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Abstract. The use of martingale residuals have been proposed for model checking and also to get a non-parametric
estimate of the effect of an explanatory variable. We apply this approach to an epidemiological problem which
presents two characteristics: the data are left truncated due to delayed entry in the cohort; the data are grouped into
geographical units (parishes). This grouping suggests a natural way of smoothing the graph of residuals which is
to compute the sum of the residuals for each parish. It is also natural to present a graph with standardized residuals.
We derive the variances of the estimated residuals for left truncated data which allows computing the standardized
residuals. This method is applied to the study of dementia in a cohort of old people, and to the possible effect of
the concentration of aluminum and silica in drinking water on the risk of developing dementia.
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1. Introduction

Martingale residuals are the most natural residuals in the context of survival analysis.
Classically, with right censored data, we are interested in modelling the distribution of
a variableTi and we observe(Xi , Di ), i = 1, . . . ,n, whereXi = min(Ti ,Ci ), Ci is a
censoring variable andDi = 1 if Xi = Ti , 0 otherwise. The martingale residuals are defined
asM̃i = Di − Âi (Xi ), whereÂi is the Breslow estimator of the cumalitve hazard function
of Ti . Score tests in the proportional hazard model are function of these residuals; this is the
case of conventional score tests of regression coefficients (Fleming and Harrington, 1991)
but also of tests of homogeneity based on random effect models (Commenges and Jacqmin-
Gadda, 1997). Also, a graphical use of martingale residuals has been proposed (Barlow and
Prentice, 1988; Fleming and Harrington, 1991) for non-parametrically estimating the effect
of an explanatory variable on the risk of an event. This is particularly interesting when a
non-linear effect is suspected. In epidemiology the interpretation of martingale residuals
is easy because they can be interpreted as a number of cases observed minus a number
expected.

We apply this approach to an epidemiological study presenting two characteristics: the
data are left truncated because of a delayed entry in the cohort; the data are grouped
in geographical units, the parishes. This gouping suggests a natural “smoothing” which
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consists in computing the sum of the residuals in each parish. It is also natural to present
a graph with standardized residuals. We derive the variances of the estimated martingale
residuals (in the case of left truncated data) and we give an estimator for these variances;
this allows to compute standardized residuals for the parishes.

This technique is applied to the study of the influence of aluminum and silica present in
drinking water, on the risk of dementia, based on data of a large cohort study, Paquid. An
analysis of prevalent cases of cognitive deficit in the same study has suggested a possible
influence of these minerals on cerebral ageing (Jacqmin-Gadda et al., 1996).

2. The Estimated Martingale and its Compensator

We consider a model for survival data; the duration variable isTi , and the cumulative in-
tensity function isri A0(t), whereri is the relative risk for subjecti ; generally we take
ri = exp(βzi ), wherezi is a vector of explanatory variables. This process is not com-
pletely observed because observations can be right censored and left truncated. We observe
(Xi , Di ), i = 1, . . . ,n, whereXi = min(Ti ,Ci ), whereCi is a censoring variable and
Di = 1 if Xi = Ti , 0 otherwise. The observed point processVi Ni (t) for each subjecti ,
i = 1, . . . ,n is modelled by

dVi Ni (t) = d Mi (t)+ Vi Yi (t)ri d A0(t)

whereVi Yi (t) = I{t≤Xi } I{t≥Vi } whereVi is the time at which the observation starts: this is
called a started process (Andersen et al., 1993);Vi is also called a left-truncation variable;
we shall treatVi as fixed.

Mi (t) is a martingale that we can express as a function ofVi Ni (t) and ofVi Yi (t)ri d A0(t).
ReplacingA0(t) by its Breslow estimator, we obtain the estimated martingale of this pro-
cess

M̂i (t) = Vi Ni (t)−
∫ t

0
Vi Yi (s)ri d Â0(s),

whereÂ0(t) =
∫ t

0
dV N(s)
V S0(s) , with dV N(s) =∑n

k=1 dVk Nk andV S0(s) =∑n
k=1 VkYk(s)rk; we

assume therk known.
It is interesting to represent this estimated martingale as a stochastic integral relatively to

the original martingales of a predictible process

M̂i (t) =
n∑

j=1

∫ t

0
Hi j (s)d Mj (s),

with Hi j (s) = δi j Vi Yi (s)− pi (s)Vj Yj (s), pi (s) = Vi Yi (s)ri

V S0(s) andδi j is the kronecker symbol.

This expression shows that̂Mi (t) is a martingale for eachi and allows to show easily that
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∑n
i=1 M̂i (t) = 0. The predictable variation of the estimated martingale is

〈M̂i 〉(t) =
∑

j

∫ t

0
H2

i j (s)d〈Mj 〉(s)

=
∑

j

∫ t

0
H2

i j (s)Vj Yj (s)r j d A0(s)

=
∫ t

0
(1− pi (s))Vi Yi (s)ri d A0(s). (1)

3. Standardized Martingale Residuals

The variance ofM̂i (t) is

E(〈M̂i 〉(t)) =
∫ t

0
E[(1− pi (s))Vi Yi (s)]ri d A0(s).

We remark that

E[(1− pi (s))Vi Yi (s)] = E[1− pi (s) | Vi Yi (s) = 1] Pr[Vi Yi (s) = 1]

=
{

1− ri E

[
1

V S0(s)
| Vi Yi (s) = 1

]}
E[Vi Yi (s)].

We haveE[Vi Yi (s)] = E[ I{s≤Ti } I{s≤Ci }] I{s≥Vi } = πi (s)Si (s)I{s≥Vi }, whereπi (s) is the sur-
vival function of the censoring variable andSi (s) is the survival function ofTi . SinceV S0(s)
is a sum of many terms we have approximatelyE[ 1

V S0(s) | Vi Yi (s) = 1] ≈ 1
E[V S0(s)|Vi Yi (s)=1] =

1
ri+
∑

j 6=i
r j E[Vj Yj (s)]

Finally this variance is

varM̂i (t) ≈
∫ t

0
E[Vi Yi (s)]

[
1− ri

r i +
∑

j 6=i r j E[Vj Yj (s)]

]
ri d A0(s).

The martingale residuals arẽMi = M̂i (∞) = Di − ri [ Â0(Xi ) − Â0(Vi )]; an estimator of
their variance is

v̂arM̂i (∞))=
∫ ∞

0
π̂i (s)Ŝi (s)I{s≥Vi }

[
1− ri

V S0(s)+ri (1− Vi Yi (s))

]
ri

V S0(s)
dV N(s),

whereŜi (s) = exp[−ri Â0(s)]. Hence we deduce the standardized residuals. More gen-
erally a group residual can be defined byM̃C =

∑n
i=1 I{i∈C}M̃i whereC is a subset of

{1, . . . ,n}. Its variance can be computed by the same argument as above, noting that
M̃C = M̂C(∞) where

M̂C(t) =
n∑

j=1

∫ t

0

n∑
i=1

I{i∈C}Hi j (s)d Mj (s).
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The predictable variation of this martingale can easily be found and an estimator given.
However ifC is a small subset of{1, . . . ,n} the correlations between thẽMi can be neglected
so that the variance can be approximately computed by the sum of the variances of theM̃i

leading to the standardized group residual:

M̃ S
C ≈

∑n
i=1 I{i∈C}M̃i[∑n

i=1 I{i∈C}v̂arM̃i

]1/2 .

Note that if (and only if) the number of subjects in a parish
∑n

i=1 I{i∈C} was large we
could obtain a simpler formula by estimating the variance by the observed compensator of∑n

i=1 I{i∈C}M̂i (t), which leads, after replacingA0(s) in (1) by its Breslow estimator, to∑
i

I{i∈C}
∫ ∞

0
(1− pi )pi dV N(s).

Heuristically the reason why such an estimator would be good in the case of
∑n

i=1 I{i∈C}
large, stems from the law of large numbers: the sum of a large number of (nearly) indepen-
dent terms is, relatively, close to its expectation.

The standardized martingale residuals can be used in graphical examination of the fit of
the model to the data. The advantage of standardized residuals over ordinary ones is that the
different groups are given equal weights which can be safer because of possible intragroup
correlation. One use of these residuals is to examine the possible non-linear effect of a
variable: the residuals are computed in a model not including the variable of interest; then
they are plotted against this variable. A smoothing can be performed in addition to facilitate
the interpretation. Kernel smoothing method are simple and allow to compute confidence
bands.

4. Application on Dementia in Parishes

The Paquid program on cerebral ageing is based on a large cohort randomly selected in a
population of subjects aged 65 years or more, living at home in two departments of southwest
France (Gironde and Dordogne). Dementia is one of the major public health problem in
this context and Alzheimer’s disease represents about two thirds of the cases. The ALMA
study, which is a branch of the Paquid program, aims to analyse the role of components of
drinking water on the risk of developing Alzheimer’s disease and dementia. The etiology
of Alzheimer’s disease is still unknown, except in a small percentage of cases where a clear
genetic factor is present. Thus the research of environmental factors is still ongoing. The
hypothesis that aluminum plays a role in Alzheimer’s disease has been put forward because
aluminum is neurotoxic and it has been shown to cause dementia in dialysed patients (Alfrey
et al., 1976); some epidemiological studies have concluded to a relation between aluminum
in drinking water and risk of Alzheimer’s disease (Martyn, 1989; Jacqmin-Gadda et al.,
1996). In addition Birchall and Chappell (1989) have proposed the idea that silicium could
protect against aluminum toxicity. The whole issue is very controversial, due in particular
to recent negative epidemiological results (Martyn, 1997).
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Figure 1.

We present here a preliminary analysis, as an illustration of the graphical methods based
on residuals proposed in this paper; 3411 subjects, non-demented at entry in the cohort,
scattered in 71 parishes (in Gironde and Dordogne) have been followed during five years
and 176 incident cases of dementia have been observed. The concentrations of aluminum,
silica and other minerals in the drinking waters of these parishes have been recorded.

The risk of developing dementia is modelled as a function of age, and since prevalent
cases are excluded, the data are left truncated: the truncation variable is the age at entry in
the cohort. A more complete analysis would involve a three-state model (such as presented
in Andersen et al., 1993), but if we are only interested in incidence of dementia and if the
age at onset of dementia is known with sufficient precision, the Nelson-Aalen estimator
can be used as in an ordinary survival problem (Commenges et al., 1998); here death takes
the role of a censoring because it removes the subjects from the set of subjects at risk of
developing dementia. As the main occupation during life-time appeared to play a role
in the risk of dementia (intellectual occupations having a lower risk than non-intellectual
ones), we have computed the standardized residuals for a model including occupation;
occupation was considered in three categories, “Intellectual”, “Manual”, “Farm workers”.
A Cox proportional hazard model yieldedri = 1 for “Intellectual” occupation (the reference
category),ri = 1.48 for “Manual” andri = 2.23 for “Farm workers”.

Only a coarse estimation of the survival function of the censoring variable could be
obtained because there is another complication in the data set due to discrete observation
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Figure 2.

times leading to interval censoring. This problem is not treated here so that we pretend that
observations are in continuous time. We note that the probability of censoring depended
essentially of the time of follow-up. We first restricted to subjects seen at least at one
follow-up visit because other subjects carry no information. Among these subjects the
proportion seen at the visit done around 36 months (resp. 60) was 0.88 (resp. 0.71); the
last visit was done after 73 months; hence the estimated distribution of the censoring was
π̂i (s) = φ(s − Vi ) with φ(u) = 1 for u < 15,= 0.88 for 15≤ u < 50,= 0.71 for
50≤ u < 74,= 0 for u ≥ 74, where the time is expressed in months.

Examination of a plot of the residuals against the aluminum concentrations (Figure 1)
makes it clear that one parish will be very influent on the result of a formal test on the effect
of aluminum, because it has a high aluminum concentration and a relatively large positive
residual (around 2). The other parishes do not seem to bring much evidence of a link beween
the risk of the disease and aluminum concentration. We have added a smooth estimate of
the residuals using a kernel smoothing technique based on Epanechnikov kernels, together
with pointwise 95%-confidence bands.

A plot of the same residuals against concentration of silica (Figure 2) let appear a slight
trend of positive residuals for concentrations below 11mg/l and negative residuals for values
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larger than 11mg/l. This is in favor of a protective effect of silicium and it is apparent
that this is a global trend not due to one particular parish. It happens that the tests of the
regression coefficients in a Cox model are significant for both aluminum and silica treated as
dichotomized variables with cut-off points equal to 0.1 mg/l for aluminum (a value aready
used in the literature) and to 11.25 mg/l for silica (the median). The plots of residuals
downgrades the impression that aluminum plays a role; however the result of the test on
silica is rather supported by the examination of the residuals although there is no apparent
dose-effect relationship. Finally we note that these findings go in the direction predicted
by Birchall’s hypothesis. However they are not conclusive; a more detailed study involving
additional data is in preparation.
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