N
N

N

HAL

open science

Image analysis by discrete orthogonal Racah moments

Hongqing Zhu Zhu, Huazhong Shu, Jun Liang, Limin M. Luo, Jean-Louis

Coatrieux

» To cite this version:

Hongqing Zhu Zhu, Huazhong Shu, Jun Liang, Limin M. Luo, Jean-Louis Coatrieux.
analysis by discrete orthogonal Racah moments.

10.1016/j.sigpro.2006.07.007 . inserm-00139088

HAL Id: inserm-00139088
https://inserm.hal.science/inserm-00139088
Submitted on 29 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Image
Signal Processing, 2007, 87 (4), pp.687-708.


https://inserm.hal.science/inserm-00139088
https://hal.archives-ouvertes.fr

1duosnuew Joyine vH

=
(%]
(0]
=
3
o
o
|_\
w
(o]
o
[00]
o
<
(¢)
=i
@,
[=]
=
|_\

HAL author manuscript

Signal Processing 04/2007; 87(4): 687-708

|mage Analysis by Discrete Orthogonal Racah Moments

Hongging Zhu?, Huazhong Shu®S, Jun Liang?, Limin Luo®®, Jean-Louis Coatrieux®

#Laboratory of Image Science and Technol ogy, Department of Computer Science and Engineering,
Southeast University, 210096 Nanjing, People’'s Republic of China
®|_aboratoire Traitement du Signal et de |’ Image, Université de Rennes | — INSERM U642, 35042
Rennes, France

“Centre de Recherche en Information Biomédicale Sno-francais (CRIBs)

I nformation about the corresponding author:

Huazhong Shu, Ph. D

Lab. of Image Science and Technol ogy,
Department of Computer Science and Engineering,

Southeast University

People’s Republic of China

Tel: 00-86-25-83794249
Fax: 00-86-25-83794298

Email: shu.list@seu.edu.cn




1duosnuew Joyine yH

=
0
1]
=
2
(]
o
=
w
(o]
o
(0]
3]
<
1]
-
@,
o
=
—

Abstract

Discrete orthogonal moments are powerful tools for characterizing image shape features for applications in
pattern recognition and image anaysis. In this paper, a new set of discrete orthogonal moments is proposed,
based on the discrete Racah polynomials. In order to ensure numerica stability, the Racah polynomials are
normalized, thus creating a set of weighted orthonormal Racah polynomias, to define the so-called Racah
moments. This new type of discrete orthogonal moments eliminates the need for numerical approximations. The
paper aso discusses the properties of Racah polynomials such as recurrence relations and permutability property
that can be used to reduce the computational complexity in the calculation of Racah polynomials. Finally, we
demonstrate Racah moments feature representation capability by means of image reconstruction and
compression. Comparison with other discrete orthogona transforms is performed, and the results show that the

Racah moments are potentially useful in the field of image analysis.

Keywords: Discrete orthogonal moments; Racah polynomial's; image reconstruction; image compression
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1. Introduction

Moments and functions of moments of image intensity values have been widely used in image processing and
analysis such as invariant pattern recognition [1], image reconstruction [2], robust line fitting [3], edge detection [4],
and image recognition [5]. Among the different types of moments, the Cartesian geometric moments are most widely
used due essentialy to their simplicity and their explicit geometric meaning. However, the geometric moments are not
orthogonal, thus it is difficult to reconstruct the image from them. Teague [6] introduced the Legendre and Zernike
moments using the corresponding orthogona functions as kernels. It was proven that the orthogonal moments possess
better image feature representation and are more robust to image noise compared to geometric moments [7]. Since
both Legendre and Zernike moments are defined as continuous integrals over a domain of normalized coordinates, the
computation of these continuous moments requires a suitable transformation of the image coordinate space and an
appropriate approximation of the integrals [8, 9], thus increasing the computational complexity and leading to
discretization error. The discrete orthogonal polynomials have been recently introduced in the field of image analysis
[10, 11]. Mukundan et al. proposed a set of discrete orthogonal moment functions based on the discrete Tchebichef
polynomials for image analysis tasks [10]. More recently, another new set of discrete orthogonal moment functions
based on the discrete Krawtchouk polynomials was introduced in [11]. The use of discrete orthogona polynomials as
basis functions for image moments eliminates the need for numerical approximation, and satisfies exactly the
orthogonality property in the discrete domain of image coordinate space. This property makes discrete moments
superior to the conventional continuous orthogonal moments in terms of image representation capability.

As it iswell known, the classical orthogona polynomias of one discrete variable satisfy a difference equation of
hypergeometric type. The discrete orthogona polynomials can be classified into two categories [12]. The first oneis
the set of polynomials that are orthogona on uniform lattice {x = 0, 1, 2,...}. These orthogonal polynomials are

solutions of the following difference equation [13]

o (X)AVP, (X) +7(X)Ap, (X) + 4, P, (X) =0 @
where Ap, (X) = p,(X+D) - p,(X), Vp,(X)=p,(X)—p,(x—1) denote the forward and backward finite
difference quotients, respectively. o(X) and 7(X) are functions of second and first degree respectively, A, isan

appropriate constant. The discrete Meixner, Krawtchouk, Charlier, Tchebichef, and Hahn polynomials belong to this

category. The second one consists of the polynomials being orthogona on non-uniform lattice { X = X(S), s=0, 1,
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2,...}, which satisfy the following difference equation [13, 14]

ARG CSACIRGAC

AX(s— ;) VX(s) 2 T Ax(s)  Vx(s)

o[x(s)] 1+ 2,Y,(8) =0 2

Here o(Xx) and 7(x) are polynomids in x(s) of degree a most two and one, respectively, and A, is an
appropriate constant. According to different non-uniform lattice functions, we may have different polynomials. For

example, for non-uniform lattice X(S) = S(s+1), we obtain the Racah or dual Hahn polynomias. For X(s) = q°
or (9°-q°)/2, we have the g-Krawtchouk, or g-Meixner, or g-Charlier, or g-Hahn polynomias. For

X(8)=(q°+q°)/2 or (9°+q"®)/2,wehavetheg-Racah or g-dua Hahn polynomials[12, 13].

In recent years, special attention has been paid to the study of the discrete orthogona polynomials on non-uniform
lattice [15-19]. Lattice field theories have become a powerful tool to avoid infinities in perturbative methods, and to
obtain exact solutions of the field equations [20, 21]. However, to the best of our knowledge, until now, no discrete
orthogona polynomial defined on non-uniform lattice has been used in the field of image analysis. In this paper, we

address this problem by introducing a new set of discrete orthogona polynomials, namely Racah polynomials, which
are orthogona on non-uniform lattice X(S) = S(S+1). The Racah polynomials introduced by Askey and Wilson

contain aslimiting cases the classical polynomials of Jacobi, Laguerre and Hermite and their discrete analogues which
go under the names of Hahn, Meixner, Krawtchouk and Charlier polynomials [22, 23]. In physics, the Racah
coefficients usually arise in atomic and nuclear shell modd caculations. In modern mathematics, the Racah
polynomials play a leading role in the theory of orthogonal polynomials of discrete variables and of finite difference
equations [22].

The objective of this paper is to introduce the Racah polynomials into the field of image analysis and attempts to
demonstrate their potential usefulnessin this field. To achieve this, the Racah polynomials are first scaled to be within
the range of [—1, 1], so that the numerical stability of the polynomials can be assumed. The scaed Racah polynomids
are then used as basis functions to define a new type of discrete orthogonal moments known as Racah moments.
Similar to other discrete orthogonal moments, the error in the computed Racah moments due to discretization does not
exist. Image can thus be exactly reconstructed from the complete set of discrete moments.

Although the Racah polynomials are orthogonal on non-uniform lattice, the discrete Racah moments defined
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in this paper apply to uniform pixel grid image. The difference between the Racah moments and the discrete
moments based on the polynomials that are orthogona on uniform lattice (e.g., discrete Tchebichef moments and

Krawtchouk moments) is that the latter is directly defined on the image grid but, for the former, we should

introduce an intermediate, non-uniform lattice, X(s) = s(s+1).

The paper is organized as follows: in section 2, we present the Racah polynomials of a discrete variable on
non-uniform lattice. This section aso provides the definition of weighted Racah polynomials and the Racah moments.
Section 3 discusses the recurrence relations and permutability property of Racah polynomias, which can be
effectively used in Racah polynomial computation. The comparative study of the proposed approach with some other
discrete orthogonal transforms in terms of the image reconstruction and compression capability is performed in

Section 4 and concluding remarks are reported in Section 5.

2. Racah moments
2.1. Discrete orthogonal polynomials on non-uniform lattice

Let usfirst review some genera properties of orthogonal polynomials of a discrete variable on non-uniform lattice
[13, 24]. As previoudy indicated, the discrete orthogonal polynomials on non-uniform lattice are solutions of Eq. (2).

It is convenient to rewrite Eq. (2) in the following equivalent form.

A VYL(9) Ay, (s)
—1 =+ A =0 3
o(s) o ;) [ vX(s) 1+7(s) AX(9) + 4, Ya(9) 3
where
- 1- 1
o(s) =o[x(s)] - Ef[X(S)]AX(S— E) (4)
7(S) = 7[X(S)] ®)

It is known that for some special kind of lattices, solutions of Eq. (3) are orthogonal polynomials of a discrete variable,
i.e, they satisfy the following orthogonality property

b-1 1 5
D Po(SP (&) p(S)[AX(5 - )] = Sl ©
S=

a
where df denotes the square of the norm of the corresponding orthogonal polynomias, and o(s) is a non-negative

function (weighting function), i.e.,
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p(S)[AX(S—%)] >0, a<s<b-1 (7

supported in a countable set of the real line (a, b), and p(s) is the solution of the following Pearson-type difference

equation [18]

A
—= o) (9] = 7()p(Y) ®
AX(s——
( 2)
The polynomial solutions of Eq. (3), denoted by y, [X(S)] = P, (S), are uniquely determined, up to a normalizing

factor B, by the difference analogue of the Rodriguesformula[13, 16, 25].

_ B om (") __v Vv \Y
RO = oG VL= s 5 kg ) ©
where
X(9 = X(5+2). po(9) = pln+ 9] [o(s+K (10)

In this paper, we select Racah polynomials as basis functions to define the new moments because all other
polynomial families in Askey scheme (e.g., Krawtchouk, Meixner, Laguerre, Charlier, and Hermite polynomials) can
be derived from the Racah polynomials by taking suitable limits [23]. Fig. 1 shows examples for which limit relations
between neighboring polynomias are available, many other limit relations about the hypergeometric orthogonal

polynomials and their g-analogues can be found in [22].

2.2. Racah polynomials
The classical Racah polynomiasu‘“”’ (s,a,b), n=0, 1, ..., L-1, defined on non-uniform lattice x(s) = (s+1), are

solutions of Eq. (3) corresponding to [13]:
o(s)=(s—a)(s+b)(s+a-p)(b+a—-79)
7(s)=(e+Da(a-p)+(f+Yb(b+a) - (¢ +D(Lf+D — (a + B+ 2)X(S) (11)
A, =n(a+pf+n+l)

and the weighting function p(s) is given by

IN'Na+s+)Ir'(s—a+p+hr'(b+a—-s)'(b+a+s+1
Na-pg+s+Pr(s—a+Prb-s)r(p+s+1)

p(s) = (12)

where the parameters a, b, « and S arerestricted to
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-1/2<a<b a>-1 -1<p<2a+l b=a+N (13)
HereN x N isthe size of theimage.
The n-th order Racah polynomial u‘**’(s,a,b) isdefined explicitly as generalized hypergeometric sums [26]:

“n, _s 1
ur(]""ﬁ)(s,a,b)=%(a—b+1)n(,8+1)n(a+b+a+1)n><4F{ Na+f+n+la-sa+s+l j

p+la+l-ba+b+a+1

n=01 ..,L-1s=aa+1 .., b-1 (14

where (u)i is the Pochhammer symbol defined as

_ (Ut k—) = LUK
W, =uu+Y---(u+k-1 () (15)
and ,F;(-) isthe generaized hypergeometric function given by
© k
. Fs(al,az,ag,a4;bl,b2,b3; Z) — z (ai)k(aZ)k(aB)k(a4)k Z_ (16)

o (B)e(B)i (b)) K
The Racah polynomials R(x(x + ¥+ 6+ 1); &, 5, . 8) defined in [22] can be obtained by identifying the parameter

a B, % yand Swithour B, o, s—a a+b+ a a—b— a respectively, and multiplying u'*#(s,a,b) by

%(a—b+1)n(ﬂ+1)n(a+ b+a+1),.

Note that if wetake y+ 1= -Nandlet 6 >0 INnR(XX+ y+ 0+ 1); a B 5 6), we obtain the Hahn
polynomias Qn(X; &, £, N). If we take « = pt and £ = (1-p)t in the Hahn polynomials and let t — o, we obtain the
Krawtchouk polynomials Ky(x; p, N) [22]. Setting « = 0 and £ = 0O, the Hahn polynomials reduce to the Tchebichef
polynomials[13].

The Racah polynomia's satisfy the following orthogonality property

nm™=n "’

b-1
> ul (s,ab)uls” (s, b)p(s)[Ax(s—é)] =Omdy,  mm=01..,L-1 1

with

d2_F(a+n+1)1"(ﬁ+n+1)1“(b—a+a+ﬁ+n+1)F(a+b+a+n+1)
" (@+B+2n+Dn(b—a-n-!T(x+B+n+YT(a+b-B—-n)

n=01 .., L—1(8)

The set of Racah polynomialsis not suitable for defining moments because the range of vaues of the polynomials

expands rapidly with the increase of the order. A usual method to avoid numerical fluctuations for moment

7
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computations is by means of normalization. We define the weighted Racah polynomialsin the following subsection.

2.3. Weighted Racah polynomials
To avoid numerical instability in polynomia computation, the Racah polynomials are normalized by utilizing the

sguare norm and the weighting function. The set of weighted Racah polynomialsis defined as

0" (s,a,b) =ul*" (s, a, b)\/pd(zs) [AX(S—%)] n=01,..,L-1 (19

In this case, the orthogonality condition given by Eq. (17) becomes

b-1
DG (s,a,b)il " (s,a,b) = 5, nm=01 .., L-1 (20)
s=a
where variable s has a uniform step s = a, at+l, ... , b-1. The values of the weighted Racah polynomials are thus
confined within the range of [-1, 1]. Figs. 2 and 3 show the plots for the first few orders of the weighted Racah

polynomials with different choices of parameter values.

2.4. Racah moments
Racah moments are a set of moments formed by using the weighted Racah polynomials. The one-dimensiona

(1-D) Racah momentsis defined as
v Z “h(s,a,b) f(s) n=01 ..,L-1 (21)
where f(s) is 1-D signal with length N. If a set of Racah moments Vv, up to order M is given, the Racah
moment-based signal reconstruction is asfollows:
M ~
f(s)~ D v’ (sab), s=aa+1 .,b-1 (22)

Similar to 1-D signal reconstruction, given an image f(s, t) with size N x N, the (n + m)-th order Racah moment is

defined as

D'

1 b-1
ZZ “"(s,a,b)0“” (t,a,b)f (s1) nm=01 .., L-1 (23)

—a t=a

f

The orthogonality property of Racah polynomial s helpsin expressing the image intensity function f (s, t) in terms of
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its Racah moments. Reconstructed image can be obtained by using the following inverse Racah moment transform:
L-1L-1
f(st)=> > U, 0" (sab)d”(t,ab), st=aa+1 ..,b-1 (24)
n=0 m=0
where (s, t) represents the uniform pixel grid of image.
When only moments of order up to M are used, theimage intensity function f (s, t) is approximated by
- M M
f(st)=> > U0 (sab)idl” (tab), st=aa+1 .,b-1 (25)

nm™—n
n=0 m=0

3. Computational aspects of Racah moments
In this section, we discuss the computational aspects of Racah moments. We present some properties of Racah
polynomials including the recurrence relations with respect to n and s. The Wigner 6] symbols are used to obtain the

permutability property about n + a and s. These properties can be effectively used to compute the polynomial values.

3.1. Recurrence relation with respect to n
The computation of Racah polynomials based on hypergeometric and gamma functions is very expensive. To

remedy this problem, the following recurrence relation of the weighted Racah polynomialsis used.

AT (sab) = B, S0 (5.2,0) +C, B2 (sab) 9
where
3 n(a + A +n)
A"_(oc+,8+2n—1)(oz+,3+2n) @
5 :X_a2+b2+(a—,6’)2+(b+a)2—2+(a+,6’+2n—2)(a+,6’+2n)
" 4 8 29)
(B -a®)b+al2)® - (a-512)°]
2a+p+2n-2)(a+ f+2n)
C,=- (@+n-1(F+n-1) (a+b+ﬂj2—(n—l+wj2
" (a+pB+2n-2)(a+ p+2n-1) 2 2
2 2 (29)
X (b—a+a+’8j —[n—1+a+’8j
2 2
with
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G (s,a,b) = \/ ‘; (f) [Ax(s—%)] (30)

0

G:Eaﬁ) (S,a,b) - _ 1 pl(S)_pl(s_l) \/p(s)[ _%)] (31)

- [AX(s
p(8) X(s+1/2)-x(s-1/2)\ d;

3.2. Recurrence relation with respect to s

The recurrence relation of discrete Racah polynomia s with respect to s can be derived from Eq. (3) asfollows:

U (s,a,b) = (2s-D[o(s-D+(s-Dz(s-1)—-21-s(s-1)] U (s—1,a,b)
(s=D[o(s-D + (2s—Dz(s-1)]

1 (32)
- s-o(s—]) ul*” (s-2,a,b)
(s=D[o(s—-D+(2s—-Dr(s-1)]
To obtain the starting values, we rewrite V[ p, ()] defined by Eq. (9) for Racah polynomials as[18]
Vs,ln)[pn(s)]:i(—l)l T nl I IX i Vx,(s—1+1/2) p.(s—1) 39)
=0 Hn=1) [TVx.(s—(m+1-1)/2)
m=0
Using Eq. (33), we have
VO p,(0) = ”“T(,O) (39
(") _ 2 _n(n+1)
Vi, (@) nr2”" @ e’ 0 (35)
thus
u*?(0,a,b) = ((;111)); (a+),(p-a+]), (b+a+1),(b-n), (36)
ur(]a,ﬂ) (11 a, b) — 2 p(O) pn (1) _ n(n + 1)]ur(]a,ﬂ) (0, a, b) (37)

(n+2)(n+1) p() p,(0) 2

We obtain the recurrence relation for the weighted Racah polynomias with respect to s

10
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1
(2s—D[o(s—1) + (s-Dr(s—1) - 24-5(s—1)] |POAX(ES=2)]

(¢ (s,a,b) = 2_(j(= (s—1,a,b)
(s=D[o(s-D+(2s-Dr(s-1)] p(s-1)(2s-1) "
1
i s o(s-1) PO s aay
(s=D[o(s-D+(2s—Dz(s-1)] | p(s—2)(2s-3)
n=01 ..,L-1s=23 ..,b-1 (39)
where
u‘“ﬁ’(Oab)—(( )) (a+),(f-a+) (b+a+D,(b—n), 'Od(g) (39)
(a B) (11 ) 2 ,0(0) |:pn (1) n(n+1):| 3,0(1) (zz B) (O a b) (40)
(n+2)(n+1) p(1) | p,(0) 2 |y (0)
with
(s) = N'a+s+n+Pr(s—a+g+n+PYlr'(b+a-9)'(b+a+s+n+1) (1)
P> = T(@a- B +s+ ) (s—a+ 1) (b—s—mI(b+s+1)
Using Eq. (39), we obtain
G*”(0,a,b) = ——(a+ n)(f-a+n)(b+a+n)(b- n) "1 G (0,a,b) (42)

n

The above equations can be used to effectively compute the weighted Racah polynomid values.

3.3. Permutability property about n+a and s

The permutability property can be used to reduce the time required for computing the Racah polynomials. In this
subsection, we discuss the permutability property of weighted Racah polynomials for some special cases of
parameters a, « and S. To demongtrate the permutability property, we need to utilize the concept of Wigner 6 symbols
introduced by Wilson and Askey [27, 28]. The Wigner 6] symbols are related to the coefficients of transformations
between different coupling schemes of three angular momenta j;, J,, js, and they are defined in terms of the

hypergeometric function as [28]

11
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{11 J2 JlZ}:(_l)j+j1+j12+jz3|: (J_Jz+112)!(J_le+13)!(13_J+112)!(J+J3+112+1)!}

j3 J j23 (j12+j_js)!(j1+j2+j12+1)!(j12_j+jz)!(j1+j2_j12)!
I . . . . N . 12
> X[ (s = Jo + §2s)' (s = s+ DM =+ J)! (i + 1 + s + D) }
g (j23+j_j1)!(j3+j2+j23+1)!(j23_j3+jz)!(j3+j2_j23)! (43)
=5 .
o y (212)!
5 (= o+ds+ 1 +D(y—Jo+ s — 1)
g XF( Ji— 2= i Ji— ot i+l | P P j3_j2+j23+1.1j
_5' 4 3 . . . . . . . . . k)
=~ h=la+1s—1+1 -2], h—l+ls+]+2
=
ﬁ The Wigner 6j symbols are associated to the weighted Racah polynomial s through the following relation [12, 26]
=
S . S
& ﬁé"””(s,c’sl,b)=(—1)“1””23)[(21'12+1)(21'23+1)]’-’{.l : .12} (44)
9 3 )z
&
= where
@
i . a+ , . atb+a-p-1
S Jp =N+ ﬁ7 Jz=S = p
= 2 2 (45)
. a+p+b-a-1 . b-a-1 . a+b-1
Ih= > P 5 Iz = >
Eq. (44) can be rewritten as
10 . .
G,‘f‘ﬁ’(s,a,b)=(—1)(il+j+123’+‘j+il+j12+j23)[(2j12+1)(2j23+1)]2{!1 2 !12}/(_1)(1+J'1+112+123)
3 )z
e (46)
:(_1)(4i+j12+j23)(_1)5[(2j12+1)(2j23+1)]2{!1 1.2 !12}/(_1)(J'+i1+j12+j23)
I3 J23
Leta= o= gin Eq. (45), we have
j=j1=j3' ,=i-a jp=n+a j23=S, (47)
It can be derived from Egs. (46) and (47) that
-0%“”(n+a,a,b), ifsisodd
M (sab)=4 °° (n+ )_ _ , n=0,1,..,L-1s=4a..,b-1 (48)
& (n+a,a,b), ifsiseven

Note that the above relation is only valid for the special case where a = a = . This property can be used to reduce the

number of arithmetic operations in the computation of Racah polynomia values by half.

4. Experimental results and discussions

This section presents a set of test images to validate the effectiveness of the proposed method. A comparative

12
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study of the Racah moments in terms of the image reconstruction and compression capability with Legendre,

Tchebichef and Krawtchouk moments and the discrete cosine transform (DCT) is performed.

4.1. Image recongtruction

We firgt illudtrate the influence of the parameters a, b, « and £ on image reconstruction when using the Racah
moments. According to the constraints imposed on these parameters given by Eq. (13), we have systematically chosen
the parametersasa = ¢ and b = a + N in al the experiments where N x N is the image size. In the first example, we
consider the case wherea = o = f. In this case, for a given value of N, only the parameter a is adjustable. Fig. 2 shows
the plots of the first few orders of Racah polynomias for N = 40 with different values of a. From this figure, we can
observe that the Racah polynomials contract and move from left to right as a increases. We use a binary Chinese
character whose size is 40 x 40 pixels as original image to test the influence of the parameter a on the reconstruction
results. Four cases have been tested: (@) a= a=f=0,and b =40; () a= a=p=5andb=45; (¢c) a= a= =10,
and b =50; (d) a=«a= =15 and b = 55. Fig. 4 shows the original image and the reconstructed results under
different choices of parameter a with moment order up to 2, 10, 20, and 35, respectively. The following mean square
error ¢ isused to measure the accuracy of the reconstructed images.

_ Nizj[ f(st) = T (s (49)

s=a t=a
wheref (s, t) and F(s, t) denote the original image and the reconstructed image, respectively.

The plot of corresponding reconstruction errors is depicted in Fig. 5. From Figs. 4 and 5, it can be seen that the
difference between the reconstructed images is relatively important when only the moments of lower order are used.
Conversely, when the maximum order of momentsis high (M > 25), the reconstruction errors with different values of
parameter a are dmost the same.

In the second example, we consider the case where o = . We discuss the influence of parameter £ on the
reconstructed results. A constant value is assigned to the parameter a, we set a = « = 10 for this example. Five cases
have been tested according to constraints given by Eq. (13): (&) 8= 0; (b) #=5; (c) #=10; (d) = 15; (e) S = 20. Fig.
3 depicts the plots of Racah polynomiaswith different values of g with N = 40. We can observe from Fig. 3, similarly
to Fig 2, the contraction and shift of Racah polynomials as g increases.

As for the previous example, we present the reconstructed results and corresponding errors in Figs. 6 and 7,
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respectively. It can be seen that the second choice, i.e, a = = 10, b = 50 and S = 5, gives the best reconstructed
results among all the test cases. The results obtained with third set (a = « = 10, b = 50 and £ = 10) is comparable to
those obtained with the second test case. We think this is because the weighted Racah polynomias, with these two
choices of parameters, are approximately situated at the middle of the region of definition (see Figs. 3(b) and (c)), so
that the emphasis of the moments will be at the center of the image. It can aso be seen for the last test case, that the
reconstruction begins from bottom right corner. Note that the other choices (4 = 4 and S = 6) have a so been tested for
this example, but the reconstruction results are very similar to those with f=5.

As indicated by Yap et al. [11], the Krawtchouk moments can be used to extract the feature of an image by
adjusting the parameter p. The Racah moments share a similar characteristic exemplified hereafter. We apply both
Krawtchouk and Racah moments to reconstruct a gray-level image whose size is 40x40. Fig. 8 shows the results of
image reconstruction by using different values of p; and p, for Krawtchouk moments, and different values of a, b, «
and g for Racah moments. It can be visually seen from this figure that for Krawtchouk moments, the parameter p; can
be used to shift the region-of-interest (ROI) horizontaly: if p; < 0.5, the shifting of the ROI is to the left, while p; >
0.5, it shifts the ROI to the right. The parameter p, shifts the ROI verticaly: if p, < 0.5, the ROI is shifted to the top,
while p, > 0.5, the ROI is shifted to the bottom. This is consistent with the results obtained by Yap [11]. For Racah
moments, for a fixed value of a, the parameter S controls the shifting of the ROI: the smadler the value of g, the
emphasis of the ROI on the top left corner will be. Conversely, the ROI of the image shifts to the bottom right corner
when g takes greater value. Fig. 9 depicts the recongtruction errors for both methods. It can be observed that the
choice of the parameter £ corresponding to the case where the emphasis of the momentsis at the center of the image
gives the best reconstruction result. Based on the above test results, we found that when the wave crest of zero order
curves of Racah polynomials is close to the middle value of interval [a, b], we could obtain the best reconstructed
image. Thisisthe reason why we use such a choice of parametersa, b, « and Sin the following examples.

In the fourth example, we compare the performance of the proposed Racah moments (RM) with Legendre moments
(LM), Tchebichef moments (TM) and Krawtchouk moments (KM) and the well-known discrete cosine transform
(DCT). The 2D discrete DCT transform of a NxN image is defined by [29]

N-1N-1

B z(2s+)n __ z(2t+Dm _ B
F(n,m)_c(n)c(m);g;f(s,t)co\, 5 Cos= == nm 0, 1., N-1 (50)

with
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1/JN, ifn=0 1/JN, ifm=0
c(n) = . c(m) = (51)
V2/N, otherwise v2/IN, otherwise
The original imagef (s, t) can be reconstructed by the following inverse DCT transform:
f(s,t) —Efc(n)c(m)F(n m)cosZZSHIN (o FAHDM g1 N-1 (52)
, _n=0m=0 , - - 2N ’ T

In practice, only the first (M + 1) x (M + 1) coefficients, i.e, the lower frequency coefficients, are taken into account
in Eq. (52). Thisis equivalent to setting c(n) = 0 for n> M and ¢(m) = 0 for m> M in Eq. (52). In this case, Eq. (52)

becomes

f(st)= i i c(n)c(m)F (n, m) cos 7(25+0n cos”(2t +Dm

53
h=0 m=0 2N 2N (53

Note that, for comparison purpose, we use the same number of moment coefficients in Eq. (25) as that of DCT
coefficientsin Eq. (53) in the reconstruction process.

In this example, a magnetic resonance image of size 96 x 96 pixelsis used. Fig. 10 shows the reconstruction results
for different values of M. Here the parameters are set toa = o = 10, b = 106 and =5 for RM and p,; = p,= 0.5 for
KM. Fig. 11 shows the plot of the mean square errors using different approaches with maximum value of M = 95. The
results demonstrate the superiority of Racah moments over the DCT, LM, TM and KM in terms of feature
representation capability.

It iswell known that the noise may severely affect the image reconstruction quality. To test the robustness of Racah
moments with regard to different kind of noises, we apply the proposed moments to some noisy images. We first add
the zero mean Gaussian noise with variance 0.2 to a Chinese character of size 40 x 40. Fig. 12 shows the
reconstructions using the DCT, LM, TM, KM (py= p>= 0.5), and RM (a = ¢ = 10, b = 50 and g = 5), and the
corresponding error comparison is shown in Fig 13. Note that the reconstruction error is computed with Eq. (49) in
which the reconstructed image F(s,t) is defined by Eq. (25) for the Racah moments, and by Eq. (53) for the DCT.
Fig. 13 indicates that the Krawtchouk moments have the best performance in terms of the noise robustness, and the
proposed Racah moments perform better than the DCT and other orthogonal moments.

This andlysis is repeated by adding the salt-and-pepper noise (5%) to the same test image. The corresponding

results with M = 35 are shown in Figs. 14 and 15. It can be observed from these figures that the proposed method is

more robust to noise than the DCT and Legendre and Tchebichef moments. But the Krawtchouk moments (py= p;2=

15
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0.5) have the best performance.

As mentioned in Sec. 3.3, when the parameters are set with a = a = £, the permutability property of Racah
polynomials about n + a and s can be used to reduce the number of computations of the Racah polynomias by half.
Table 1 lists the CPU time of calculating the Racah polynomials for different size images. The computer used in this

experiment is a Pentium 1V, 2.4GHz, Memory: 1GB.

4.2. Image compression

In this subsection, we test the compression capability of the proposed approach, and compare it with other well
known transforms. Four test images including “Lend’, “Cameraman”, “Texture” and “Boat” are used in our
experiment. Each image is first divided into the sub-blocks whose size is WxW, each block is then transformed by
using the DCT, TM, KM, and RM. Fig. 16 shows the basis functions of these four transforms for a block of size 8x8.
Since the variance represents the energy or information content of the corresponding transform coefficient, and the
transform coefficients with large variances are candidates containing significant features in a pattern-recognition
application [29], all the coefficients are rearranged in downward order, and part of them (according to the compression
ratio) are chosen to reconstruct the original image. Fig. 17 shows the decoded results of the four test images. In this
experiment, the compression ratio is set to 2:1, and the block size is set to 8x8 for “Lena’, “Cameraman”, and
“Texture”, and 16x16 for “Boat”. The parameters concerned in KM and RM are chosen as. p; = p, = 0.5for KM and a
=a=5, =0, andb =szeof block + afor RM. In order to evaluate the performance of different methods, we usethe
MSE defined by (49) and the peak signal to noise ratio (PSNR) to quantitatively measure the fidelity of the decoded

image. The PSNR of agray-level image isdefined as

2552
PSNR =10log,,(—— 54
glo(MSE) (54)

where 255 is the peak image amplitude, and the MSE is defined by (49).
Fig. 18 shows the MSE of different methods for the four test images with compression ratio 2:1 and 4:1,
respectively. Table 2 ligts the corresponding PSNR values. The results indicate that the Racah moments have a better

compression capability compared with other transforms.

5. Conclusion

In this paper, we have introduced the Racah polynomials to define a new type of discrete orthogonal moments
16
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known as Racah moments. The Racah polynomias belong to a class of discrete polynomias that are orthogona on
non-uniform lattice. Appropriate scale factors have been used in the moment functions, so that the computed moments
are not subject to numerical instability. The properties of the weighted Racah polynomials such as recurrence relations
and permutability have been discussed. We have compared the Racah moments with other orthogona transforms
including the DCT, Legendre moments, discrete Tchebichef moments and discrete Krawtchouk moments in terms of
the reconstruction capability for images with and without noise. The reconstruction results and detailed error analysis
show that the Racah moments perform better than the DCT and Legendre, Tchebichef, and Krawtchouk moments for
free-noise images. Conversely, the Krawtchouk moments are more robust to noise. We have aso investigated the
compression aspect of the proposed Racah moments and compared it with the DCT and other discrete orthogonal
moments. The experimental results show a better behavior of the Racah moments in terms of compression capability
over the other transforms. The studies show that the proposed moments are potentially useful as feature descriptors for

image analysis.
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Fig. 4. Columns 1 to 4 show the recongtructed gray-level images with maximum order up to 2, 10, 20, and 35,
respectively.
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Fig. 6. Columns 1 to 4 show the recongtructed gray-level images with maximum order up to 2, 10, 20, and 35,

respectively.
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Reconstructed images using Krawtchouk moments (p; = p, = 0.5)
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Fig. 10. Columns 1 to 4 show the reconstructed gray-level imageswith M = 24, 48, 72, and 95, respectively.
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Fig. 11. Comparison of reconstruction errors using DCT and Legendre, Tchebichef, Krawtchouk, and Racah moments.
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Fig. 13. Comparison of reconstruction errors using DCT and Legendre, Tchebichef, Krawtchouk (p; = p. = 0.5), and

Racah moment (a= « = 10, b = 50, and f = 5) with Gaussian noise

Fig. 14. Image reconstruction with M = 35 for 5% salt-and-pepper noi se-contaminated binary image. From left to right
are DCT and Legendre, Tchebichef, Krawtchouk (p, = p, = 0.5), and Racah moments (a = ¢ = 10, b = 50, and S = 5),

respectively.
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Racah moment (a= « = 10, b = 50, and £ = 5) with 5% salt-and-pepper noise.
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Fig. 16. The basisfunctions of DCT, TM, KM and RM for block size 8x8.
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andRM (a= a=5, =0, and b = size of block + a).

Table 1 The CPU time required for calculating the Racah polynomials (ms).

Method Image size
32x32 64x64 96%x96 128x128
Permutability property is not used 15.36 30.72 46.08 61.44
Permutability property isused 9.64 17.84 27.92 34.16
Table 2 Comparison of the compression efficiency (PSNR (dB) )
Image Lena (256%256) Cameraman ( 256x%256) Boat (400x400) Texture (160x160)
Compression 2:1 4:1 2:1 4:1 2:1 4:1 2:1 4:1
Ratio
DCT 26.8152 21.4948 22.7571 20.8771 24.8595 23.7012 17.1012 16.3361
™ 21.4948 21.2078 23.5805 20.2370 23.6787 22.7016 18.2878 17.0463
KM 21.9487 22.8417 225651 20.6010 23.6616 23.0650 19.8786 16.6569
RM 34.1664 28.1705 31.0767 26.7860 28.8557 26.0501 23.4730 20.0414
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