefore, they should be potentially useful invariant 

descriptors for recognition tasks. 

It is worth mentioning that the proposed method can be easily extended to derive the translation and 

scale invariants of other type of discrete orthogonal moments such as Krawtchouk moments. 
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Appendix A 

Proof of Theorem 1. Using Eq. (5) and the following formula [28] 
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The coefficient of < x >n–k on the right-hand side of Eq. (A2) is given by 
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On the other hand, substitution of Eq. (5) into Eq.(23) yields 
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The coefficient of < x >n–k on the right-hand side of Eq. (A.4) is given by 
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By equating Eq. (A.3) and Eq. (A.5), we obtain 
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Using the change of variable lkl ′−= in the first term of the right-hand side of Eq. (A.6), we can easily 

deduce Eq. (24).     

 

Proof of Theorem 2. Substitution of Eqs. (29) (6) into Eq. (24), we have 
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The coefficient of < a >k–i on the right-hand side of the above equation is 
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Using the change of variable ikmm −+′= in the last term of the above equation, we can easily deduce 

Eq. (30).         
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Table 1.  Selected orders of Tchebichef central moments for a Chinese character. 

Image Translation 20T ′  02T ′  11T ′  21T ′  12T ′  30T ′  03T ′  

∆i=-1 
∆j=-1 

15.8669 14.1558 17.7847 -27.2982 -24.3173 -32.1257 -21.8373 

∆i=-1 
∆j=+1 

15.8669 14.1558 17.7847 -27.2982 -24.3173 -32.1257 -21.8373 

∆i=+1 
∆j=-1 

15.8669 14.1558 17.7847 -27.2982 -24.3173 -32.1257 -21.8373 

 
32×32 

∆i=+1 
∆j=+1 

15.8669 14.1558 17.7847 -27.2982 -24.3173 -32.1257 -21.8373 

μσ /  （%） 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

Table 2.  Selected orders of Tchebichef central moments for an English letter. 

 

Image Translation 20T ′  02T ′  11T ′  21T ′  12T ′  30T ′  03T ′  

∆i=-2 
∆j=-1 

4.50151 4.53576 5.95335 -7.74391 -7.83157 -5.94542 -6.17103 

∆i=-1 
∆j=+3 

4.50151 4.53576 5.95335 -7.74391 -7.83157 -5.94542 -6.17103 

∆i=+2 
∆j=-3 

4.50151 4.53576 5.95335 -7.74391 -7.83157 -5.94542 -6.17103 

 
32×32 

∆i=+1 
∆j=+4 

4.50151 4.53576 5.95335 -7.74391 -7.83157 -5.94542 -6.17103 

σ /μ （%） 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 3. Selected orders of Tchebichef central moments for an English letter being symmetric along 

x-axis. 

 
Table 4. Selected orders of Legendre moments for an English letter being symmetric along x-axis. 

 

Image Translation 20T ′  02T ′  11T ′  21T ′  12T ′  30T ′  03T ′  

∆i=-1 
∆j=-1 

4.63676 4.87909 6.16477 -7.78394 -8.16659 -5.82650 -7.24762 

∆i=-1 
∆j=+1 

4.63676 4.87909 6.16477 -7.78394 -8.16659 -5.82650 -7.24762 

∆i=+1 
∆j=-1 

4.63676 4.87909 6.16477 -7.78394 -8.16659 -5.82650 -7.24762 

 
32×32 

∆i=+1 
∆j=+1 

4.63676 4.87909 6.16477 -7.78394 -8.16659 -5.82650 -7.24762 

σ/μ （%） 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Image Translation 20L′  02L′  11L′  21L′  12L′  30L′  03L′  

∆i=-1 
∆j=-1 

-0.157269 -0.139269 0.00000 0.00000 0.0032065 0.0023617 0.00000 

∆i=-1 
∆j=+1 

-0.157269 -0.139269 0.00000 0.00000 0.0032065 0.0023617 0.00000 

∆i=+1 
∆j=-1 

-0.157269 -0.139269 0.00000 0.00000 0.0032065 0.0023617 0.00000 

 
32×32 

∆i=+1 
∆j=+1 

-0.157269 -0.139269 0.00000 0.00000 0.0032065 0.0023617 0.00000 

σ/μ （%） 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 5. The proposed scale descriptors for a non-uniformly contracted or expanded English letter 
Scale Descriptors Image 

32×32 
Scale 

ψ00 ψ20 ψ02 ψ11 ψ21 ψ12 ψ30 ψ03 

 
Original 0.410648 0.330177 0.304846 0.282438 0.264336 0.254551 0.316829 0.283327 

 

a =0.6 

b =1.1 
0.411462 0.32897 0.305971 0.282463 0.263593 0.254565 0.314853 0.284292 

 a =1.1 

b =0.6 
0.412610 0.331816 0.302897 0.281958 0.263582 0.252555 0.318302 0.280189 

 

a =1.1 

b =2.3 
0.411056 0.330596 0.304398 0.282262 0.264079 0.254093 0.317226 0.282793 

 

a =1.2 

b =2.1 
0.410481 0.330037 0.304961 0.282460 0.264475 0.254744 0.316779 0.283594 

 

a=1.4 

b=1.2 
0.410573 0.330886 0.304151 0.282365 0.264507 0.254262 0.317801 0.282535 

 

a =1.6 

b =2.4 
0.410350 0.330603 0.30444 0.282433 0.264649 0.254510 0.317596 0.282921 

σ /μ （%） 0.189358 0.260720 0.302101 0.062894 0.163560 0.287812 0.349041 0.450217 

Average σ /μ （%） 0.258213 

 

H
A

L author m
anuscript    inserm

-00139337, version 1



 26

Table 6 The scale invariant descriptors of Legendre moments for a non-uniformly contracted or expanded 
English letter 

Scale Descriptors Image 
32×32 

Scale 
ψ00 ψ20 ψ02 ψ11 ψ21 ψ12 ψ30 ψ03 

 
Original 0.457679 0.416481 0.338658 0.055862 0.20786 0.152046 0.362255 0.30554 

 

a =0.6, 

b =1.1 
0.459622 0.391808 0.344552 0.114235 0.177254 0.183672 0.361205 0.312586 

 a =1.1, 

b =0.6 
0.454835 0.407255 0.341297 0.087889 0.179249 0.177967 0.370324 0.303831 

 

a =1.1, 

b =2.3 
0.458444 0.404434 0.339407 0.097651 0.188412 0.170027 0.365342 0.307210 

 

a =1.2, 

b =2.1 
0.461394 0.405478 0.339886 0.0961136 0.195723 0.164947 0.359533 0.310443 

 

a=1.4, 

b=1.2 
0.456297 0.414270 0.337838 0.074592 0.199070 0.161718 0.365581 0.303542 

 

a =1.6, 

b =2.4 
0.460203 0.404649 0.340832 0.095568 0.190584 0.169372 0.361556 0.308854 

σ /μ  （%） 0.494316 1.642300 0.60772 12.56440 4.225720 4.362620 0.990729 1.071290 

Average σ /μ （%） 3.24488 
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Table 7. The proposed translation and scale invariant descriptors for a translated, non-uniformly 

contracted, expanded and reflected Chinese character 

Scale Descriptors Image 

70×70 
Scale 

& Translation ψ00 ψ20 ψ02 ψ11 ψ21 ψ12 ψ30 ψ03 

 
Original 0.791762 0.360068 0.317765 -0.224911 0.167798 0.113319 0.191574 0.119192 

 

a=-0.5, b=1.0 
△i=-2, △j=1 0.792237 0.359835 0.317956 -0.223662 0.168336 0.112689 0.191047 0.119263 

 

a=-0.5, b=-1.0 
△i=-2, △j=1 0.792237 0.359835 0.317956 -0.223662 0.168336 0.112689 0.191047 0.119263 

 

a =0.5, b=-1.0 
△i=1, △j=2 0.792237 0.359835 0.317956 -0.223662 0.168336 0.112689 0.191047 0.119263 

 
a =1.0, b=-0.5 
△i=3, △j=-2 0.792476 0.360393 0.317103 -0.223686 0.166884 0.113525 0.191747 0.118336 

 

a =-1.0, b=1.0 
△i=2, j=-2 0.791762 0.360068 0.317765 -0.224911 0.167798 0.113319 0.191574 0.119192 

 

a =1.0, b=-1.0 
△i=1, △j=2 0.791762 0.360068 0.317765 -0.224911 0.167798 0.113319 0.191574 0.119192 

 

a=-1.0, b=-1.0 
△i=0, j=-4 0.791762 0.360068 0.317765 -0.224911 0.167798 0.113319 0.191574 0.119192 

 

a =1.0, b=-2.0 
△i=4, △j=-2 0.791583 0.359987 0.317929 -0.225218 0.168026 0.113267 0.191531 0.119404 

 

a =2.0,b=-1.0 

△i=-4, △j=1 
0.791648 0.360119 0.31772 -0.225223 0.167661 0.113476 0.191696 0.119175 

σ /μ  （%） 0.038874 0.047166 0.0796473 0.3068000 0.259252 0.292165 0.143972 0.245630 

Average σ /μ （%） 0.176688 
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Table 8 The translation and scale invariant descriptors of Legendre moments for a shifted, non-uniformly 

contracted, expanded and reflected Chinese character 

Scale Descriptors Image 

70×70 
Scale 

&Translation ψ00 ψ20 ψ02 ψ11 ψ21 ψ12 ψ30 ψ03 

 
Original 0.572661 0.434886 0.383836 -0.349139 0.296913 0.200528 0.248021 0.154343 

 

a=-0.5, b=1.0 
△i=-2, △j=1 0.571835 0.436255 0.383283 -0.347298 0.298995 0.19947 0.249449 0.15412 

 

a=-0.5, b=-1.0 
△i=-2, △j=1 0.571835 0.436255 0.383283 -0.347298 0.298995 0.19947 0.249449 0.15412 

 

a =0.5, b=-1.0 
△i=1, △j=2 0.571835 0.436255 0.383283 -0.347298 0.298995 0.19947 0.249449 0.15412 

 
a =1.0, b=-0.5 
△i=3, △j=-2 0.572653 0.43488 0.385055 -0.347774 0.295752 0.201951 0.248018 0.154812 

 

a =-1.0, b=1.0 
△i=2, j=-2 0.572661 0.434886 0.383836 -0.349139 0.296913 0.200528 0.248021 0.154343 

 

a =1.0, b=-1.0 
△i=1, △j=2 0.572661 0.434886 0.383836 -0.349139 0.296913 0.200528 0.248021 0.154343 

 

a=-1.0, b=-1.0 
△i=0, j=-4 0.572661 0.434886 0.383836 -0.349139 0.296913 0.200528 0.248021 0.154343 

 

a =1.0, b=-2.0 
△i=4, △j=-2 0.572662 0.434886 0.383533 -0.349479 0.297202 0.200174 0.248021 0.154226 

a =2.0,b=-1.0 

△i=-4, △j=1 
0.572863 0.434545 0.383972 -0.349597 0.296396 0.200791 0.247668 0.154397 

σ /μ  （%） 0.0715249 0.156332 0.136584 0.274517 0.389516 0.379464 0.285477 0.132819 

Average σ /μ （%） 0.247729625 
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Table 9. The comparison of CPU elapsed time (ms) for the proposed and indirect methods 
 

 
    100×100 

Scale 
Factor 

Orders of 
Descriptor 

Proposed Method Indirect Method 

0~10 50 280 
0~20 230 1412 0.5 
0~30 891 5738 
0~10 160 912 
0~20 551 3364 1.0 
0~30 1522 9904 
0~10 321 2033 
0~20 1082 6730 1.5 
0~30 2624 16865 
0~10 571 3495 
0~20 1823 11457 2.0 
0~30 4086 26428 

 

Table 10 
Classification results of the image with translation and scale transformation 

Salt-and-pepper Noise  Noise-free 
1% 2% 3% 4% 

Legendre 100% 84.24% 76.14% 71.8% 66.5% 
Tchebichef 100% 89.53% 83.28% 80.5% 75.7% 

 

Table 11 
Classification results of the image with translation and scale transformation 

Salt-and-pepper Noise  Noise-free 
1% 2% 3% 4% 

Legendre 100% 85.45% 77.42% 72.36% 68.50% 
Tchebichef 100% 91.84% 83.75% 81.60% 78.23% 

 

         

Fig. 1. Binary images as training set for invariant character recognition in the experiment 
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Part of the images in the testing set 

 
      

 
 

 
 

    

 

 
 

 

   

   
 

 

  
  

 
 

      

Fig. 2. Part of the images of the testing set in the experiment 

 

     

(a)                (b)                (c)               (d)                (e) 

Fig. 3. Set of test images (100×100). (a) Image of island of Cozume. (b) Image of Finland. (c) Image of island 

of Grand. (d) Image of island of Greenland. (e) Image of island of Iceland. 
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