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Abstract  

Discrete orthogonal moments are powerful tools for characterizing image shape features for applications in 

pattern recognition and image analysis. In this paper, a new set of discrete orthogonal moments is proposed, 

based on the discrete Racah polynomials. In order to ensure numerical stability, the Racah polynomials are 

normalized, thus creating a set of weighted orthonormal Racah polynomials, to define the so-called Racah 

moments. This new type of discrete orthogonal moments eliminates the need for numerical approximations. The 

paper also discusses the properties of Racah polynomials such as recurrence relations and permutability property 

that can be used to reduce the computational complexity in the calculation of Racah polynomials. Finally, we 

demonstrate Racah moments’ feature representation capability by means of image reconstruction and 

compression. Comparison with other discrete orthogonal transforms is performed, and the results show that the 

Racah moments are potentially useful in the field of image analysis. 

 

Keywords: Discrete orthogonal moments; Racah polynomials; image reconstruction; image compression 
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1. Introduction 

Moments and functions of moments of image intensity values have been widely used in image processing and 

analysis such as invariant pattern recognition [1], image reconstruction [2], robust line fitting [3], edge detection [4], 

and image recognition [5]. Among the different types of moments, the Cartesian geometric moments are most widely 

used due essentially to their simplicity and their explicit geometric meaning. However, the geometric moments are not 

orthogonal, thus it is difficult to reconstruct the image from them. Teague [6] introduced the Legendre and Zernike 

moments using the corresponding orthogonal functions as kernels. It was proven that the orthogonal moments possess 

better image feature representation and are more robust to image noise compared to geometric moments [7]. Since 

both Legendre and Zernike moments are defined as continuous integrals over a domain of normalized coordinates, the 

computation of these continuous moments requires a suitable transformation of the image coordinate space and an 

appropriate approximation of the integrals [8, 9], thus increasing the computational complexity and leading to 

discretization error. The discrete orthogonal polynomials have been recently introduced in the field of image analysis 

[10, 11]. Mukundan et al. proposed a set of discrete orthogonal moment functions based on the discrete Tchebichef 

polynomials for image analysis tasks [10]. More recently, another new set of discrete orthogonal moment functions 

based on the discrete Krawtchouk polynomials was introduced in [11]. The use of discrete orthogonal polynomials as 

basis functions for image moments eliminates the need for numerical approximation, and satisfies exactly the 

orthogonality property in the discrete domain of image coordinate space. This property makes discrete moments 

superior to the conventional continuous orthogonal moments in terms of image representation capability. 

As it is well known, the classical orthogonal polynomials of one discrete variable satisfy a difference equation of 

hypergeometric type. The discrete orthogonal polynomials can be classified into two categories [12]. The first one is 

the set of polynomials that are orthogonal on uniform lattice {x = 0, 1, 2,…}. These orthogonal polynomials are 

solutions of the following difference equation [13] 

0)()()()()( =+Δ+∇Δ xpxpxxpx nnnn λτσ                             (1) 

where )()1()( xpxpxp nnn −+=Δ , )1()()( −−=∇ xpxpxp nnn  denote the forward and backward finite 

difference quotients, respectively. )(xσ  and )(xτ  are functions of second and first degree respectively, nλ  is an 

appropriate constant. The discrete Meixner, Krawtchouk, Charlier, Tchebichef, and Hahn polynomials belong to this 

category. The second one consists of the polynomials being orthogonal on non-uniform lattice { )(sxx = , s = 0, 1, 
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2,…}, which satisfy the following difference equation [13, 14] 
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Here )(~ xσ  and )(~ xτ  are polynomials in x(s) of degree at most two and one, respectively, and nλ  is an 

appropriate constant. According to different non-uniform lattice functions, we may have different polynomials. For 

example, for non-uniform lattice )1()( += sssx , we obtain the Racah or dual Hahn polynomials. For sqsx =)(  

or 2/)( ss qq −− , we have the q-Krawtchouk, or q-Meixner, or q-Charlier, or q-Hahn polynomials. For 

2/)()( ss qqsx −+=  or 2/)( isis qq −+ , we have the q-Racah or q-dual Hahn polynomials [12, 13]. 

In recent years, special attention has been paid to the study of the discrete orthogonal polynomials on non-uniform 

lattice [15-19]. Lattice field theories have become a powerful tool to avoid infinities in perturbative methods, and to 

obtain exact solutions of the field equations [20, 21]. However, to the best of our knowledge, until now, no discrete 

orthogonal polynomial defined on non-uniform lattice has been used in the field of image analysis. In this paper, we 

address this problem by introducing a new set of discrete orthogonal polynomials, namely Racah polynomials, which 

are orthogonal on non-uniform lattice )1()( += sssx . The Racah polynomials introduced by Askey and Wilson 

contain as limiting cases the classical polynomials of Jacobi, Laguerre and Hermite and their discrete analogues which 

go under the names of Hahn, Meixner, Krawtchouk and Charlier polynomials [22, 23]. In physics, the Racah 

coefficients usually arise in atomic and nuclear shell model calculations. In modern mathematics, the Racah 

polynomials play a leading role in the theory of orthogonal polynomials of discrete variables and of finite difference 

equations [22]. 

The objective of this paper is to introduce the Racah polynomials into the field of image analysis and attempts to 

demonstrate their potential usefulness in this field. To achieve this, the Racah polynomials are first scaled to be within 

the range of [–1, 1], so that the numerical stability of the polynomials can be assumed. The scaled Racah polynomials 

are then used as basis functions to define a new type of discrete orthogonal moments known as Racah moments. 

Similar to other discrete orthogonal moments, the error in the computed Racah moments due to discretization does not 

exist. Image can thus be exactly reconstructed from the complete set of discrete moments. 

Although the Racah polynomials are orthogonal on non-uniform lattice, the discrete Racah moments defined 

H
A

L author m
anuscript    inserm

-00139088, version 1



 5

in this paper apply to uniform pixel grid image. The difference between the Racah moments and the discrete 

moments based on the polynomials that are orthogonal on uniform lattice (e.g., discrete Tchebichef moments and 

Krawtchouk moments) is that the latter is directly defined on the image grid but, for the former, we should 

introduce an intermediate, non-uniform lattice, )1()( += sssx . 

The paper is organized as follows: in section 2, we present the Racah polynomials of a discrete variable on 

non-uniform lattice. This section also provides the definition of weighted Racah polynomials and the Racah moments. 

Section 3 discusses the recurrence relations and permutability property of Racah polynomials, which can be 

effectively used in Racah polynomial computation. The comparative study of the proposed approach with some other 

discrete orthogonal transforms in terms of the image reconstruction and compression capability is performed in 

Section 4 and concluding remarks are reported in Section 5. 

 

2. Racah moments 

2.1. Discrete orthogonal polynomials on non-uniform lattice 

Let us first review some general properties of orthogonal polynomials of a discrete variable on non-uniform lattice 

[13, 24]. As previously indicated, the discrete orthogonal polynomials on non-uniform lattice are solutions of Eq. (2). 

It is convenient to rewrite Eq. (2) in the following equivalent form. 

0)(
)(
)(

)(]
)(
)(

[
)

2
1(

)( =+
Δ
Δ

+
∇
∇

−Δ

Δ sy
sx
sy

s
sx
sy

sx
s nn

nn λτσ                             (3) 

where 

)
2
1()]([~

2
1)]([~)( −Δ−= sxsxsxs τσσ                                 (4) 

)]([~)( sxs ττ =                                              (5) 

It is known that for some special kind of lattices, solutions of Eq. (3) are orthogonal polynomials of a discrete variable, 

i.e., they satisfy the following orthogonality property 

         2
1

)]
2
1()[()()( nnmm

b

as
n dsxssPsP δρ =−Δ∑

−

=

                              (6) 

where 2
nd  denotes the square of the norm of the corresponding orthogonal polynomials, and ρ(s) is a non-negative 

function (weighting function), i.e., 
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             0)]
2
1()[( >−Δ sxsρ ,    a ≤ s ≤ b – 1                           (7) 

supported in a countable set of the real line (a, b), and ρ(s) is the solution of the following Pearson-type difference 

equation [18] 
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Δ
                                (8) 

The polynomial solutions of Eq. (3), denoted by )()]([ sPsxy nn ≡ , are uniquely determined, up to a normalizing 

factor Bn, by the difference analogue of the Rodrigues formula [13, 16, 25]. 
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where 
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2

()( nsxsxn += , ∏
=

++=
n

k
n kssns

1

)()()( σρρ                                    (10) 

In this paper, we select Racah polynomials as basis functions to define the new moments because all other 

polynomial families in Askey scheme (e.g., Krawtchouk, Meixner, Laguerre, Charlier, and Hermite polynomials) can 

be derived from the Racah polynomials by taking suitable limits [23]. Fig. 1 shows examples for which limit relations 

between neighboring polynomials are available, many other limit relations about the hypergeometric orthogonal 

polynomials and their q-analogues can be found in [22]. 

 

2.2. Racah polynomials 

  The classical Racah polynomials ),,(),( basun
βα , n = 0, 1, …, L–1, defined on non-uniform lattice x(s) = s(s+1), are 

solutions of Eq. (3) corresponding to [13]: 

     

)1(
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and the weighting function ρ(s) is given by 

              
)1()()1()1(
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where the parameters a, b, α and β are restricted to 
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ba <<− 2/1 , 1−>α , 121 +<<− aβ , Nab +=                 (13) 

Here N × N is the size of the image. 

The n-th order Racah polynomial ),,(),( basun
βα  is defined explicitly as generalized hypergeometric sums [26]: 
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                             n = 0, 1, …, L – 1, s = a, a + 1, …, b – 1,                   (14) 

where (u)k is the Pochhammer symbol defined as 
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and )(34 ⋅F  is the generalized hypergeometric function given by 
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The Racah polynomials Rn(x(x + γ + δ + 1); α, β, γ, δ)  defined in [22] can be obtained by identifying the parameter 

α, β, x, γ and δ with our β, α, s – a, a + b + α, a – b – α, respectively, and multiplying ),,(),( basun
βα  by 

nnn baba
n

)1()1()1(
!

1
+++++− αβ . 

Note that if we take γ + 1 = –N and let ∞→δ  in Rn(x(x + γ + δ + 1); α, β, γ, δ), we obtain the Hahn 

polynomials Qn(x; α, β, N). If we take α = pt and β = (1–p)t in the Hahn polynomials and let t → ∞, we obtain the 

Krawtchouk polynomials Kn(x; p, N) [22]. Setting α = 0 and β = 0, the Hahn polynomials reduce to the Tchebichef 

polynomials [13]. 

The Racah polynomials satisfy the following orthogonality property 

2
1
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mn dsxsbasubasu δρβαβα =−Δ∑

−

=

,    n, m = 0, 1,…, L – 1           (17) 

with 
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, n = 0, 1, …, L – 1 (18) 

   The set of Racah polynomials is not suitable for defining moments because the range of values of the polynomials 

expands rapidly with the increase of the order. A usual method to avoid numerical fluctuations for moment 
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computations is by means of normalization. We define the weighted Racah polynomials in the following subsection. 

 

2.3. Weighted Racah polynomials 

To avoid numerical instability in polynomial computation, the Racah polynomials are normalized by utilizing the 

square norm and the weighting function. The set of weighted Racah polynomials is defined as 

)]
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),(),( −Δ= sx
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n

nn
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   n = 0, 1, …, L – 1                 (19) 

In this case, the orthogonality condition given by Eq. (17) becomes 

nm

b

as
mn basubasu δβαβα =∑

−
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1
),(),( ),,(ˆ),,(ˆ         n, m = 0, 1, …, L – 1                 (20) 

where variable s has a uniform step s = a, a+1, … , b–1. The values of the weighted Racah polynomials are thus 

confined within the range of [–1, 1]. Figs. 2 and 3 show the plots for the first few orders of the weighted Racah 

polynomials with different choices of parameter values. 

 

2.4. Racah moments 

   Racah moments are a set of moments formed by using the weighted Racah polynomials. The one-dimensional 

(1-D) Racah moments is defined as 

∑
−

=

=
1

),( )(),,(ˆ
b

as
nn sfbasuv βα       n = 0, 1, …, L – 1                    (21) 

where f(s) is 1-D signal with length N. If a set of Racah moments nv  up to order M is given, the Racah 

moment-based signal reconstruction is as follows: 

∑
=

≈
M

n
nn basuvsf

0

),( ),,(ˆ)( βα ,    s = a, a + 1, …, b – 1                 (22) 

Similar to 1-D signal reconstruction, given an image f(s, t) with size N × N, the (n + m)-th order Racah moment is 

defined as 
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1 1
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The orthogonality property of Racah polynomials helps in expressing the image intensity function f (s, t) in terms of 
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its Racah moments. Reconstructed image can be obtained by using the following inverse Racah moment transform: 
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where (s, t) represents the uniform pixel grid of image. 

When only moments of order up to M are used, the image intensity function f (s, t) is approximated by 

              ∑∑
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m
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0 0
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3. Computational aspects of Racah moments 

   In this section, we discuss the computational aspects of Racah moments. We present some properties of Racah 

polynomials including the recurrence relations with respect to n and s. The Wigner 6j symbols are used to obtain the 

permutability property about n + a and s. These properties can be effectively used to compute the polynomial values. 

 

3.1. Recurrence relation with respect to n 

The computation of Racah polynomials based on hypergeometric and gamma functions is very expensive. To 

remedy this problem, the following recurrence relation of the weighted Racah polynomials is used. 
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3.2. Recurrence relation with respect to s 

The recurrence relation of discrete Racah polynomials with respect to s can be derived from Eq. (3) as follows: 
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To obtain the starting values, we rewrite )]([)( sn
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n ρ∇ defined by Eq. (9) for Racah polynomials as [18] 
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We obtain the recurrence relation for the weighted Racah polynomials with respect to s 
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Using Eq. (39), we obtain 
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   The above equations can be used to effectively compute the weighted Racah polynomial values. 

 

3.3. Permutability property about n+a and s 

  The permutability property can be used to reduce the time required for computing the Racah polynomials. In this 

subsection, we discuss the permutability property of weighted Racah polynomials for some special cases of 

parameters a, α and β. To demonstrate the permutability property, we need to utilize the concept of Wigner 6j symbols 

introduced by Wilson and Askey [27, 28]. The Wigner 6j symbols are related to the coefficients of transformations 

between different coupling schemes of three angular momenta j1,  j2,  j3, and they are defined in terms of the 

hypergeometric function as [28] 
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The Wigner 6j symbols are associated to the weighted Racah polynomials through the following relation [12, 26] 
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Eq. (44) can be rewritten as 
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Let a = α = β in Eq. (45), we have 

sjanjajjjjj =+=−=== 2312231 ,,, ,                        (47) 

It can be derived from Eqs. (46) and (47) that 
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Note that the above relation is only valid for the special case where a = α = β. This property can be used to reduce the 

number of arithmetic operations in the computation of Racah polynomial values by half. 

 

4. Experimental results and discussions 

This section presents a set of test images to validate the effectiveness of the proposed method. A comparative 
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study of the Racah moments in terms of the image reconstruction and compression capability with Legendre, 

Tchebichef and Krawtchouk moments and the discrete cosine transform (DCT) is performed. 

 

4.1. Image reconstruction 

 We first illustrate the influence of the parameters a, b, α and β on image reconstruction when using the Racah 

moments. According to the constraints imposed on these parameters given by Eq. (13), we have systematically chosen 

the parameters as a = α and b = a + N in all the experiments where N × N is the image size. In the first example, we 

consider the case where a = α = β. In this case, for a given value of N, only the parameter a is adjustable. Fig. 2 shows 

the plots of the first few orders of Racah polynomials for N = 40 with different values of a. From this figure, we can 

observe that the Racah polynomials contract and move from left to right as a increases. We use a binary Chinese 

character whose size is 40 × 40 pixels as original image to test the influence of the parameter a on the reconstruction 

results. Four cases have been tested: (a) a = α = β = 0, and b = 40; (b) a = α = β = 5, and b = 45; (c) a = α = β = 10, 

and b = 50; (d) a = α = β = 15, and b = 55. Fig. 4 shows the original image and the reconstructed results under 

different choices of parameter a with moment order up to 2, 10, 20, and 35, respectively. The following mean square 

error ε  is used to measure the accuracy of the reconstructed images. 

                      ∑∑
−

=

−

=

−=
1 1

2
2 )],(~),([1 b

as

b

at

tsftsf
N

ε                                  (49) 

where f (s, t) and ),(~ tsf denote the original image and the reconstructed image, respectively. 

The plot of corresponding reconstruction errors is depicted in Fig. 5. From Figs. 4 and 5, it can be seen that the 

difference between the reconstructed images is relatively important when only the moments of lower order are used. 

Conversely, when the maximum order of moments is high (M ≥ 25), the reconstruction errors with different values of 

parameter a are almost the same. 

In the second example, we consider the case where α ≠ β. We discuss the influence of parameter β on the 

reconstructed results. A constant value is assigned to the parameter a, we set a = α = 10 for this example. Five cases 

have been tested according to constraints given by Eq. (13): (a) β = 0; (b) β = 5; (c) β = 10; (d) β = 15; (e) β = 20. Fig. 

3 depicts the plots of Racah polynomials with different values of β with N = 40. We can observe from Fig. 3, similarly 

to Fig 2, the contraction and shift of Racah polynomials as β increases. 

As for the previous example, we present the reconstructed results and corresponding errors in Figs. 6 and 7, 
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respectively. It can be seen that the second choice, i.e., a = α = 10, b = 50 and β = 5, gives the best reconstructed 

results among all the test cases. The results obtained with third set (a = α = 10, b = 50 and β = 10) is comparable to 

those obtained with the second test case. We think this is because the weighted Racah polynomials, with these two 

choices of parameters, are approximately situated at the middle of the region of definition (see Figs. 3(b) and (c)), so 

that the emphasis of the moments will be at the center of the image. It can also be seen for the last test case, that the 

reconstruction begins from bottom right corner. Note that the other choices (β = 4 and β = 6) have also been tested for 

this example, but the reconstruction results are very similar to those with β = 5.  

As indicated by Yap et al. [11], the Krawtchouk moments can be used to extract the feature of an image by 

adjusting the parameter p. The Racah moments share a similar characteristic exemplified hereafter. We apply both 

Krawtchouk and Racah moments to reconstruct a gray-level image whose size is 40×40. Fig. 8 shows the results of 

image reconstruction by using different values of p1 and p2 for Krawtchouk moments, and different values of a, b, α 

and β for Racah moments. It can be visually seen from this figure that for Krawtchouk moments, the parameter p1 can 

be used to shift the region-of-interest (ROI) horizontally: if p1 < 0.5, the shifting of the ROI is to the left, while p1 > 

0.5, it shifts the ROI to the right. The parameter p2 shifts the ROI vertically: if p2 < 0.5, the ROI is shifted to the top, 

while p2 > 0.5, the ROI is shifted to the bottom. This is consistent with the results obtained by Yap [11]. For Racah 

moments, for a fixed value of a, the parameter β controls the shifting of the ROI: the smaller the value of β, the 

emphasis of the ROI on the top left corner will be. Conversely, the ROI of the image shifts to the bottom right corner 

when β takes greater value. Fig. 9 depicts the reconstruction errors for both methods. It can be observed that the 

choice of the parameter β corresponding to the case where the emphasis of the moments is at the center of the image 

gives the best reconstruction result. Based on the above test results, we found that when the wave crest of zero order 

curves of Racah polynomials is close to the middle value of interval [a, b], we could obtain the best reconstructed 

image. This is the reason why we use such a choice of parameters a, b, α and β in the following examples. 

In the fourth example, we compare the performance of the proposed Racah moments (RM) with Legendre moments 

(LM), Tchebichef moments (TM) and Krawtchouk moments (KM) and the well-known discrete cosine transform 

(DCT). The 2D discrete DCT transform of a N×N image is defined by [29] 
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The original image f (s, t) can be reconstructed by the following inverse DCT transform: 
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In practice, only the first (M + 1) × (M + 1) coefficients, i.e., the lower frequency coefficients, are taken into account 

in Eq. (52). This is equivalent to setting c(n) = 0 for n > M and c(m) = 0 for m > M in Eq. (52). In this case, Eq. (52) 

becomes  
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2
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                  (53) 

Note that, for comparison purpose, we use the same number of moment coefficients in Eq. (25) as that of DCT 

coefficients in Eq. (53) in the reconstruction process. 

In this example, a magnetic resonance image of size 96 × 96 pixels is used. Fig. 10 shows the reconstruction results 

for different values of M. Here the parameters are set to a = α = 10, b = 106 and β = 5 for RM and p1 = p2 = 0.5 for 

KM. Fig. 11 shows the plot of the mean square errors using different approaches with maximum value of M = 95. The 

results demonstrate the superiority of Racah moments over the DCT, LM, TM and KM in terms of feature 

representation capability. 

It is well known that the noise may severely affect the image reconstruction quality. To test the robustness of Racah 

moments with regard to different kind of noises, we apply the proposed moments to some noisy images. We first add 

the zero mean Gaussian noise with variance 0.2 to a Chinese character of size 40 × 40. Fig. 12 shows the 

reconstructions using the DCT, LM, TM, KM (p1 = p2 = 0.5), and RM (a = α = 10, b = 50 and β = 5), and the 

corresponding error comparison is shown in Fig 13. Note that the reconstruction error is computed with Eq. (49) in 

which the reconstructed image ),(~ tsf  is defined by Eq. (25) for the Racah moments, and by Eq. (53) for the DCT. 

Fig. 13 indicates that the Krawtchouk moments have the best performance in terms of the noise robustness, and the 

proposed Racah moments perform better than the DCT and other orthogonal moments. 

This analysis is repeated by adding the salt-and-pepper noise (5%) to the same test image. The corresponding 

results with M = 35 are shown in Figs. 14 and 15. It can be observed from these figures that the proposed method is 

more robust to noise than the DCT and Legendre and Tchebichef moments. But the Krawtchouk moments (p1 = p2 = 
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0.5) have the best performance. 

As mentioned in Sec. 3.3, when the parameters are set with a = α = β, the permutability property of Racah 

polynomials about n + a and s can be used to reduce the number of computations of the Racah polynomials by half. 

Table 1 lists the CPU time of calculating the Racah polynomials for different size images. The computer used in this 

experiment is a Pentium IV, 2.4GHz, Memory: 1GB. 

 

4.2. Image compression 

In this subsection, we test the compression capability of the proposed approach, and compare it with other well 

known transforms. Four test images including “Lena”, “Cameraman”, “Texture” and “Boat” are used in our 

experiment. Each image is first divided into the sub-blocks whose size is W×W, each block is then transformed by 

using the DCT, TM, KM, and RM. Fig. 16 shows the basis functions of these four transforms for a block of size 8×8. 

Since the variance represents the energy or information content of the corresponding transform coefficient, and the 

transform coefficients with large variances are candidates containing significant features in a pattern-recognition 

application [29], all the coefficients are rearranged in downward order, and part of them (according to the compression 

ratio) are chosen to reconstruct the original image. Fig. 17 shows the decoded results of the four test images. In this 

experiment, the compression ratio is set to 2:1, and the block size is set to 8×8 for “Lena”, “Cameraman”, and 

“Texture”, and 16×16 for “Boat”. The parameters concerned in KM and RM are chosen as: p1 = p2 = 0.5 for KM and a 

= α = 5, β = 0, and b = size of block + a for RM. In order to evaluate the performance of different methods, we use the 

MSE defined by (49) and the peak signal to noise ratio (PSNR) to quantitatively measure the fidelity of the decoded 

image. The PSNR of a gray-level image is defined as 

  )255(log10
2

10 MSE
PSNR =                                        (54) 

where 255 is the peak image amplitude, and the MSE is defined by (49). 

Fig. 18 shows the MSE of different methods for the four test images with compression ratio 2:1 and 4:1, 

respectively. Table 2 lists the corresponding PSNR values. The results indicate that the Racah moments have a better 

compression capability compared with other transforms. 

 

5. Conclusion 

  In this paper, we have introduced the Racah polynomials to define a new type of discrete orthogonal moments 
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known as Racah moments. The Racah polynomials belong to a class of discrete polynomials that are orthogonal on 

non-uniform lattice. Appropriate scale factors have been used in the moment functions, so that the computed moments 

are not subject to numerical instability. The properties of the weighted Racah polynomials such as recurrence relations 

and permutability have been discussed. We have compared the Racah moments with other orthogonal transforms 

including the DCT, Legendre moments, discrete Tchebichef moments and discrete Krawtchouk moments in terms of 

the reconstruction capability for images with and without noise. The reconstruction results and detailed error analysis 

show that the Racah moments perform better than the DCT and Legendre, Tchebichef, and Krawtchouk moments for 

free-noise images. Conversely, the Krawtchouk moments are more robust to noise. We have also investigated the 

compression aspect of the proposed Racah moments and compared it with the DCT and other discrete orthogonal 

moments. The experimental results show a better behavior of the Racah moments in terms of compression capability 

over the other transforms. The studies show that the proposed moments are potentially useful as feature descriptors for 

image analysis. 
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Fig. 1. The Askey scheme for hypergeometric orthogonal polynomials, with indicated limit relations between the 

polynomials 
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Fig. 2. Plot of weighted Racah polynomials ),,(ˆ ),( basuu n
βα= for different choices parameters. (a) a = α = β = 0, 

and b = 40; (b) a = α = β = 5, and b = 45;  (c) a = α = β = 10, and b = 50; (d) a = α = β = 15, and b = 55 
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Fig. 3. Plot of weighted Racah polynomials ),,(ˆ ),( basuu n
βα= for different choices parameters. (a) a = α = 10, b = 

50, and β = 0; (b) a = α = 10, b = 50, and β = 5;  (c) a = α = 10, b = 50, and β = 10; (d) a = α = 10, b = 50, and β = 

15; (e) a = α = 10, b = 50, and β = 20. 

 

Original image of size 40×40 

 

Reconstructed images with a = α = β = 0, and b = 40 

 

Reconstructed images with a = α = β = 5, and b = 45 

 

Reconstructed images with a = α = β = 10, and b = 50 

 

Reconstructed images with a = α = β = 15, and b = 55 

Fig. 4. Columns 1 to 4 show the reconstructed gray-level images with maximum order up to 2, 10, 20, and 35, 

respectively. 
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Fig. 5. Comparison of reconstruction errors with different choices of parameters 

 

Reconstructed images with a = α = 10, b = 50, and β = 0 

 

Reconstructed images with a = α = 10, b = 50, and β = 5 

 

Reconstructed images with a = α = 10, b = 50, and β = 10 

 

Reconstructed images with a = α = 10, b = 50, and β = 15 

 

Reconstructed images with a = α = 10, b = 50, and β = 20 

Fig. 6. Columns 1 to 4 show the reconstructed gray-level images with maximum order up to 2, 10, 20, and 35, 

respectively. 
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Fig.7. Comparison of reconstruction errors with different choices of parameters 

 

Original image of size 40×40 

      

                    KM (p1 = p2 = 0.1)            RM (a = α = 12, b = 52, and β = 0) 

      

                    KM (p1 = p2 = 0.2)            RM (a = α = 7, b = 47, and β = 0) 

      

KM (p1 = p2 = 0.5)           RM (a = α = 12, b = 52, and β = 5) 

      

KM (p1 = p2 = 0.8)           RM (a = α = 7, b = 47, and β = 7) 

      

KM (p1 = p2 = 0.9)           RM (a = α = 12, b = 52, and β = 12) 

Fig. 8. Comparison of different choices of parameters for Krawtchouk and Racah moments. The maximum order used 

is 5, 20, and 39, respectively. 
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(c)                                  (d) 

Fig. 9. Comparison of reconstruction errors with different choices of parameters for Krawtchouk and Racah moments. 

(a) Krawtchouk moments (p1 = p2 = 0.5), and Racah moments (Case 1: a = α = 7, b = 47, and β = 3; Case 2: a = α = 

12, b = 52, and β = 5). (b) Enlarge part of (a). (c) Krawtchouk moments (Case 1: p1 = p2 = 0.1; Case 2: p1 = p2 = 0.2), 

and Racah moments (Case 1: a = α = 7, b = 47, and β = 0; Case 2: a = α = 12, b = 52, and β = 0). (d) Krawtchouk 

moments (Case 1: p1 = p2 = 0.9; Case 2: p1 = p2 = 0.8), and Racah moments (Case 1: a = α = 7, b = 47, and β = 7; 

Case 2: a = α = 12, b = 52, and β = 12). 

 
Original image of size 96×96 
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Reconstructed images using DCT 

      
Reconstructed images using Legendre moments 

      
Reconstructed images using Tchebichef moments 

      
Reconstructed images using Krawtchouk moments (p1 = p2 = 0.5) 

      

Reconstructed images using Racah moments (a = α = 10, b = 106, and β = 5) 

Fig. 10. Columns 1 to 4 show the reconstructed gray-level images with M = 24, 48, 72, and 95, respectively. 
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Fig. 11. Comparison of reconstruction errors using DCT and Legendre, Tchebichef, Krawtchouk, and Racah moments. 
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Original noisy image of size 40×40 

 
Fig. 12. Image reconstruction with M = 35 for Gaussian noise-contaminated binary image (mean: 0, variance: 0.2). 

From left to right are DCT, Legendre, Tchebichef, Krawtchouk (p1 = p2 = 0.5), and Racah moments (a = α = 10, b = 

50, and β = 5), respectively. 
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Fig. 13. Comparison of reconstruction errors using DCT and Legendre, Tchebichef, Krawtchouk (p1 = p2 = 0.5), and 

Racah moment (a = α = 10, b = 50, and β = 5) with Gaussian noise 

 

Original noisy image of size 40 × 40 

 
Fig. 14. Image reconstruction with M = 35 for 5% salt-and-pepper noise-contaminated binary image. From left to right 

are DCT and Legendre, Tchebichef, Krawtchouk (p1 = p2 = 0.5), and Racah moments (a = α = 10, b = 50, and β = 5), 

respectively. 
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Fig. 15. Comparison of reconstruction errors using DCT and Legendre, Tchebichef, Krawtchouk (p1 = p2 = 0.5), and 

Racah moment (a = α = 10, b = 50, and β = 5) with 5% salt-and-pepper noise. 

 

(a) DCT             (b) TM        (c) KM (p1=p2=0.5)  (d) RM(a=α=6, b = 8+a, β=0) 

Fig. 16. The basis functions of DCT, TM, KM and RM for block size 8×8. 

 

 

Original image: Lena (256×256), Cameraman (256×256), Boat (400×400), and Texture (160×160) 
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Fig. 17. Columns 1 to 4 show the decoded images using DCT, TM, KM (p1 = p2 = 0.5), and RM (a = α = 5, β = 0, and 

b = size of block + a ), respectively. 
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(a) Compression ratio 2:1 
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(b) Compression ratio 4:1 

Fig. 18. The mean square error of several compression methods for test image sets. KM compression (p1 = p2 = 0.5), 

and RM (a = α = 5, β = 0, and b = size of block + a). 

 

Table 1 The CPU time required for calculating the Racah polynomials (ms). 

Image size Method 

32×32 64×64 96×96 128×128 

Permutability property is not used 15.36 30.72 46.08 61.44 

Permutability property is used 9.64 17.84 27.92 34.16 

 

Table 2 Comparison of the compression efficiency (PSNR (dB) ) 

Image Lena (256×256) Cameraman ( 256×256) Boat (400×400) Texture (160×160) 

Compression 

Ratio 
2 : 1 4 : 1 2 : 1 4 : 1 2 : 1 4 : 1 2 : 1 4 : 1 

DCT 26.8152 21.4948 22.7571 20.8771 24.8595 23.7012 17.1012 16.3361 

TM 21.4948 21.2078 23.5805 20.2370 23.6787 22.7016 18.2878 17.0463 

KM 21.9487 22.8417 22.5651 20.6010 23.6616 23.0650 19.8786 16.6569 

RM 34.1664 28.1705 31.0767 26.7860 28.8557 26.0501 23.4730 20.0414 
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