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Maximum penalized likelihood
estimation in a gamma-frailty model

Virginie Rondeau, Daniel Commenges and Pierre Joly.

INSERM Unité 330, Université Victor Segalen Bordeauz 2,
146 rue Léo Saignat, 33076 Bordeaur Cedex, FRANCE.

Abstract

The shared frailty models allow for unobserved heterogeneity or for statistical dependence
between observed survival data. The most commonly used estimation procedure in frailty
models is the EM algorithm, but this approach yields a discrete estimator of the distribu-
tion and consequently does not allow direct estimation of the hazard function. We show
how maximum penalized likelihood estimation can be applied to nonparametric estimation
of a continuous hazard function in a shared gamma-frailty model with right-censored and
left-truncated data. We examine the problem of obtaining variance estimators for regression
coefficients, the frailty parameter and baseline hazard functions. Some simulations for the
proposed estimation procedure are presented. A prospective cohort (Paquid) with grouped
survival data serves to illustrate the method which was used to analyze the relationship

between environmental factors and the risk of dementia.
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1 Introduction

Inference for Cox proportional hazards model (Cox, 1972) was developed under the as-
sumption that the observations are statistically independent, at least conditionally upon
covariates. However, this assumption may be violated. Thus in many epidemiological stud-
ies, failure times are clustered into groups such as families or geographical units: some
unmeasured characteristics shared by the members of that cluster, such as genetic informa-
tion or common environmental exposures could influence time to the studied event. In a
different context, correlated data may come from recurrent events, i.e. events which occur
several times within the same subject during the period of observation. In frailty models,
dependence is produced by sharing an unobserved variable which is treated as a random
effect, or frailty (Clayton, 1978; Hougaard, 1995; Petersen, Andersen and Gill, 1996).

Semi-parametric inference for frailty models was introduced by Klein et al. (1992) and
Nielsen et al. (1992), and as suggested by Gill (1985), they used an EM algorithm applied to
the Cox partial likelihood. Hastie and Tibshirani (1993) proposed a general model with time
varying coefficients and suggested estimation through penalized partial likelihood. Therneau
and Grambsch (2000) noted a link between the gamma frailty model and a penalized partial
likelihood. In the approach of the present paper, we penalize the hazard function(s) while
Therneau and Grambsch (2000) penalize the frailties.

The aim of the present paper is to propose a method for semi-parametric inference in a
stratified gamma frailty model: our focus is on the nonparametric estimation of the hazard
function, and the approach is based on the penalized full likelihood (as opposed to the
penalized partial likelihood). Parner (1998) proved the consistency of the nonparametric
maximum likelihood estimator in the shared gamma-frailty model (and for the more general

correlated gamma-frailty model). However, the usual nonparametric maximum likelihood
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estimation method leads to a discrete distribution and the hazard function cannot be derived
from the estimated cumulative hazard. The article is structured as follows. In section 2,
the shared frailty model is presented, and inference with Maximum Penalized Likelihood
Estimation (MPnLE) is developed in section 3. In section 4 we describe simulation studies
conducted to ascertain the properties of the proposed method and to compare it to a semi-
parametric EM algorithm. We have also performed simulations to illustrate the estimation of
the hazard function. In section 5 the method is applied to a study of the effect of aluminum
on the risk of dementia in a large cohort (see Letenneur et al., 1994) possibly presenting

intra-group correlations.

2 The shared gamma-frailty model

2.1 The model

We consider models in which the hazard function partly depends on an unobservable
random variable thought to act multiplicatively on the hazard, so that a large value of the
variable increases the hazard. We treat the case of right-censored and left-truncated data,
and allow for stratum-specific baseline hazards. For the j* (j =1, ..., ny) individual of the
k" stratum (h = 1,..., K) and the " group (i = 1, ..., G), let T;;; denote the survival times
under study and let Cj;; be the corresponding right-censoring times. The observations are
Yinj = min(Ting, Cinj) and the censoring indicators din; = Ifzy,;<cy,;)3- The survival times
may be left-truncated: only subjects with Tj,; > L;;; are observed; we assume that the
left-truncation times L;;; are independent of the survival times T3p;.

Our frailty model specifies that the hazard function conditional on the frailty is:

Ning (t|Z;) = Zidon(t) exp(B' Xin;) (1)
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where Agy (%) is the baseline hazard function for stratum h; X;n; = (Xiinj, --., Xpinj)' denotes
the covariate vector for the j* individual of stratum h and group 4, and £ is the corresponding
vector of regression parameters.

Conditionally on the frailty Z;, the failure times Tin1, Tipo, ..., Tinn,, are assumed to be
independent. It is assumed that the Z;’s are independently and identically distributed from
a gamma distribution with mean 1 and unknown variance #; the probability density function

is thus:
21790 exp{—2/6
o(2) = )
r'(1/6)0

Large values of € signify a closer positive relationship between the subjects of the same
group and greater heterogeneity among the groups. As discussed by Nielsen et al. (1992),
we assume the censoring times Cj;; to be independent of the failure times and of the frailties

Z;.

2.2 Inference in the shared gamma-frailty model

The idea of the Cox partial likelihood does not carry over in a simple manner, since the
integration over frailties induces a complicated form for this likelihood. Instead, we use the
full likelihood. In the gamma-frailty model, a compact formula for the full likelihood can
be obtained by integrating out the frailty Z; from the joint likelihood (Klein et al., 1992;
Nielsen et al., 1992). For treating left-truncation we must write a likelihood conditional on
Tin; > Lip;. This is obtained by dividing by the likelihood of Tjs; > Lip; (fori=1,...,G;h =
1,...K;j=1,..,n4). Moreover, we can avoid using gamma functions in the expression of
the log-likelihood, thus making it easier to compute. The full log-likelihood for left-truncated

data can then be written:
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[(Ao(.), B, 0) Z {Z i dinj{B' Xinj + In(Aon(Ying)) } (2)

=1 h=1 j=1
K nip

—(1/0+mi)In {1460 > Aoa(Viny) exp(ﬁ'Xihj)]
h=1 j=1

K np
+1/61n (1 + 6 Z Z Aon(Ling) eXP(ﬂ'Xihj)>

h=1 j=1

gy S (1 +0m; - km}

k=1

with Ao(.) = (Mo1(-),---» Ao (-))"s Aon(.) are the cumulative baseline hazard functions and
m; = Zthl Z;“:"l I15,,,—1y is the number of observed events in the it" group. If a parametric
baseline hazard function is specified, then maximum likelihood estimates are available by

directly maximizing (2) (see Costigan and Klein, 1993).

3 The penalized likelihood approach

We introduce a semi-parametric approach to jointly estimate the parameters 3, # and
the baseline hazard function A¢(t), which is assumed to be smooth. A possible means for
introducing such an a priori knowledge is to penalize the likelihood by a term which has
large values for rough functions (O’Sullivan, 1988; Joly, Commenges and Letenneur, 1998).
Thus for the vector of baseline hazard functions, Ao(.) = (Ao1(.), .-, Ao (.))’, we define the

maximum penalized likelihood estimators (MPnLE) of A¢(¢), § and 6 as maximizing:

PI(o(), B,0) = (M. th / 3)

where [(A\g(.), 3,0) is the full log-likelihood defined in (2), and x;, > 0, (h = 1, ..., K) are

positive smoothing parameters for each stratum. In practice, the range of the integral is
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restricted to the period when at least one subject is still at risk. This expression represents
a trade-off between faithfulness to the data, as represented by [(.), and “smoothness” of the
solution, as represented by the squared norm of the second derivative. For large k, the term
[ A2(t)dt will be forced toward zero and the curves Aon(.) will approach linear functions of
time. If K, is small, then the main contribution to pl(.) will be the log-likelihood I(Ao(.), 5, 8)

and the curve estimate A\, will track the data closely, but will be more irregular.

3.1 Spline-based approximations

When the penalized likelihood is used to estimate nonparametric regression functions,
it can be shown that the estimators are cubic splines with knots at every observed data
point (see Silverman (1985)). In the present context of hazard function estimation, there
is no such simplification. Exact computation of these estimators is not possible and the
MPnLE of Ay(t) must be approximated using splines. Splines are polynomial functions
which are combined linearly to give Aos(.) = 32, 7 Mi(.), where the M;(.) are cubic M-
splines, i.e. splines of order 4 (Ramsay, 1988). By direct integration and with the same
vector of coefficients n, = (Mp1, -.-, Thm)’, it is also possible to obtain the cumulative intensity
function: Agn(.) = Y27, Amili(.) where I;(.) are I-splines defined as I;(z) = Jy Mi(u)du. In
our approach, although there are different strata, we use the same basis of splines for each
stratum, so only the coefficients 7ny; are different for the distinct strata.

Note that the estimator is the MPnLE A(.), while A(.) is an approximation to the es-

timator 5\() The approximation error can be made as small as desired by increasing the

number of knots.

3.2 Variance of the estimates

We drew our inspiration from Gray’s work (Gray, 1992; Gray, 1994). To simplify notations

we will consider only the unstratified case. We make the assumption that A¢(.) belongs to

7
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the space generated by m splines, so the model is specified by a parameter vector (' =
(M -, M3 By -, Bp; 0) where ¢ belongs to a subspace xC IREFP*1 In the general case this

is only an approximation. The penalized log-likelihood can then be written as:

pl(Ao(.), B) = U(¢) = Pa(()

where Pg((), the penalization term, depends on the number of groups G and on ¢ but not
on the data. Pg(() may be a weighted sum of squared norms of second derivatives of the
Xo(.) as in (3), but the theory applies to other choices of penalization.

We can show that the MPnLE f asymptotically follows a multivariate normal distribution

with mean

B = - Jin #1552 @) ()
and variance-covariance matrix
2 —1 ol —1
var(é) = Hg(¢o)van (a—<<<o)) H3'(¢0) 5)

where Hg((y) = I(() + az—Pf (o) and I5((y) = —a—zé (o), and (j is the true value of (.
a¢ ¢

It follows from (4) that a necessary condition for consistency is

. _ 0P¢
(}1_1)130 HGI(C0)<3—<(C0)> =0
or, under a condition of steady increase of information with G (Hg((o) = O,(G)): %(CO) =
0p(G). If Pg = kg [;° A?(t)dt, this condition is equivalent to kg = 0,(G). We conjecture

that this is also a sufficient condition.

Two estimators may be proposed for var().
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o If the distribution of the observations belongs to the class of models considered, we

have varg—é(g) = I4(¢) and by substituting ¢ in (5) we obtain:

with [6(C) = [~ &£ (0)] and Ha(() = [-5& Q).
e A variance estimator deduced from a bayesian approach was proposed by O’ Sullivan
(1988) for a similar problem. In this approach ( is considered as a random variable.
Up to a constant, the penalty term is regarded as the prior log-likelihood for ¢ and
the penalized log-likelihood as the posterior log-likelihood. After some manipulation
we obtain a multivariate gaussian approximation distribution for ¢ and this makes it

possible to use H G l(é ) simply as a variance estimator.

~

These estimators for var(¢) do not take into account the variability due to the choice of

the smoothing parameters.

3.3 Confidence bands

From Aos(.) = Y27 i Mi(.) we deduce that var(As(t)) = M/ (t)[var(i,)]M(t), so point-

wise 95% confidence bands are of the form

Aon () £ 1.96+/ M (t) [V (1) M (t)

where M'(t) = (My(t), ..., My, (t)) is the spline vector in ¢, and estimators var(7),) can be

~

taken from one of the estimators of var(¢). Wahba (1983), Silverman (1985), and O’Sullivan

(1988) proposed such confidence bands based on H~!(f},) for conventional problems.
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3.4 Choice of smoothing parameter

To be practical, it is sometimes sufficient to choose the smoothing parameter heuristically,
by plotting several curves and by choosing that which seems most realistic. We briefly present
two other approaches to determine the smoothing parameters.

In each stratum the smoothing parameters could be chosen by maximizing an approxi-

mate cross-validation score which was detailed by O’Sullivan (1988) for a Cox model:

CV(w) = —1;(i(x)) — —trace ([i(ﬁ) + 2,.;9] - i(@) (7)

where /; is the log-likelihood contribution of individual j, I(n) = E (—%(n)) is the informa-

tion matrix (f(ﬁ) = —%(ﬁ)), and H(n) = I(n)+ 2« is minus the converged hessian of the

penalized log-likelihood (ﬁ(ﬁ) =1(7) +2kQ) and Q = | (ZM (1)) ZM (y)du. As in Gray

ou? ou?

i(ﬁ)) as an effective number of parameters or
as the model degrees of freedom, C'V (k) is equivalent to an AIC criterion (Akaike, 1974).

Another approach introduces a priori knowledge, by fixing the number of degrees of
freedom to estimate the hazard function (e.g., Buja et al., 1989; Hastie and Tibshirani,
1989; Gray, 1992). We thus use the relation linking the model degrees of freedom and the
smoothing parameter x to evaluate the smoothing parameter. Indeed, it is easier to specify
a number of degrees of freedom to estimate a given curve, rather than specify a smoothing

parameter. For example, if we want to estimate a straight line, we choose a number of

degrees of freedom equal to 2, while a quadratic curve has 3 degrees of freedom.

4 Simulations

We first present the computing algorithm, then two simulation studies: one to compare our

results to those of Nielsen et al. (1992), and the other to illustrate a more realistic situation.

10
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4.1 The algorithm

The estimated parameter (f was obtained by the robust Marquardt algorithm (Marquardst,
1963) which is a combination between a Newton-Raphson algorithm and a steepest descent
algorithm. This algorithm is more stable than the Newton-Raphson algorithm but preserves
its fast convergence property near the maximum. To be sure of having a positive function
at all stages of the algorithm, we restricted all the spline coefficients n; to be positive for
all 2. This restriction does not have a major adverse effect on the approximation, while
being very convenient numerically. We also imposed a positivity constraint for the variance
parameter. When 6 is very small, numerical problems may arise. When 0 < 1075, we
used an alternative formula of the log-likelihood (2) based on a third-order expansion in the
expression of the log-likelihood. Thus, we replaced the two terms of the form 1/6log(1+60A)
by A — 0A?/2 + 6?A® with A stands for Ay, = Z,I;l >0 (Aon(Ying)) exp(B'Xinj) or

=1
Doing = Ypey 30 (Aon(Ling)) exp(B' Xing).

4.2 First simulation study

We conducted a simulation study to investigate the sampling properties of the MPnLE
for #. Our aim was to compare the statistical properties of the proposed method with the EM
algorithm used by Nielsen et al. (1992). For the selected value of the variance parameter 6,
we generated G independent pairs (¢;1, t;2) of survival times with two strata of equal sample
size and with only one subject (n;;, = 1) in each stratum of each cluster. An example of this
two-sample model with dependence between some of the individuals would be a study of a
disease in a number (G) of families with K = 2 corresponding to husbands (h = 1,n; = 1)
and wives (h = 2,n4, = 1). For each simulation run of M replicates (500 under Hy and 200
under Hp), the random variates were generated by the frailty model as follows:

Vin,t = 1,...,G,h = 1,2 1.i.d. exp(1) random variates

11
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zi,i=1,...,G, iid. gamma (1/6,1/6)

tin = Vin/2i-

The survival times were not left-truncated (entry times equal to zero). All failure times
were censored at fixed times (¢ = 2) determined as the value that would censor 10% (in
expectation) of the entire sample.

We used cubic splines to approximate each hazard function. The number of knots was
8 for all simulations. For the first replicate of each simulation (i.e., for a given 6 and
number of groups G) we evaluated in each stratum a value of g ) using the fixed degrees
of freedom method. Since the hazard function is a constant function equal to 1, we had to
specify a reasonable value for the smoothing parameter in order to obtain a linear hazard
function close to a linear function of time. The numerical evaluations allowed us to find
a smoothing parameter corresponding to a model degrees of freedom close to 2 (between
2.0 and 2.1). Thereafter k() was the same for the M replicates of the simulation. The

~

empirical standard deviation S.D.(f) was estimated, and two estimators of standard error
were computed; @(é) = \/ﬁ and the sandwich estimator @(é) =1/ Hﬁ*lgg. The
hypothesis “# = 0" can be tested using a score test (Commenges and Andersen, 1995) but
we do not present results using this test here.

(Table 1 around here)

For the analyses of the uncensored life times, the results are summarized in Table 1.
We observed a negative bias for 6 for small number of groups. Conversely, we obtained an
over-estimation of @ when the number of groups increased. Nevertheless, this bias decreased

with increasing G for a given value of f. As expected, the sandwich standard error estimator

of § (\/ Hﬁ—lgg) was smaller than the bayesian standard error estimator (\/E[a_ 1).

A

Both estimators under-estimate the empirical standard error (S.E.(9)).
(Table 2 around here)

The same general tendencies were observed when times were censored at t = 2 (Table

12
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2 vs Table 1). Nevertheless, the mean value of 6 was greater than 6 in the censored case,
whatever the sample size. As expected, the standard deviation of 0 was larger in the censored
than in the uncensored case.

The estimator é =0+ [I:I(_;l(é) <%(CA))} , which is theoretically less biased, was
almost identical to 6. ’

(Figure 1 around here)

Figure 1 illustrates the theoretical and estimated baseline hazard functions for a single
simulation of 400 subjects and a variance parameter § = 0.4. We also represented the
estimated marginal hazard function which was estimated using a proportional hazard model
without frailty variables. The marginal hazard function is connected with the average hazard
in the population, and corresponds to the hazard for an average value of the frailty variable
among the surviving individuals. Thus in this example, the population hazard function and
the individual hazard function (using the frailty model) deviate more and more as time

passes, because the most frail subjects have already died. The confidence bands for the

estimated baseline hazard function were obtained using the standard error estimator of the

spline parameters \/ H ﬁ—lgg (using 1/ f/Ijlgg yielded nearly the same result).

4.3 Numerical illustration

We also carried out a different simulation study to illustrate the quality of the estimation
for a non-linear hazard function. A sample with similar features as the Paquid cohort (see
section 5) was generated: there was 2,698 subjects and varying group sizes, between 13
and 232 subjects by group, (but without explanatory variables). The failure times were
generated using a mixture of Weibull distributions (for stratum 1 : 0.35W(¢;20,0.013) +
0.65W(¢; 20, 0.0102); for stratum 2 : 0.35W(¢;15,0.0107) + 0.65W (¢; 15,0.0107) ). A shared
frailty variable for each group of subjects was generated using a gamma distribution (with

6 = 0.2). The data were left-truncated and right-censored at a fixed value, and the percentage

13
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of censoring was around 10%. The estimation of the hazard function for stratum 1 with three
different numbers of knots (therefore, three different smoothing parameters) is illustrated by
Figure 2. In each stratum we estimated a value for x using the automatic cross-validation
method. Many authors have pointed out that the automatic cross validation method for
estimating k often leads to an undersmoothed hazard function. In fact, we observed a slight
oversmoothing. Figure (2) also shows that we obtained a good estimate of the theoretical
hazard function. The more knots we used, the closer the approximation of MPnLE was
to the true hazard function. Nevertheless, the benefit of using 15 knots compared with 8
knots was small. We also conducted a simulation run (for # = 0.2) with this irregularly-
shaped function to assess the inference for §. The results obtained for 200 replicates were:
mean(f) = 0.232, empirical SE(d) = 0.143 , mean SE(f) = 0.123. We again observed that
the standard error estimators slightly under-estimated the empirical standard errors and 0
had a slight upward bias.

(Figure 2 around here)

5 Application to dementia in geographical areas

Although the hypothesis of a link between aluminum and Alzheimer’s disease has been
supported by several epidemiological studies (Martyn et al., 1989; Rondeau et al., 2000),
there is much controversy regarding these findings and their interpretation. We analysed data
from the Paquid cohort, a large cohort randomly selected from a population of subjects, aged
65 years or more, living at home in two administrative areas of southwest France (Gironde
and Dordogne). The present study is based on 70 areas for which measures were available.
For each drinking water area, we computed a weighted mean of all the available measures
of each drinking water component of interest. An active search for demented cases was

undertaken. Details can be found in Jacqmin et al. (1994) and Rondeau et al. (2000).

14
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One of the characteristics of the Paquid cohort is the grouping of the individuals in geo-
graphical areas. Thus, subjects from the same group who may share the same environmental
exposure are likely to be more similar than subjects from different groups. Our objective
was to establish whether there was heterogeneity of the incidence rates of dementia between
areas. If this were the case, our aim was to explain it by individual-specific or group-specific
variables. We also wanted to correct the variance of the regression coefficients, especially for
group-specific variables. For this analysis we used data on 2,698 subjects regularly followed-
up for 8 years (1, 3, 5 and 8 years after the initial visit). Among these, 253 subjects were
diagnosed with dementia during the 8-year follow-up.

We chose to carry out a stratified analysis on gender and estimated a value for x in
each stratum using the automatic cross-validation method described in Section 3.4. We
used 8 knots and cubic M-splines to approximate each hazard function. Age, an important
risk factor in dementia, was taken as the basic time-scale. We considered only subjects
free of dementia at entry into the cohort. Subjects still unaffected at the last visit were
right-censored at that time. Deceased subjects who were unaffected at the last visit were
right-censored at that date. For a demented subject, we considered half of the time between
the last visit at which they were nondemented and the first visit at which dementia was
diagnosed.

In a first analysis using a gamma-frailty model, we did not adjust for explanatory variables
but age was chosen as the basic time scale and the model was stratified on gender. The
variance of the random effects was estimated by 8 = 0.018 with P=0.045 for testing # = 0
with the Wald test. This significant variance indicates an heterogeneity of the incident cases
of dementia between the different areas. The heterogeneity of the risk of dementia may
be explained by subject-specific factors other than age and sex, such as educational level,
or group-specific factors such as the exposure to aluminum and silica in tap water. We

first adjusted for educational level in two classes (did not graduate from primary school vs

15
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graduated from primary school). The estimated variance of the frailty decreased to 6 = 0.001
(P=0.35). Then, we added exposure to aluminum (as a binary variable with the threshold
of 0.1 mg/liter) and to silica (coded as a binary variable with 11.25 mg/1, the median in our
sample, as the cut-off); the variance of the frailty decreased to 6 = 0.00036 (P=0.45).

(Table 3 around here)

We compared three approaches: a classical proportional hazards model using a Cox
partial likelihood, a proportional hazard model with a penalized likelihood estimation for the
hazard function (Joly, Commenges and Letenneur, 1998), and a shared gamma-frailty model
using a penalized likelihood estimation. Table 3 shows the estimated regression coefficients
and the standard errors. The different models and estimation methods led to very close
estimates, which is not surprising in view of the low intra-group correlation. Although we
did not find any intra-area dependency, we had to validate our previous results by using a
model taking into account the potential correlation of the data. Furthermore, the advantage
of the frailty model was to show that since the area variation (f) was so small, we were
unlikely to find other area-specific factors strongly correlated with the hazard of dementia.

The results confirmed a higher risk of dementia for subjects exposed to high concentra-
tions of aluminum (> 0.1mg/l) and low levels of silica (< 11.25mg/1).

(Figure 3 around here)

Figure 3 shows the estimated hazard functions of dementia obtained with a shared frailty
model. We distinguished women from men and subjects exposed to high levels of aluminum
from those exposed to low levels. Since the basic time-scale is age, the hazard function is
the age-specific incidence of dementia. It steadily increased with age, and again an increased
risk of dementia for subjects exposed to high levels of aluminum was observed. Of course,
we cannot exclude the possibilities that these results were obtained either by chance, or
because of misspecification of the model. Furthermore we did not completely deal with the

interval-censoring problem, which requires the evaluation of an integral in the estimation
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of the likelihood. There is probably little difference in considering interval-censoring or the
middle of the interval (see Commenges et al. 1998) as long as we stay in the framework of
survival models. A better approach would be an illness death model as in Joly et al. (2002);

however extending frailty to multistate models requires further work.

1duosnuew Joyine vH

5.
0
)
=5
2
©)
o
[
w
(0]
a1
a
;h
<
()
-
@,
o
=
[N

17




1duosnuew Joyine yH

=
0
1]
=
2
(]
o
s
w
[o0]
8]
a
>
<
1]
=
7]
o
=
[EEY

References

H. Akaike, “A new look at the statistical model identification”, IEEE Transactions on

automatic Control vol. 6 pp. 716-723, 1974.

A.C. Alfrey, G.R. Legendre and W.D. Kaehny, “The dialysis encephalopathy syndrome:
possible aluminium intoxication”, The New England Journal of Medicine vol. 294 pp. 184-

188, 1976.

A. Buja, T. Hastie and R. Tibshirani, “Linear smoothers and additive models”, The Annals

of Statistics vol. 17 pp. 453-555, 1989.

D. Clayton, “A model for association in bivariate life tables and its application in epidemi-
ological studies of familial tendency in chronic disease incidence”, Biometrika vol. 65 pp.

141-151, 1978.

D. Commenges and P.K. Andersen, “Score test of homogeneity for survival data”, Lifetime

Data Analysis vol. 1 pp. 145-56, 1995.

D. Commenges, L. Letenneur, P. Joly, A. Alioum and J.F. Dartigues. “Modelling age-

specific risk : application to dementia”, Statistics in medicine vol. 17 pp. 1973-88, 1998.

T.M. Costigan and J.P. Klein, “Multivariate survival analysis based on frailty models”,

Advances in reliability, New-York: North Holland pp. 43-58, 1993.

D.R. Cox, “Regression models and life tables (with discussion)”, Journal of the Royal

Statistical Society B vol. 34 pp. 187-220, 1972.
D.R. Cox and D.V. Hinkley, “Theoretical statistics”, Chapman Hall, London, 1974.

R.D. Gill, “Discussion of the paper by D.Clayton and J.Cuzick”, Journal of the Royal

Statistical Society A vol. 148 pp. 108-109, 1985.

18



1duosnuew Joyine yH

-
wn
(0]
-
3
(@]
(@]
|_\
w
(o]
(6]
a1
_:h
<
(¢)
-~
@,
o
>
|_\

R.J. Gray, “Flexible methods for analyzing survival data using splines, with applications
to breast cancer prognosis”, Journal of the American Statistical Association vol. 87 pp.

942-951, 1992.
R.J. Gray, “Spline-based tests in survival analysis”, Biometrics vol. 50 pp. 640-652, 1994.

T.J. Hastie and R.J. Tibshirani, “Varying-coefficient models (with discussion)”, Journal of

the Royal Statistical Association, series B vol. 55 pp. 757-796, 1993.
P. Hougaard, “Frailty models for survival data”, Lifetime data analysis pp. 255-273, 1995.

H. Jacqmin-Gadda, D. Commenges, L. Letenneur, P. Barberger-Gateau and J.F. Dartigues,
“Components of Drinking Water and risk of Cognitive Impairment in the elderly”, American

Journal of Epidemiology vol. 139 pp. 48-57, 1994.

P. Joly, D. Commenges and L. Letenneur, “A penalized likelihood approach for arbitrarily
censored and truncated data: application to age-specific incidence of dementia”, Biometrics

vol. 54 pp. 185-194, 1998.

P. Joly, D. Commenges, C. Helmer and L. Letenneur. “A penalized likelihood appproach
for an illness-death model with interval-censored data: application to age-specific incidence

of dementia”, Biostatistics, in press, 2002.

J.P. Klein, M.L.. Moeschberger, Y.H. Li and S.T. Wang, “Estimating random effects in the
Framingham heart study”, Survival analysis: State of the art, Kluwer Academic, Boston,

Massachusetts pp. 99-120, 1992.

E.W. Lee, L.J. Wei and D.A. Amato, “Cox-type regression analysis for large numbers of
small groups of correlated failure time observations”, Survival Analysis: State of the art,

JP Klein, PK Goel eds pp. 237-247, 1992.

19



1duosnuew Joyine yH

-
wn
(0]
-
3
(@]
(@]
|_\
w
(o]
(6]
a1
_:h
<
(¢)
-~
@,
o
>
|_\

L. Letenneur, D. Commenges, J.F. Dartigues and P. Barberger-Gateau, “Incidence of de-
mentia and Alzheimer’s disease in elderly community residents of south-western France”,

International Journal of Epidemiology vol. 23 pp. 1256-1261, 1994.

K.Y. Liang, S.G. Self and Y.C. Chang, “Modelling marginal hazards in multivariate failure

time data”, Journal of the Royal Statistical Society B vol. 55 pp. 441-453, 1993.

D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters”, STAM

Journal of Applied Mathematics pp. 431-441, 1963.

C.N. Martyn, D.J.P. Barker, C. Osmond, E.C. Harris, J.A. Edwardson and R.F. Lacey,
“Geographical relation between Alzheimer’s disease and Aluminium in drinking water”,

Lancet vol. 1 pp. 59-62, 1989.

G.G. Nielsen, R.D. Gill, P.K. Andersen and T.I.A. Sorensen, “A counting process approach
to maximum likelihood estimation in frailty models”, Scandinavian Journal of Statistics

vol. 19 pp. 25-43, 1992.

F. O’Sullivan, “Fast computation of fully automated log-density and log-hazard estimators”,

SIAM Journal of Science and Statistical Computation vol. 9 pp. 363-379, 1988.

E. Parner, “Asymptotic theory for the correlated gamma-frailty model”, The Annals of

Statistics vol. 26 pp. 183-214, 1998.

J.H. Petersen, P.K. Andersen and R.D. Gill, “Variance components models for survival

data”, Statistica Neerlandica vol. 50 pp. 193-211, 1996.

J.O. Ramsay, “Monotone regression splines in action”, Statistical Science vol. 3 pp. 425-461,

1988.

20



1duosnuew Joyine vH

=
n
®
=]
z
o
o
=y
w
(o]
a1
ol
:b
<
®
—=J
7]
o
=i
[EEY

V. Rondeau, D. Commenges, H. Jacqmin-Gadda and J.F. Dartigues, “Relationship between
aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up

study”, American Journal of Epidemiology vol. 152 pp. 59-66, 2000.

R.J. Serfling, “Approximation theorems of mathematical statistics”, Wiley, New-York,

1980.

B.W. Silverman, “Some aspects of the spline smoothing approach to non-parametric re-

gression curve fitting”, Journal of the Royal Statistical Society B vol. 47 pp. 1-52, 1985.

T. Therneau and P. Grambsch, Modeling survival data: extending the Cox model, Springer-

Verlag: New York, 2000.

G. Wahba, “Bayesian “confidence intervals” for the cross-validated smoothing spline”, Jour-

nal of the Royal Statistical Society B vol. 45 pp. 133-150, 1983.

L.J. Wei, D.Y. Lin and L. Weissfeld, “Regression analysis of multivariate incomplete fail-
ure time data by modeling marginal distributions”, Journal of the American Statistical

Association vol. 84 pp. 1065-1073, 1989.

21



1duosnuew Joyine vH

=
0
1]
=
2
(]
o
s
w
[o0]
8]
a
>
<
1]
=
7]
o
=
[EEY

TABLE LEGENDS

Table 1: Estimations of mean(é) and standard errors of 6 for G pairs of uncensored
life-times and M simulated samples (M=500 under Hy, and M=200 under H,); 6 is the true

value of the variance of the frailty variables.

Table 2: Estimations of mean() and standard errors of 6 for G pairs of censored life-
times and M simulated samples (M=500 under Hy, and M=200 under H,); € is the true

value of the variance of the frailty variables.
Table 3: Estimates and standard errors of the regression coefficients for dementia in the

Paquid Cohort after 8 years of follow-up, using a shared gamma-frailty model or a model for

independent data (with partial or penalized likelihood).
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Table 1: Estimations of mean(f) and standard errors of § for G pairs of uncensored life-
times and M simulated samples (M=500 under Hy, and M=200 under H,); 6 is the true
value of the variance of the frailty variables.

Uncensored life-times
G ® Mean empirical Mean S.E.(§) Mean S.E.(6)

@)  SE(0)  (VH ) (VHIH )

> 1000 0.0 0.013  0.019 0.015 0.014
o 0.1 0104  0.034 0.035 0.033
5 0.2 0.202  0.036 0.041 0.039
=
2 500 0.0 0.019  0.028 0.021 0.019
2 0.2 0.205  0.056 0.057 0.057
El 0.4 0.398  0.066 0.066 0.064
2 200 0.0 0.028  0.045 0.031 0.028
3 0.2 0.206  0.087 0.077 0.070
S 0.4 0406  0.109 0.106 0.132
w
oo
g 100 0.0 0.038  0.064 0.041 0.035
< 0.2 0194  0.127 0.110 0.102
) 0.4 0390  0.163 0.187 0.224
> 0.6 0.561  0.187 0.161 0.174
0.8 0.752  0.201 0.165 0.161
1.0 0918  0.191 0.182 0.181
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Table 2: Estimations of mean () and standard errors of @ for G pairs of censored life-times
and M simulated samples (M=500 under Hy and M=200 under H;);  is the true value of
the variance of the frailty variables.

Censored life-times
G 6 Mean empirical Mean S.E.(d) Mean S.E.(f) Nominal coverage

@)  SE.(0) (VH ) (VHIH ')  of the 95% CI
*

S *k

o 1000 0.0 0.021  0.029 0.023 0.022 93.0  93.0

5 0.1 0.104  0.041 0.031 0.029 88.0  86.0

- 0.2 0.208  0.048 0.047 0.044 93.0  92.0

QO

=

2 500 0.0 0.025  0.036 0.026 0.025 97.0  95.0

g 0.2 0.204  0.071 0.065 0.062 94.0 920

- 0.4 0409  0.096 0.080 0.075 9.0 87.0

0

@D

3 200 0.0 0.037  0.056 0.043 0.041 96.8  94.6

8 02 0210 0.115 0.099 0.092 915 910

8 0.4 0415  0.148 0.122 0.112 925 91.0

a

>

< 100 0.0 0.053  0.078 0.061 0.056 97.2  93.0

) 0.2 0218  0.158 0.133 0.123 87.0  86.0

S 0.4 0428  0.202 0.177 0.164 92.5 875
0.6 0.625  0.244 0.212 0.197 92.0  89.0
0.8 0.839  0.260 0.249 0.232 93.5  89.5
1.0 1013  0.303 0.281 0.263 91.0  90.0

x using the estimator H 1y, of the variance estimator 9,
x* using the estimator H=1IH 1y, of the variance estimator 6.
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Table 3: Estimates and standard errors of the regression coefficients for dementia in the
Paquid Cohort after 8 years of follow-up, using a shared gamma-frailty model or a model for
independent data (with partial or penalized likelihood).

Variables Model for independent data Shared gamma-frailty model
(partial Likelihood) (penalized Likelihood) (penalized Likelihood)
B(S.E.*) B(S.E.*) B(S.E.*)
educ. T 0.589(0.127) 0.617(0.116) 0.607(0.116)
aluminum? 0.751(0.254) 0.774(0.249) 0.765(0.249)
silica® -0.293(0.127) -0.270(0.109) -0.270(0.109)

~

0(S.E.) = 0.00036(0.0029)

—

* standard errors estimated with \/ H=1p

t educational level: without versus with primary school diploma
}>0.1 vs <0.1 mg/liter of aluminum

¢ > 11.25 vs <11.25 mg/liter of silica
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FIGURE LEGEND

Figure 1: Theoretical and estimated baseline hazard functions and estimated marginal
hazard function for a frailty variance # = 0.4 for a simulated dataset.

Figure 2: Theoretical and estimated baseline hazard functions for survival times generated
from a mixture of Weibull.

Figure 3: Age-specific risk of dementia estimated with a shared gamma-frailty model for
women and men exposed to high levels of aluminum (> 0.1 mg/1) or low levels of aluminum

(< 0.1 mg/1).
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Figure 1: Theoretical and estimated baseline hazard functions and estimated
marginal hazard function for a frailty variance ¢ = 0.4 for a simulated dataset.

27




1duosnuew Joyine vH

=
n
®
=]
z
o
o
=y
w
(o]
a1
ol
:b
<
®
—=J
7]
o
=i
[EEY

0.3 T T

| |
Theoretical baseline hazard function
Estimated baseline hazard function, number of knots = 4
Estimated baseline hazard function, number of knots = 8
Estimated baseline hazard function, number of knots = 15

0.25 -

0.2

0.15 -

0.1

0.05

_

Figure 2: Theoretical and estimated baseline hazard functions for survival times

generated from a mixture of Weibull.
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Figure 3: Age-specific dementia estimated with a shared gamma-frailty model for
women and men exposed to high levels of aluminum (> 0.1 mg/1) or low levels

of aluminum (< 0.1 mg/1).
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