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Abstract

Correlated survival outcomes occur quite frequently in the biomedical re-
search. Available software is limited, particularly if we wish to obtain smoothed
estimate of the baseline hazard function in the context of random effects
model for correlated data.

The main objective of this paper is to describe an R package called frailty-
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pack that can be used for estimating the parameters in a shared gamma
frailty model with possibly right-censored, left-truncated stratified survival
data using penalized likelihood estimation. Time-dependent structure for
the explanatory variables and/or extension of the Cox regression model to

recurrent events are also allowed. This program can also be used simply to
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obtain directly a smooth estimate of the baseline hazard function.

To illustrate the program we used two data sets, one with clustered sur-
vival times, the other one with recurrent events, ie the rehospitalizations
of patients diagnosed with colorectal cancer. We show how to fit the model
with recurrent events and time-dependent covariates using Andersen-Gill ap-

proach.

1 Introduction

The frailty models, are useful in a variety of biomedical settings to char-

acterize the risk function of an individual when the observations are clustered
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into groups such as geographical areas or families and when the observations
are non-independent. This might result from the fact that subjects in the
same cluster share similar non-observed environmental factors or genetic fac-
tors which affect their survival. The random effects modeling in survival
analysis can be also easily applied to deal with repeated measurements on a
person, and properly account for dependence within subjects. As a result,
analyzes that fail to account for the correlation in survival times are likely
to underestimate the variances of the parameters. Research on the statisti-
cal analysis of correlated survival data has received considerable attention,
shared frailty models are used [1, 2, 3]. A review of the different software
packages used for analyzing correlated survival data has been recently written
by [4]. Semi-parametric inference for frailty models was introduced by Klein
et al. [5] and Nielsen et al. [6]. Their approaches used an EM algorithm ap-
plied to the Cox partial likelihood. Hastie and Tibshirani [7] proposed a gen-
eral model with time varying coefficients and suggested estimation through
penalized partial likelihood. Therneau and Grambsch [3, 8] noted a link be-
tween the gamma frailty model and a penalized partial likelihood (where the
penalization bears on a regression coefficient). These approaches have some
general drawbacks. In particular, the convergence can be slow and a direct
estimate of the variance of the frailty term is not provided. Furthermore
these methods can not be used to estimate the hazard function, which has
often a meaningful interpretation in epidemiology. An alternative method is

the non-parametric estimation of the baseline hazard function using a con-
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tinuous estimator. This approach is based on the penalized full likelihood,
as opposed to the penalized partial likelihood of Therneau and Grambsch
[3]. The solution is then approximated using splines. The aim of this paper
is to introduce computer program called frailtypack which implements this
approach using a non-parametric penalized likelihood estimation. frailtypack
can be used to estimate the parameters in a shared gamma frailty model with
possibly right-censored, left-truncated and stratified survival data. Time de-
pendent structure for the explanatory variables and/or extension of the Cox
regression model to recurrent events are also allowed. This program can also
be used simply to obtain smooth estimates of the baseline hazard function
and to plot the hazard’s curve, in order to check the proportional hazards
assumption, for example. The proposed program frailtypack was first written
in Fortran and has been ported to R, a very useful free software. In section
2 we present the model, and the estimation procedure. In section 3, fraulty-
pack is described and in section 4 two applications on biomedical data are

exposed.

2 Computational Methods and theory

This section presents a brief description of the methodology used. A more

detailed presentation can be found in a companion statistical paper [9].
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2.1 The gamma shared frailty model

We consider models in which the hazard function partly depends on an un-
observable random variable thought to act multiplicatively on the hazard, so
that a large value of the variable increases the hazard. These models, called
frailty models are an extension of the classical Cox proportional hazard model
[10].

We treat the case of right-censored and left-truncated data. For the ;%
(j = 1,..,n;) individual of the i group (i = 1,...,G), let T}; denote the
survival times under study and let C; be the corresponding right-censoring

times. The observations are Y;; = min(7};

ij» Cij) and the censoring indicators

0ij = I{1;<c;;y- The survival times may be left-truncated: only subjects with
Ti; > L;; are observed. Our frailty model specifies that the hazard function

conditional on the frailty is:

Nij(t1Z;) = Zido(t) exp(B'X5) (1)

where Ao(t) is the baseline hazard function; X;; = (Xiij, .., Xpij)’ denotes
the covariate vector for the j individual and group i, 3 is the correspond-
ing vector of regression parameters, and the Z;’s are unobserved random
variables (the frailties). It is assumed for mathematical convenience that the
Z;’s are independently and identically distributed from a gamma distribution

with mean 1 and unknown variance # at origin time; the density probability

2(/6—-1) exp{—2/60}
r'(1/6)61/6

function is thus: g(z) =
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2.2 Penalized Likelihood

In the shared gamma-frailty models the full log-likelihood for left-truncated
and right censored data takes a simple form with an analytical solution for

the integrals on the frailty term:

I(Xo(),8,0) = {Z di5{8' Xij + In(Ao(¥35)) } (2)

i=1 \j=1

140 Ao(Yy) exp(ﬁ’Xz'j)]

j=1

+1/61n (1 + Gi Ao(L4j) exp(B'Xij))

i=1

+I{m¢;£0} i[ln(l + 0(m1 — ]{Z))]}

k=1

with Ag(.) the cumulative baseline hazard function and m; = Zj;l Its -1y
is the number of observed events in the i** group.

Most often, the baseline hazard function can be expected to be smooth. A
possible means for introducing such a priori knowledge is to penalize the like-
lihood by a term which takes large values for rough functions. The penalized

log-likelihood is thus defined as:

P00, 5,6) = (M), 6) — m / RPRITY 3)

where [(Ao(.), 3,60) is the full log-likelihood defined in (2), and x > 0, is a

positive smoothing parameter which controls the trade-off between the data
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fit and the smoothness of the functions. Maximization of (3) defines the
maximum penalized likelihood estimators (MPnLE) Ao(t), 3, 6. Note that in
the approach of the present paper, we penalize the baseline hazard function(s)
while Therneau and Grambsch [3] penalize the frailties.

We can use directly H! as a variance estimator of the parameters, where
H is the converged Hessian of the penalized log-likelihood or a “sandwich
estimator” H~'TH~" where I is the information matrix [11]. A significant
test for the variance of the random effects distribution occurs on the boundary
of the parameter space; the necessary modification to the usual Wald test
simplifies to a comparison of the test statistic with a critical value from a

one-sided test [12].

2.3 Approximation using splines of the baseline hazard

function

The estimator A(.) is approximated by a linear combination of m cubic M-
splines \o(.) = Y- m;M;(.) [13]. A spline function is completely defined by
a sequence of increasing knots and the coefficients n = (n1,...,7m)T of the
splines. In our approximation we used splines of order 4 (also called cubic
splines). In frailtypack, a knot is set on the first and last data points and the
other knots are put equidistantly between them. With the same vector of
coefficients 1, we get the cumulative baseline hazard function with I-splines

(integrated M-splines).
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Increasing the number of knots does not deteriorate the MPnLE: this is
because the degree of smoothing in the penalized likelihood method is tuned
by the smoothing parameter x and not by the number of splines. Once a
sufficient number of knots is established, there is no advantage in adding
more. Moreover, the more knots, the longer the running time will be. Some
running problem may arise, particularly for a large number of knots. That
is why the maximum number of knots is limited to 20, and the minimum
number of knots is limited to 4. So it is recommended to start with a small
number of knots (e.g. seven) and increase the number of knots until the
graph of the baseline hazard function remains unchanged.

To obtain approximate bayesian pointwise 95% confidence bands for the

baseline hazard function we use : Ao(t) + 1.96,/M'(t)[Var(7)M(t) where

M'(t) = (My(t), ..., My, (¢)) is the spline vector in t.

2.4 Smoothing parameter

An empirical estimate of the smoothing parameter can be provided or the
smoothing parameter can be chosen by maximizing an approximate cross-
validation score as in Joly et al. [14]. The cross-validation procedure has
been implemented for a classical Cox proportional hazard model and not
for a shared frailty model. We included in the program an option to use a
fixed smoothing parameter or to use an automatic selection of the smoothing
parameter with the cross-validation criterion (version 2.0-0 of the frailtypack

library). A relationship linking the model degrees of freedom and the smooth-

9
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ing parameter « [9], the output of the program gives these two values. The
model degrees of freedom decrease in x from m, the number of parameters
(if K = 0) to 2 (if K — +o00) which is the number of degrees of freedom of a
straight line. However, in some cases, the search for the smoothing parame-
ter may not be reliable because of local extrema. Thus the estimate of the
smoothing parameter is not optimal. This can be examined by taking differ-
ent starting points. Moreover, it seems that the cross-validation score tends
to undersmoothe, especially for small samples, so in this case the smoothing

parameter may be fixed a priori in the program.

3 The special case of the extension of the Cox
regression model to recurrent events with
counting process formulation and/or time-

dependent covariates

Frailtypack can also be used to deal with recurrent events. Recurrent events
is where for instance the subject experiences repeated occurrences of the
same type of event, as repeated asthma attacks, cancer relapses, rehospital-
ization after surgery. The events from the same subjects may be potentially
correlated. Different timescales can be used [15]. The timescale that is most
often used is the gap time: after an event, the subject starts again at time

0 and the time to the next event corresponds to the number of days that

10
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it takes to experience the next event. Alternative timescale is the calendar
time, also called counting process approach [16] which keeps track of time
since randomization. The duration of the time at risk for an event corre-
sponds to the duration of the time at risk in the gap time representation but
the start of the at-risk period is not reset to 0. A subject is not considered
to be at risk for the kth event until after the (k-1)th event. We will detail
this calendar time formulation, because the method of estimation is different
from that previously seen. The hazard function for the frailty model with
calendar time is the same as the one of the expression 1, but the frailty term
Z; will be specific to each subject and time dependent covariates are allowed:
Xij(t|Z;) = Zido(t) exp(B'X;(t)). A particular subject has different periods
at risk during the total observation time. If there are n; at-risk periods for
patient ¢, then the complete information for patient 7 can be represented by
n; triplets (Yii1, Yz, 0i1), -, (Yini1, Yini2, Oin;) Where, for the jth triplet, Y;j;
is the start of the jth at-risk period, Y;s is the end of the jth at-risk period,
di; is the censoring indicator and Y;1; = 0.

The expression of the full log-likelihood is different from that of the ex-

11
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pression 2 and becomes :

[(Xo(.),8,0) = > {Z 05518 Xij (Yij2) + In(Ao(Yig2)) }

(4)

0 ) [140D(8o(¥i) — Ao(¥i) exp(8X, (Vi)
+I{mi7é0} i[ln(l + H(m, — k‘))]}

As before a penalized full log-likelihood is used to estimate the parameters.

4 Computational procedure

The estimated parameters were obtained by the robust Marquardt al-
gorithm [17] which is a combination between a Newton-Raphson algorithm
and a steepest descent algorithm. This algorithm has the advantage of being
more stable than the Newton-Raphson algorithm while preserving its fast
convergence property near the maximum. We stopped the iterations when
the difference between two consecutive log-likelihoods was small, the coeffi-
cients were stable and the gradient was small enough. To be sure of having
a positive function at all stages of the algorithm, we restricted all the spline
coefficients n; to be positive for all j. We imposed a constraint of positiv-
ity for the variance parameters, 8 > 0, so we did not consider a negative
dependence in the model, which did not have a frailty interpretation.

When frailty parameter is small, numerical problems may arise. To solve

12
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this problem, an alternative formula of the penalized likelihood is used [9].
The first derivative (the score) and the second derivative (the hessian) of
the log-likelihood themselves do not have a simple analytical form, so that

we computed numerically these quantities using finite differences.

5 Computer program

5.1 General description

A major problem in the parameter estimation is the likelihood maximization
procedure. This procedure is generally very time consuming, making neces-
sary the use of compiled programming languages such as Fortran, C, C++,...
The combination of high speed compiled languages and the versatility of R
(flexible, high-level statistical language) provide us with the ideal framework
to deal with these problems. Following this philosophy, frailtypack has been
implemented as a dynamic link library (dll) in Fortran 77, which is called by
R functions [18].

It compiles and runs on a wide variety of UNIX platforms and similar
systems (including FreeBSD and Linux), Windows and MacOS. This package
depends on other R packages, such as survival and splines.

The structure of the data file is ASCII free format. The different columns
of the datafile will contain (in any order), the entry time (which is differ-
ent from zero for left truncated data), the outcome variable, the censoring

status, the group identification number, the explanatory variables. The Ap-

13



pendix 1 describes an extract of a datafile structure, corresponding to the
first application (see section (6.1)).

Four functions can be used under the library frailtypack: frailtyPenal,
print, summary, plot with adapted arguments. We indicate the imposed
arguments with bold characters, in italic are the names of the variables or

the values of the parameters that can be changed. Note that the capitalized

1duosnuew Joyine yH

characters are different from small letters in R.

e frailtyPenal(Surv(time, event) ~ varl + wvar2 + cluster(group) +
strata(sez), data = filename, Frailty = TRUE , n.knots=13, kappal=

1000, kappa2=1500, mazit=350, recurrentAG=TRUFE, cross.validation=TRUFE

)
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This function allows arbitrary patterns of time-dependent covariates.
It handles not only the clustered failure time data but also the recurrent
events data. Furthermore a subject is allowed to be at risk for failure in
arbitrary time intervals, which is useful for dealing with non-standard
situations like delayed study entries as well as for implementing certain

methods on recurrence data.

The CPU time needed to run this function depends on the number of
parameters included (in particular the number of knots), the number
of observations, and the speed of the processor and the amount of PC
memory.

- time: this is the follow-up time, which can be a censored or a time of

14
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event.

If we have left truncated data the expression becomes: Surv(entry,
time, event) with entry the time for left truncation.

- event: the status indicator, normally O=alive, 1=dead

- varl, var2 ...: the names of the explanatory variables which can be
time-dependent. In this case the datafile structure need to be modified.
For instance if the covariate indicates by the values 1 vs. 0 whether or
not the patient has or has not a treatment at a specific time we have
to separate the record of this individual into two records corresponding

to the two at risk time intervals:

entry time event 1id treatment

0 96 1 1 1

0 52 0 2 0
52 123 0 2 0
123 165 1 2 1
0 120 0 3 0
120 256 1 3 1

Note“‘.chat the time dependent structure for the covariates need to be
associated with the option recurrentAG = TRUE (see after).

- cluster: indicates the name of the level of regrouping for the frailty
term.

- Frailty: indicates with a logical value TRUE or FALSE if the model

15
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includes a frailty term or not. By default the TRUE value is used and
the variance of frailty parameter is estimated. If frailty=FALSE, a cox
proportional hazards model is estimated using Penalized likelihood on
the hazard function.

- strata(sezx): indicates a stratified analysis. In this case two different
baseline hazard functions will be estimated, corresponding to the two
values of the stratification variable. A maximum of 2 strata is allowed.
- data=filename: indicates the name of the data file.

- n.knots=13: the integer gives the number of knots to use. It corre-
sponds to the (n.knots+2) splines functions for the approximation of
the baseline hazard function or the survival functions. The number of
knots must be between 4 and 20.

- kappal=1000: gives a positive value for the smoothing parameter of
the penalized likelihood (see equation 3)

- kappa2=1500: a second smoothing parameter is required if the anal-
ysis is stratified. This parameter will correspond to the smoothing for
the second baseline hazard function.

- marit=350: is the maximum number of iterations for the Marquardt
algorithm. Default is 350.

- recurrentAG=FALSFE: if =TRUE, indicates that recurrent event times
with the counting process approach of Andersen and Gill, ie, with a
calendar timescale, is used. The penalized log-likelihood with the ex-

pression 4 is used for the estimation. Default is FALSE.

16



- cross.validation=FALSE: if =TRUE, indicates that a cross validation
procedure is used for estimating the best smoothing parameter. kappal

is used as the seed for the estimation x. Default is FALSE.

e print(modell)

This function prints a short summary of the estimates for the model

1duosnuew Joyine vH

modell.

e summary(modell, level=0.95)
This function gives the hazard ratios of the regression coefficients and

their confidence intervals for the model modell. The confidence level is
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allowed (level=0.95).

e plot(modell, type="hazard”,conf=TRUEFE)
This function plots the baseline hazard function or the survival function
with their confidence bands. If modell is a stratified model, then two

functions will be plotted.

type="hazard”: A character string specifying the type of curve to plot. The
two possible values are “hazard” for the hazard function and “survival” for
the survival function. The default is “hazard”. Only the first letters are
required, e.g. “haz” or “su”.

conf=TRUEF: a logical value TRUE or FALSE indicates whether bayesian

confidence bands will be plotted or not. The default, is to do so.

17




6 Applications

In this section we illustrate the use of frailtypack with data taken from
two biomedical studies. One on clustered survival data the other one on
recurrent events that can be useful to illustrate how to use time-dependent

covariates, stratified data and delayed entry.
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6.1 Clustered survival data

To illustrate the computations we consider a data set published by Mantel
et al. [19] of litter-matched tumorigenesis experiment with one drug treated
rat and two placebo treated rats per litter. This dataset on rats can be down-

loaded from the web site http://mayoresearch.mayo.edu/mayo /research /biostat/therneau-
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book.cfm, they are also present in the R library kinship. Fifty female litters
were considered. Using a shared frailty model, we wanted to evaluate if there
existed an intra-litter correlation due to the fact that the risk of tumor for-
mation may depend on the genetic background or the early environmental

conditions shared by siblings, but differing between litters.

The R instructions are:

#for the Cox proportional hazard model estimated with a penalized
#likelihood function:

mod.cox<-frailtyPenal (Surv(time,status) “rx+cluster(litter),

18
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data=rats,Frailty=FALSE,n.knots=8,kappal=1500,cross.validation=TRUE)

#for the shared gamma frailty model:

mod.frail<-frailtyPenal(Surv(time,status) “rx+cluster(litter),

data=rats,Frailty=TRUE,n.knots=8,kappal=1500,cross.validation=TRUE)

The output given by the function

print (mod.frail)

is:

Call: frailtyPenal(formula = Surv(time,status) ~ rx +
cluster(litter),data = rats, Frailty = TRUE,

cross.validation=TRUE, n.knots = 8, kappal = 1500)

Shared Gamma Frailty model parameter estimates
using a Penalized Likelihood on the hazard function
coef exp(coef) SE coef (H) SE coef (HIH) Z p

rx 0.956 2.6 0.325 0.325 2.94 0.0033

Frailty parameter, Theta: 0.479 (SE (H): 0.465 ) (SE (HIH):

penalized marginal log-likelihood = -240.09
n= 150
n events= 40

n groups= 50

19
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number of iterations: 14
Exact number of knots used: 8
Best smoothing parameter estimated by

an approximated Cross validation: 84586295, DoF: -3.43

The second fit mod.frail, a gamma frailty fit with each litter defining a
group, gives a significant treatment effect (8 = 0.956, p — value = 0.0033).

A

The two estimations for the Standard Errors estimates are given (H ™!

and
H-'IH™") and are in this example, almost identical. When frailty was ig-
nored (mod.coz), the standard error for the treatment effect was slightly
underestimated as expected (8 = 0.954, SE = 0.319). We can also see that
there is no significant random effect because the one-sided Wald statistic
0/SE(f) = 0.481/0.465 = 1.03.

The graph of the baseline hazard function, which represents the risk of tumor

can be obtained using the instruction:
plot(mod.frail,ylim=c(0,0.02),x1lim=c(20,110))

The estimation of the hazard with four different numbers of knots (there-
fore, four different smoothing parameters) is illustrated by Figure 1. For a
small number of knots the resulting function space may be not flexible enough
to capture the variability of the data. For a large number of knots estimated
curves may tend to overfit the data. As a remedy, we recommand a mod-
erately large number of knots (usually between 8 and 12) to ensure enough

flexibility, and to guarantee sufficient smoothness of the fitted curves. In this

20
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approach the benefit of using 12 knots compared with 8 knots is small, we

then recommand the user to use 8 knots.

FIGURE 1 around here

6.2 Recurrent events

Next biomedical example pertains to the rehospitalization of patients diag-
nosed with colorectal cancer published by Gonzalez et al. [20]. The data
provide the calendar time (in days) of the successive hospitalizations after
the date of surgery. The first readmission time was considered as the time
between the date of the surgical procedure and the first rehospitalization af-
ter discharge related to colorectal cancer. Each subsequent readmission time
was defined as the difference between the current hospitalization date and the
previous discharge date. There were a total of 861 rehospitalization events
recorded for the 403 patients included in the analysis. Several readmissions
can occur for the same patient, and an individual frailty may influence the
ocurrence of subsequent rehospitalizations. Thus, the authors proposed to
use a gamma shared frailty model for analyzing the data [20].

Other approaches, based on extensions of the Cox proportional hazards
model, have appeared in the literature for dealing with such data [3]. In
this paper we will compare the results obtained using the frailty models
with a gap timescale with those obtained using the calendar timescale of

Andersen and Gill (AG) model [16]. In this last formulation the length
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of the time-at-risk period is the same as in the gap-time formulation, but
the start of the at-risk period is no reset to 0 but to the actual time since
entry to the study. A subject may have a delayed entry or censored period
before the subject becomesat risk for the event. This is partly due to the
availability of frailtypack for accommodating the counting process style of
input. Other approaches, such as marginal models, are not yet available
using frailtypack since it only deals with two strata and both approaches
need to fit stratified models depending on the number of reoccurrences. In
our example the number of rehospitalizations may be greater than two for
many patients.

The aim of the investigators was to investigate social-demographic and
clinical inequalities in hospital readmission among patients. The main au-
thors’ finding was to determine that women with colorectal cancer are less
likely than men to be readmitted to the hospital, after controlling for well-
established predictors, such as tumor characteristics and comorbidity. This
indicates that a stratified model can be adequate for fitting the data. How-
ever, before illustrating how to fit stratified model, we show how to fit a
classical Cox proportionnal hazard model, and a shared frailty model with
different timescales using penalized procedure. To do so, apart from the
gender, we include in the models the most important predicting factor of re-
hospitalization that was the tumor stage (Dukes classification: A-B, C or D)
and a time-dependent variable the Charlson’s Index (classification: 0, 1-2, >

3). The R instructions are:
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# Cox proportional hazards model
fitCoxPen<-frailtyPenal (Surv(time,event) “as.factor(sex)+
as.factor(dukes)+cluster(id) ,data=readmission,

Frail=FALSE,n.knots=6,kappal=100000,cross.validation=TRUE)

# Andersen-Gill counting process approach

fitAG<-frailtyPenal(Surv(t.start,t.stop,event) “as.factor(sex)+
as.factor(dukes)+cluster(id) ,data=readmission,
Frail=TRUE,n.knots=6,kappal=100000,cross.validation=TRUE,

recurrentAG=TRUE)

# Andersen-Gill counting process approach with a time-dependent covariate

fitAG<-frailtyPenal(Surv(t.start,t.stop,event) “as.factor(sex)+
as.factor(dukes)+as.factor(charlson)+cluster(id) ,data=readmission,
Frail=TRUE,n.knots=6,kappal=100000,cross.validation=TRUE,

recurrentAG=TRUE)

# Shared gamma frailty model with gap timescale
fitFraPen<-frailtyPenal (Surv(time,event) “as.factor(sex)+
as.factor(dukes)+cluster(id) ,data=readmission,

n.knots=6,kappal=100000,cross.validation=TRUE)
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Table 1 shows the estimates using the approaches mentioned above. First
of all, as the authors stated, there is a significant random effect. They used
a graphical method to check this assumption [20]. However, using the pe-
nalized likelihood approach, standard error of frailty term can be estimated,
we can then verify the independence assumption using the one-sided Wald
statistic. In the non-adjusted model §/SE(f) = 1.09/0.19 = 5.76 and in the
adjusted model (cf Table 1) the heterogenity decreases but is still significant
0/SE(f) = 0.72/0.15 = 4.91. As we have previously mentioned, heterogene-
ity among patients may lead to an underestimation of the variance estimates.
In our example, confidence intervals are larger for frailty model (second to
fourth columns in the table) than for Cox model (first column in the table),
as expected.

Regarding to the estimated risk of rehospitalization, we observe that Cox
model underestimates the effect of being male, although statistically signifi-
cant differences due to gender are observed using all models. Differences are
also observed in the risk due to Dukes stage between Cox and frailty models.
On the other hand, big differences are found in the risk among tumoral stages
between the model based on calendar timescale and the model based on gap
time. In particular, patients diagnosed with tumoral stage 'D’ have more
risk of being readmitted if we use calendar timescale approach. The same is
observed for the hazard ratio of being male. A larger heterogeneity estimate

is obtained also with the model based on a calendar timescale. Note that
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depending on the timescale selected the interpretation of the time evolution
will be different [15].
After observing that gender is an important prognosis factor of being

readmitted, we can fit a stratified model. The R instruction is:

# Strafified shared gamma frailty model with gap timescale
fitFraPen<-frailtyPenal (Surv(time,event) “as.factor (dukes)+cluster(id)+
strata(sex) ,Frailty=TRUE,data=readmission,n.knots=8,

kappal=100000,kappa2=100000)

In that case, using summary function (that is, summary(fitFraPen)) we

obtain the confidence intervals for the hazard ratios of tumoral stages

summary (fitFraPen)

hr 95% C.T.
as.factor(dukes)2 1.56 ( 1.16 - 2.09 )
as.factor(dukes)3 3.66 ( 2.55 - 5.24)

Figure 2 illustrates the probability of hospital readmission depending on
gender using a stratified model. By typing type="surv” in the plot function
we print the baseline survivor function, Sy, instead of the baseline hazard

function as we have illustrated in the previous example. Sometimes one
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wants to estimate the baseline probability distribution function (Fy = 1—.S),
instead of the baseline survivor function. We can easily obtain this plot using

the following R instructions (see Figure 2):

fitFra.strat$surv <- 1-fitFra.strat$surv

fitFra.strat$surv2 <- 1-fitFra.strat$surv?

plot(fitFra.strat,type="s",ylim=c(0,0.9))

FIGURE 2 around here

We also compared our approach with that of Therneau and Grambsch
[3] and of Wei, Lin and Weissfeld [21] using the gap timescale. Therneau
and Grambsch developped a penalized partial likelihood estimation for the
shared frailty models, whereas a marginal model is used by Wei, Lin and
Weissfeld. In the marginal model we chose to analyze a maximum of 6 recur-
rent events per subject, then a maximum of six strata is used in the analysis,
ie, one for each observation per subject. The marginal model or the hazard
function for the jth event is: A;;(t) = Ao;(t) exp(8'X;;). These two models
can be implemented with R using the survival library and the cozph function.
A comparison of frailty models and marginal models is given in Therneau
et al. [3]. The results obtained in Table 2 match the findings previously
obtained (see the second column of Table 1). The major advantage of using
the frailtypack package to model a frailty model, is first to obtain directlty a

smooth curve for the baseline hazard function. Secondly an estimate of the
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standard error for the variance of the frailty parameter can also be directly

obtained in this approach contrary of Therneau’s approach.

7 Availability

The library frailtypack (frailtypack version 2.0-0) with the function frailtyPe-
nalis available to the public at no charge and can be loaded at from http://cran.r-
project.org. Work is in progress to refine and add new options in the program,
as the possibility to model nested frailty models with two levels of regrouping

of the data.
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Appendix: An extract of the litter-matched

tumorigenesis experiment data file.

I
>

o id  entry time status litter rx
C

3 1 0 101 0 11
-

5 2 0 104 0 1 0
w
(@]

=1 3 0 49 1 1 0

2 4 0 104 0o 2 1
3

S 5 0 104 0 2 0
&

& 6 0 102 0 2 0
N
o

S 7 0 104 0 3 1
%20

= 8 0 104 0 3 0
'_\

9 0 104 0 3 0

145 0 103 1 49 1

146 0 104 0 49 0

147 0 91 0 49 0

148 0 104 0 50 1

149 0 104 0 50 0

150 0 79 1 50 0
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FIGURE LEGEND

Figure 1: Baseline hazard function and confidence bands estimated with
a shared gamma-frailty model for the risk of tumor formation on 50 litters

of female rats.

Figure 2: Baseline distribution function and confidence bands estimated

with a shared gamma-frailty model for the probability of hospital readmis-

sion after surgery on 403 patients with colorectal cancer.
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Figure 1: Baseline hazard function estimated with four different
numbers of knots with a shared gamma-frailty model for the risk
of tumor formation on 50 litters of female rats.
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Figure 2: Baseline distribution function and confidence bands esti-
mated with a shared gamma-frailty model for the probability of
hospital readmission after surgery on 403 patients with colorectal
cancer.

34



1duosnuew Joyine vH

=
(72}
(0]
w
3
o
o
|_\
w
0
6}
N
o
<
(¢)
D
@,
]
=J
|_\

TABLE LEGEND

Table 1: Hazard ratios and 95% confidence intervals for the probability
of rehospitalization for the readmission data set: estimates using maximum

penalized likelihood.

Table 2: Comparison with other approaches using gap timescale: the
frailty model of Therneau and the marginal model of Wei, Lin & Weiss-
feld to study the probability of rehospitalization for the readmission data

set.
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Cox model

Shared Gamma, Frailty models
calendar timescale

gap timescale

Covariate HR (CI95%) HR (C195%) HR (C195%) HR (C195%)
Gender

Female 1 1 1 1

Male 1.52 (1.25-1.85) 1.55 (1.20-2.00) 1.68 (1.25-2.26) 1.71 (1.27-2.31)
Dukes stage

A-B 1 1 1 1

C 1.56 (1.25-1.94) 1.59 (1.19-2.14) 1.68 (1.19-2.37) 1.50 (1.06-2.12)

D 3.50 (2.74-4.46) 3.72 (2.61-5.32) 5.15 (3.37-7.86) 4.02 (2.58-6.25)
Charlson Index

0 1

1-2 1.65 (0.92-2.97)

>3 1.81 (1.35-2.43)
Frailty 60 0.72 1.32 1.28
(SE 0) (0.15) (0.19) (0.19)

Table 1: Hazard ratios and 95% confidence intervals for the probability of
rehospitalization for the readmission data set: estimates using maximum

penalized likelihood.
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Shared Gamma Frailty model Mariginal model

Therneau et al. Wei-Lin-Weissfeld
Covariate HR (CI95%) HR (CI195%)
- Gender
g Female 1 1
= Male 1.64 (1.26-2.14) 1.62 (1.16-2.26)
= Dukes stage
3 A-B 1 1
2 C 1.59 (1.17-2.06) 1.66 (1.14-2.40) )
o D 3.46 (2.46-4.86) 5.11 (3.32-7.88)
Frailty 6 0.63

Table 2: Comparison with other approaches using gap timescale: the frailty
model of Therneau and the marginal model of Wei, Lin & Weissfeld to study
the probability of rehospitalization for the readmission data set.
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