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Abstract 

Background  

Current histo-pathological prognostic factors are not very helpful in predicting the clinical 

outcome of breast cancer due to the disease’s heterogeneity. Molecular profiling using a large 

panel of genes could help to classify breast tumours and to define signatures which are 

predictive of their clinical behaviour. 

Methods  

To this aim, quantitative RT-PCR amplification was used to study the RNA expression levels 

of 47 genes in 199 primary breast tumours and 6 normal breast tissues. Genes were selected 

on the basis of their potential implication in hormonal sensitivity of breast tumours. 

Normalized RT-PCR data were analysed in an unsupervised manner by pairwise hierarchical 

clustering, and the statistical relevance of the defined subclasses was assessed by Chi2 

analysis. The robustness of the selected subgroups was evaluated by classifying an external 

and independent set of tumours using these Chi2-defined molecular signatures. 

Results  

Hierarchical clustering of gene expression data allowed us to define a series of tumour 

subgroups that were either reminiscent of previously reported classifications, or represented 

putative new subtypes. The Chi2 analysis of these subgroups allowed us to define specific 

molecular signatures for some of them whose reliability was further demonstrated by using 

the validation data set. A new breast cancer subclass, called subgroup 7, that we defined in 

that way, was particularly interesting as it gathered tumours with specific bioclinical features 

including a low rate of recurrence during a 5 year follow-up. 

Conclusions 

The analysis of the expression of 47 genes in 199 primary breast tumours allowed classifying 

them into a series of molecular subgroups. The subgroup 7, which has been highlighted by our 

study, was remarkable as it gathered tumours with specific bioclinical features including a 

low rate of recurrence. Although this finding should be confirmed by using a larger tumour 

cohort, it suggests that gene expression profiling using a minimal set of genes may allow the 

discovery of new subclasses of breast cancer that are characterized by specific molecular 

signatures and exhibit specific bioclinical features.  
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Background 

Breast cancer is the most common female cancer in the Western world and the leading cause 

of death by cancer among women [1]. It is a complex genetic disease characterized by an 

accumulation of molecular alterations resulting in an important clinical heterogeneity. Current 

prognostic factors (including lymph node status, tumour size, histological grade, hormone 

receptor status, ERBB2 expression and patient age) are insufficient to accurately predict the 

clinical outcome. High-throughput molecular technologies, including large-scale RT-PCR and 

cDNA microarrays, have made possible to study the gene expression profiles of tumours. 

Unsupervised analysis of data by hierarchical clustering allows grouping tumours on the basis 

of  similarities in their gene expression patterns. Samples that share molecular profiles might 

be expected to share phenotypic features, such as those that can define the severity of the 

disease. Hierarchical clustering of gene expression patterns has been successfully used to 

identify subtypes of breast tumours that exhibit distinct clinical behaviours [2-6]. At least five 

subtypes (luminal A, luminal B, basal-like, ERBB2, and normal-like) have been identified  on 

the basis of the pattern of expression of a 500-gene set. The luminal A and luminal B subtypes 

gather ER+ tumours, while the basal-like, ERBB2 and normal-like subclasses assemble ER- 

tumours. Interestingly, the luminal subtype A exhibits a relatively good prognosis, while the 

luminal B tumours present a worse prognosis. The basal-like and ERBB2 subsets show the 

worst clinical outcome [3,4]. This molecular classification has been confirmed using extended 

or different tumour sets [4], as well as partly distinct or reduced gene sets [4-6]. 

Noteworthy, a similar taxonomy of breast cancers has been characterized using 

immunohistochemistry [7-9], although further work seems necessary to correlate the 

respective subtypes at mRNA and protein expression levels. 

However, more than 30% of the 295 breast tumours, which have been used to identify and 

validate the 70-gene good prognosis signature [10,11], could not be confidently assigned to 

any of the five subtypes defined so far [12]. Such an inability to classify all breast cancers in 

the five molecular subtypes may be due to an incomplete representation of the genes used for 

the intrinsic set of genes (when compared to the initial one) or, alternatively, to the distinct 

nature of the tumours used in the different studies. In any case, this failure suggests that other 

molecular subclasses are waiting for characterization. 

In the present study, we have classified 199 primary breast tumours and 6 normal breast 

tissues based on the expression of 47 genes that had been selected on the basis of their 

possible involvement in breast tumour hormonal sensitivity. Gene expression was evaluated 
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by measuring levels of specific mRNAs using quantitative RT-PCR. Following hierarchical 

clustering and Chi2 analysis of the expression data, we defined a series of molecular breast 

cancer subgroups that were characterized by specific molecular signatures. They are either 

reminiscent of those previously reported, or represent putative new subclasses. One of the 

subtypes, which we defined, gathered tumours with specific bioclinical features including a 

low rate of recurrence within a 5 year follow-up.  

 

Methods 

Patients and breast tissue samples 

A total of 199 primary breast carcinomas and 6 normal breast tissues were analysed in this 

study. They were obtained from patients who had undergone initial surgery at the Cancer 

Research Centre Val d’Aurelle-Paul Lamarque in Montpellier. All tumours were from 

patients who did not receive neo-adjuvant treatment. The patients’ age at diagnosis varied 

from 27 to 92 years (mean 63 years, median 65 years). All but 1 patient were treated with one 

or more adjuvant therapies (Additional File 1, Table S1). This study was conducted under the 

approval of the Institutional Review Board of the Cancer Research Centre Val d’Aurelle-Paul 

Lamarque. Informed consent was obtained from the patients prior to surgery. For the 199 

patients, the median follow-up time was 65.4 months. Recurrence was observed in 34 patients 

(27 distant and 5 local recurrences, 2 not determined). The median recurrence time was 32.3 

months.  

Fresh tissues were processed immediately after surgical removal. One part of each tumour 

was formalin-fixed and paraffin-embedded to establish the histological type (139 ductal and 

35 lobular carcinomas, 10 mixed ductal/lobular carcinomas and 15 other types; Additional 

File 1, Table S2) and the histological grade (WHO classification : 16% SBR I, 55% SBR II 

and 26% SBR III tumours; Additional File 1, Table S3). Lymph nodes were also available 

(38% patients were N+ at the time of diagnosis, Additional File 1, Table S3). The remaining 

of each tumour was snap-frozen in liquid nitrogen and stored at - 80 C. Frozen sections were 

stained with Haematoxylin and Eosin and analysed by an experienced breast pathologist. 

Eligible samples had to consist of at least 50% of tumour cells. ER status was determined by 

using ligand-binding assay (the ER positivity threshold was ≥ 10 fmol/mg).  
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RNA extraction and purification 

Frozen breast samples were homogenized using the FastPrep System from Q-Biogene. 

Briefly, approximately 40 mg of frozen tissues were broken up in lysing buffer on a lysing 

matrix for 40 sec. Total RNA was extracted and cleaned up from the lysate using the Qiagen 

Rneasy Mini Kit. The RNA purity and integrity was controlled by way of the Bioanalyser 

2100 from Agilent. Only RNAs with a score 8-10 were included in this study. 

 

cDNA synthesis  

After DNAse treatment, 1 µg of total RNA was incubated with 250 ng of random hexamer for 

10 min at 70° C. Total RNA was reverse transcribed in  a final volume of 20 µl containing 1x 

first strand buffer, 0.1 M DTT, 10 mM dNTP and 200 units of Superscript RT. The samples 

were incubated at 25° C for 10 min, and then at 42° C for 1 h. The reverse transcriptase was 

finally inactivated by heating at 70° C for 15 min. 

 

PCR amplification  

Primers of the selected genes were designed using the Primer Express software (PE Applied 

Biosystems), based on published sequences, and oligonucleotides were obtained from Proligo.  

For quantitative RT-PCR, 2 µl of diluted RT-reaction samples (1/15) were added to 13 µl of a 

PCR mixture made up of 7.5 µl of 2x SYBR Green PCR Master Mix (Applied Biosystems), 

0.075 µl of each primer at a concentration of 100 µM and RNAse-free water. The thermal 

cycling conditions comprised an initial step at 50° C for 2 min and a denaturation step at 95° 

C for 10 min, followed by 40 cycles at 95° C for 15 sec and 60° C for 1 min. All PCR 

reactions were carried out using an ABI Prism 7000 Sequence Detection System (Applied 

Biosystem). The specificity of each primer couple was demonstrated by a dissociation curve 

analysis. To generate a calibration curve, a serially diluted cDNA mixture was used as 

standard and quantified for each primer set. The standard concentration was plotted against 

the cycle number at which the fluorescence signal increased above the background (threshold) 

value (Ct value). The amplification efficiency, E (%) = (10
(1/-s)

-1)*100 (s=slope), of each 

standard curve was determined and appeared to be > 95% and < 105%, over a wide dynamic 

range.  

 

Unsupervised hierarchical clustering of the Q-RT-PCR data 

The 205 breast samples were distributed in three separate 96-well blocks, according to the 

time of sample processing. For each experimental sample, the amount of the gene of interest 
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and of 28S, the endogenous reference, was determined from the appropriate standard curve in 

independent experiments. Measurements were performed in duplicate for each data point and 

those with a coefficient of variation for the Ct value > 0.5 were tested again. We calculated 

the relative fold-change using the comparative cycle times (Ct) method with 28S as a 

reference. The expression value of each gene in each tumour sample was normalised to the 

mean expression value for that gene in all the samples in the block in such a way that each 

block had the same overall expression value for one given gene. 

Unsupervised analysis of the data was applied to investigate the relationships among genes 

and among samples. Hierarchical pairwise average-linkage clustering was performed by 

means of the Cluster and TreeView software [13], using Log2-transformed data, median-

centered gene expression values and Pearson correlation as similarity metrics. 

 

Chi2 statistical analysis 

The classification parameter, which was chosen to assess the statistical relevance of the 

subgroups defined by hierarchical clustering, was based on the threshold values of gene 

expression. Theoretically, for each relevant gene, all the samples from one subgroup and 

those from the others should be, respectively, below or above a defined threshold. The 

optimal threshold, which allowed the best discrimination, was defined by a Chi2 analysis.  

Firstly, we transformed continuous variables (i.e. gene expression intensities) into discrete 

variables (i.e. number of tumours belonging to a gene expression class, for each gene and for 

each tumour subgroup). Gene expression classes were set from -4 to +5 by step of 0.1. Then, 

the Chi2 values were calculated for each of these classes and for each tumour subgroup as 

indicated in Table 1. 

The highest Chi2 among the different classes for each tumour subgroup was used to define the 

thresholds in order to best discriminate a tumour subgroup from another. The gene-threshold 

couple was considered able to discriminate one class from the others with a good statistical 

accuracy, when the corresponding Chi2 value was ≥ 15 (p value ≤ 10
-4
). Thus, to optimize the 

test and to cut the noise, only Chi2 values ≥ 15 as well as the lowest and highest thresholds 

among the different subgroups were considered (Additional File 1, Table S4).  

By doing so, a molecular signature was assigned to each tumour subgroup. A molecular 

signature was composed by the genes selected by the Chi2 test with each gene associated to 

an expression threshold. In that way, each subgroup was characterized by the expression 

levels of the signature-genes that specify that subgroup. A tumour was classified into the 

subgroup where its gene expression profile followed the thresholds defined in the signature. 
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For each gene, which specifies one given subgroup, a score of 1 (vs 0) was attributed when 

the expression level of that gene was related to the one found to be characteristic of the 

subgroup; the tumour was classified into a given subgroup when the cumulative score 

observed for the different signature genes was found to be the highest. The robustness of the 

subgroup was evaluated by the percentage of tumours that were correctly classified according 

to the defined signatures. 

 

The validation data set 

To further validate these molecular subtypes, we used an external and independent tumour set, 

which included 97 tumours from the van’t Veer et al. [10] and 12 tumours from the Sorlie et 

al.’s [4] microarray studies (Additional File 1, Table S5). These tumours were selected on the 

basis of the availability of expression data concerning the 47-gene set. In order to allow 

comparison between the Q-RT-PCR and the microarray data, the two data sets were median-

centered independently. The thresholds for the analysis of the microarray data were defined as 

corresponding to those used for the Q-RT-PCR data analysis by using the QQ plots. We 

calculated quantile values for the Q-RT-PCR and microarray data (from the 1st percentile to 

the 100th percentile by step of 5%). Then, we set a function that linearly interpolated the 

quantile distributions. Using this function, given a Q-RT-PCR threshold, we could determine 

the corresponding microarray threshold. In the validation set, each tumour was assigned to 

one of the previously defined subgroups on the basis of the highest score it obtained through 

the different subgroups.   
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Results  

Gene set selection 

We selected 47 candidate genes from the published litterature and genomic databases. Most of 

these genes (see Additional File 1, Table S6, for the list of genes and their accession numbers) 

were chosen as likely to be involved in breast tumour sensitivity to steroid hormones. They 

included ERα target genes, which are either up- or down-regulated by oestrogen (Table 2), 

genes that specify the already reported breast cancer molecular subtypes ( i.e. luminal, basal, 

normal-like and ERBB2), and genes that have been previously shown to be involved in 

sensitivity to the anti-oestrogen tamoxifen. As ERα activity has been shown to be regulated 

by cross-signalling with growth factor transduction pathways, we included also growth factor 

receptor and signalling genes. Moreover, the selected gene set also included some putative 

stem cell markers and genes coding for cell cycle regulators, because these genes are believed 

to contribute to tumor aggressiveness. We hypothesized that our selected set of genes would 

allow discriminating tumours according to both their hormone-susceptibility and 

aggressiveness. We hoped that by clustering tumours on the basis of the expression of these 

genes we could define new breast cancer subtypes. 

 

Hierarchical clustering of the gene expression profiles 

Expression of the 47 genes was assessed by Q-RT-PCR amplification in the 199 breast 

tumours and 6 normal breast tissues. Normalized data were analysed in an unsupervised 

manner using a pairwise hierarchical clustering [13]. We used this classical approach to 

obtain a general description of how the selected genes co-varied with respect to their 

expression levels within the breast tumour population [14]. Thus, we determined 12 molecular 

subgroups that were characterized by a relative over-expression or under-expression of 

distinct combinations of genes (Figure 1). We limited the number of subclasses to avoid 

groups with too few samples that could hinder the reliability of any classification.  

To assess the reliability of the clustering, we computed an average expression profile (i.e. a 

core subtype profile) for the tumours in each of the selected subgroups as performed by Sorlie 

and co-workers [3]. We calculated the Pearson’s correlation of each sample to each of the 12 

core subtype profiles. As illustrated on Figure S1 (Additional File 2), for more than 75% of 

the tumours, the correlation was the highest with the expression profile of the subgroup 

containing that sample, stressing the relevance of the defined subgroups. At least four 
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subgroups (subgroups 6, 7, 9 and 10) appeared to be highly homogeneous since most of their 

tumors showed a correlation of 0.6 to 0.8 with their average subgroup profile. 

Some of these subgroups were reminiscent of groups that have been previously reported [2-6]. 

For example, subgroup 10 gathered breast tumours in which the GSTP1 and 

SERPINB5/maspin as well as the MAD2L1 and MYC genes, which specify basal-type 

adenocarcinomas, were over-expressed (Figure 1). Moreover, in these tumours, genes, which 

have been shown to be over-expressed in luminal-type breast tumours [3,4] (see below), were 

under-expressed. Subgroup 9 comprised tumours that belonged very likely to the ERBB2-like 

subtype, as they overexpressed the ERBB2 and GRB7 genes. Interestingly, in subgroup 6, the 

6 normal breast tissues (called CP) clustered together with a group of tumours that 

overexpressed IGF1, a feature which is characteristic of normal-like tumours. In contrast to 

previous reports, where other sets of genes were used [3,5,6], we were unable to clearly 

discriminate between luminal A and luminal B subtypes. Indeed, ER+ tumours were scattered 

in subgroups 1 to 4 that are characterised by the over-expression of a cluster of genes, which 

includes CCND1, KRT19, IGF1R, LIV1, ESR1, GATA3, TFF1/pS2, ERBB4, PR and IGFBP4.  

On the other hand, our 47-genes set allowed us to define new molecular subclasses, such as 

the subgroups 7 and 12. Subgroup 12 was characterized by the up-regulation of the PTEN, 

PRKAR1A, HDAC6 and AKT2 genes, while subgroup 7 showed down-regulation of two 

groups of genes: the first one was constituted by the four genes cited above with the addition 

of NCOA3, ABCC5, NCOR1 and E4F1; the second included GRB7, ERRA, EZH2, MAD2L1, 

MYBL2, MYC and SPP1.  

 

Chi2 analysis of the identified breast cancer subgroups 

To assess the statistical relevance of the molecular subgroups as defined by the hierarchical 

clustering, we performed a Chi2 analysis of the data (see Methods). This analysis allowed us 

to identify genes that were differentially expressed in one subgroup compared to the others 

and, therefore, to define a specific molecular signature for each subgroup. 

As shown in Table 3, such specific molecular signatures could be assigned to 9 of the 12 

previously defined subgroups. The genes of these specific signatures overlapped with the ones 

defined by the hierarchical clustering analysis. For example, among the 11 down-regulated 

genes of the signature of subgroup 10 (Table 3), 8 have been already observed in the cluster 

of down-regulated genes defined by the hierarchical clustering (namely IGF1R, LIV1, ESR1, 

GATA3, TFF1/pS2, ERBB4, PR and IGFBP4, see Figure 1). Also, the 6 genes, which specify 

subgroup 7, included 5 under-expressed genes (ABCC5, AKT2, EZH2, HDAC6 and 
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PRKAR1A) that had been identified before by the hierarchical classification of the expression 

data (Figure 1).  

The robustness of each subgroup was evaluated by the percentage of tumours in that subgroup 

that were correctly classified according to the defined molecular signature. As shown in Table 

4, subgroups 2, 3, 7, 9 and 10 formed the most robust groups with over 80% of the tumours in 

each group showing the proper signature. Subgroups 1, 5 and 6 were found to be slightly 

weaker (with about 60-70% of tumours showing the specific signature). Subgroup 12 was 

found to be much less significant with only 43% of tumours classified correctly. Finally, a 

definitive molecular signature could not be assigned to subgroups 4, 8 and 11. However, a 

high proportion of tumours from group 4 (approximately 40%) exhibited the molecular 

signature that specified subgroup 3. Consequently, we decided to bring together subgroups 3 

and 4 for the rest of the study. 

 

External validation of the molecular subgroups 

To further validate these molecular subtypes, we used an external and independent data set 

that included 97 from the van’t Veer [10] and 12 tumours from the Sorlie’s [4] microarray 

studies (see Additional File 1, Table S5, for the list of these tumours). Each tumour in the 

validation set was assigned to one of the defined subgroups according to the highest score 

obtained by this tumour through the different subgroups. Accordingly, these external tumours 

were classified into 7 of the 9 subgroups that were defined following the Chi2 analysis 

(Figure 2). Among the 109 tumours used, 76 had been previously classified into the five 

reported molecular subtypes (i.e., luminal A, luminal B, basal-like, ERBB2, and normal-like), 

while 33 remained unclassified. As expected, the majority of the ERBB2 tumours (6 out of 8) 

were classified into subgroup 9, while the majority of the basal-type tumours (18 out of 20) 

were classified into subgroup 10. The luminal-type tumours were dispersed in different 

groups, confirming that our set of genes does not allow an optimal clustering of these 

tumours. The few normal-like tumours of the validation set were mainly assigned to subgroup 

6. Finally, subgroup 7 apparently gathered together tumours that were previously classified 

into different molecular subtypes.  

 

Bioclinical features of the molecular subtypes 

To adress the question of a possible clinical relevance for our classification, we first focused 

on the bioclinical features of the tumours from the 9 subgroups that were defined as robust by 

the Chi2 analysis. As shown in Table 5, subgroup 10 (basal subtype) included 90% of the ER- 
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tumours with a high histological grade (86% SBRIII). As expected, the rate of recurrence in 

this group of tumours was among the highest (29%). Subgroup 10 (ERBB2 subtype) also 

included high SBR grade tumours (90% SBRIII), although these were both ER- (50%) and 

ER+ (50%). Similar observations were recorded, when the classification of external tumours 

was considered (Table 6). Indeed, subgroup 10 (which includes most of the basal-like 

tumours) and subgroup 9 (which includes most of the ERBB2 tumours) both exhibited a bad 

prognosis (with rates of recurrence of 57% and 53%, respectively) in agreement with their 

higher histological grade (80-100% SBRIII).  

Interestingly, the new tumour subclass (i.e. subgroup 7), which has been defined in this study, 

exhibited peculiar clinical features : tumours of this subgroup had mainly an ER+ status since 

it included 74% and 82% of the ER+ tumours of the training (Table 5) and validation (Table 

6) sets, respectively ; the percentage of pT1 tumours (< 20 mm) was higher in this subgroup 

than in the respective overall training (53% vs 29%, p = 0.06, Chi2 test) and validation (82% 

vs 52%, p = 0.04) cohorts. Finally, despite the fact that the patients were younger in subgroup 

7 than in the overall training cohort (37% vs 18%, p = 0.06), we did not detect any recurrence 

within the 5 year follow-up (Table 5). Similar trends were observed in the validation set with 

a lower recurrence rate in subgroup 7 than in the other subgroups (Table 6). To compare the 

time of recurrence between the different subgroups, we used the Kaplan-Meier analysis on the 

training and validation cohorts. As shown in Figure 3, this analysis emphasized the fact that 

tumours of subgroup 7 had one of the best prognoses. 

 

Discussion 

The 500-gene set, which has been initially used to define the five to six breast cancer 

molecular subtypes [2-4], consisted of genes that had a significantly greater variation in 

expression between different tumours than between paired samples from the same tumour. 

The aim of the present study was to classify breast tumours on the basis of the expression of a 

limited set of genes that have been selected on the basis of their putative involvement in 

tumour sensitivity and/or aggressiveness. We anticipated that such a distinct set of genes 

could cluster tumours in a different way than that described in the studies by Perou [2] and 

Sorlie [3,4], allowing us to define new molecular subtypes. Our expectation was that such 

subclasses would help us define novel phenotypic subsets of breast cancer with a distinctive 

clinical outcome. Indeed, the current taxonomy of breast carcinomas seems insufficient to 

allow the classification of all breast tumours. However, a series of evidences suggests that a 
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molecular classification of cancers may be a powerful and promising way to overcome our 

inability to accurately predict the clinical behaviour of breast cancers. Such an approach is 

expected to tackle the extreme complexity of the genetic alterations that are observed in breast 

cancers. The molecular signatures should, thus, represent a prognostic factor of greater 

efficiency than those currently used, such as the lymph node status, tumour size, hormone-

receptor status or histological grade.  

The molecular subtypes and gene-signatures reported so far have been mostly defined via 

microarrays studies [2-6,10-12]. Although such an approach allows the most efficient analysis 

to classify tumors, Q-RT-PCR has some advantages over microarrays since it provides 

accurate, reproducible and sensitive quantification of mRNAs. Moreover, the quantification of 

a limited number of genes avoids the discrepancy due to the restricted number of samples 

(tumours) in comparison to the too many variables (genes), which is a major drawback in the 

microarray studies [15]. Moreover, recent reports suggest the possibility to quantify gene 

expression using tissue sections from paraffin-embedded blocks as biological material, 

predicting the generalisation of the quantification of RNA expression in the clinical practice 

[16,17]. While extensive gene expression profiling using microarrays is unlikely to replace 

the standard immuno-histochemical assessment in the hospital practice, customized Q-RT-

PCR platforms may represent a more affordable alternative as a clinically useful assay to 

identify molecular signatures. Moreover, it is important to note that a Q-RT-PCR study [18] 

has recently confirmed the 70-gene prognosis signature obtained by van’t Veer and 

collaborators with cDNA microarrays [10]. Similarly, a real-time Q-RT-PCR assay has been 

recently shown to recapitulate the microarray classification of breast cancers [19]. Also, Q-

RT-PCR has been used to quantify the expression of candidate genes in breast tumours of 

patients treated with tamoxifen [16] or chemotherapy [17].  

The 47-gene set used in the present study was largely distinct from the 500-gene intrinsic 

subset selected by Perou et al.  [2] and Sorlie et al.  [3,4], and had only 15 genes that 

overlapped with that. Nevertheless, our minimal set of genes allowed us to discriminate the 

basal, ERBB2, normal-like and luminal subtypes, even though the luminal-type tumours were 

not tightly clustered but rather spread over several groups. Clearly, subgroups 9 (ERBB2 

subtype) and 10 (basal subtype) were the more robust since most of the external tumours, 

which had been previously classified as ERBB2 and basal subtypes using the 500-gene 

intrinsic subset, were now assigned to subgroups 9 and 10, respectively. Indeed, 90% of the 

external basal-type tumours were classified into the subgroup 10 and 75% of the ERBB2 

tumours were assigned to the subgroup 9. Subgroup 6 appeared to have a lower robustness as 



 

 

13

 

only 3 out of 5 of the external normal-like tumours were correctly classified in this subgroup. 

However, we would need a larger number of tumours from this subtype in the validation set to 

firmly conclude on the robustness of subgroup 6.  

By contrast, our 47-gene set was clearly unable to discriminate between luminal A and 

luminal B tumours. As a consequence, tumours from the validation set, that have been 

previously identified as luminal A and B tumours, were not correctly classified in our study. 

This inadequacy could be due to the weak representation of genes from the 500-gene set in 

our own 47-gene set, since the use of sets of genes, which are different from the initial one, 

has been previously reported to be less efficient in discriminating the luminal A and luminal B 

subtypes [4,6]. Sorlie and collaborators [4] claimed that their inability to distinguish luminal 

A and luminal B tumours, when using the West’s data set [20], was likely due to the fact that 

only half of the genes from their intrinsic gene list were found in this study. Furthermore, the 

luminal C subtype, which was initially reported by Sorlie in an earlier study [3], could not be 

reproduced [4] when using a separate 500-gene set (which had 200 genes in common with the 

former 500-gene set). The luminal A/luminal B distinction seems also less obvious in a recent 

study [6] that classified 83 breast tissue samples using a reduced set of genes, which included 

120 genes from the later 500-gene set [4].  Last but not least, we failed to discriminate the 

luminal A/B tumours of the Sorlie’s cohort on the basis of the 15 genes, which are shared by 

our  47 gene set and the 500-gene set, confirming that the size of the gene-set is likely to be a 

critical parameter.  

However, our 47-gene set was able to define a new tumour group (i.e., subgroup 7). This new 

subclass, which we found to be relevant after internal and external validation, was shown to 

group together tumours with smaller size and a lower rate of recurrence, although a significant 

percentage of these tumours was ER negative and was from younger patients. This is true 

despite the fact that the training and validation cohorts were clearly distinct, as tumours 

studied by van’t Veer et al.  [10] (the majority of the tumours of our validation set) were from 

node-negative patients that were younger than 55 years and exhibited an overall high rate of 

recurrence. The fact that tumours of subgroup 7, from both training and validation sets, shared 

nevertheless some bioclinical features strengthens the accuracy of our classification with 

regard to this new subclass. Noteworthy, the molecular signature of subgroup 7 might 

represent a better prognostic factor than the histological grade, since it allowed low (training 

set) as well as high (validation set) SBR grade tumours to be classified with a better prognosis 

than the respective overall cohorts. On the other hand, as the tumours of subgroup 7 in the 

validation set were previously classified in different subtypes, one can hypothesize that these 
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tumours were not well identified. Obviously, further studies using larger cohort of patients 

will be necessary to validate our findings.  

In any case, breast cancer taxonomy needs to be improved and new tumour subclasses have to 

be defined. Molecular subtypes and signatures should be subsequently confirmed in 

prospective trials. Indeed, studies like ours do not consent to discriminate between 

prospective and predictive signatures since the majority of the patients receive adjuvant 

therapy, which, hopefully, will have an incidence on their clinical outcome. However, once 

clinically validated, tumours classifiers based on minimal molecular signatures should  help 

therapeutic decision-making and treatment-tailoring for each  patient .  

 

Conclusions 

By studying the expression of 47 genes selected on the basis of their potential implication in 

breast cancer sensitivity, we have classified a cohort of 199 primary breast tumours into a 

series of molecular subgroups. The subgroup 7, which has been highlighted by our study, was 

remarkable as it grouped together mainly small ER+ tumours from rather young patients with 

a low recurrence rate. Although this finding should be confirmed on a larger cohort, it 

suggests that gene expression profiling using a minimal set of genes may allow the finding of 

new breast cancer subclasses with specific bioclinical features.  
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Figure legends 

Figure 1 - Unsupervised analysis of the Q-RT-PCR expression data by pairwise 

hierarchical clustering 

12 distinct subclasses were defined from the observed gene clusters. The luminal A/B, 

normal-like, ERBB2 and basal tumour subsets were identified according to gene expression 

signatures that have been previously reported to specify these molecular subtypes [2-4]. 

Subgroups 7 (SG7) and 12 (SG12) are also indicated. 

 

Figure 2 - Classification of tumours from an independent validation set according to 

the molecular signatures that specify the defined subgroups 

The validation set (109 tumours) included 24 luminal A, 19 luminal B, 5 normal-like, 8 

ERBB2, 20 basal and 33 unclassified tumours. None of the independent tumours were 

classified into subgroups 5 and 12 as defined by hierarchical clustering and Chi2 analysis. 

 

Figure 3 - Analysis of the recurrence-free probability in the subgroups defined 

according to Chi2 molecular signatures 

A Kaplan-Meier analysis was performed on tumours of the training and validation sets that 

were correctly classified in the indicated molecular subgroups. The p value was calculated by 

using the log-rank test. 

 



 

 

18

 

Tables 

Table 1 – Chi2 value calculation 

 

 Subgroup k Other subgroups 

Number of tumours with gene j 

expression ≥ threshold value  

O11 O12 

Number of tumours with gene j 

expression ≤ threshold value 

O21 O22 

 

Chi2 = N*(O11*O22-O12*O21)
2
/(O11+O21)*(O12+O22)*(O11+O12)*(O21+O22), with : 

N = total number of tumours = O11+O12+O21+O22   

O11 = number of tumours from class k whose gene j expression level was ≥ threshold value… 

 

 
 
Table 2 - Functional classes of the 47 selected genes 

 

 

 

 

Genes are indicated in bold characters when present in an extra family. 

 
 

 

 

 

Functional class Genes

Steroid hormone receptors            
and homologs

ESR1, ESR2, PR, ERRA, ERRG, RXRA

ERα target genes
  Ïstrogen up-regulated AREG, BCL2, CCND1, HDAC6, IGF1, IGFBP4, IRS1, KRT19, LIV1, MTA3, MYC, PR, TFF1/pS2, TSK/E2IG4

  Ïstrogen down-regulated ABCC5, GSTP1, SERPINB5/maspin

ERRα target genes ACADM, TFF1/pS2, SPP1

ERs/ERRs regulators NCOA3/AIB1, NCOR1, PGC1A

Genes specifying molecular 
subtypes
luminal A BCL2, ESR1, GATA3, KRT19, LIV1, TFF1/pS2

luminal B/C MYBL2

basal  GSTP1, MAD2L1, MYC, SERPINB5/maspin

ERBB2 ERBB2, GRB7

normal-like IGF1, PGC1A

Genes involved in tamoxifen 
responsiveness

AKT2, CCND1, CDKN1B, EPHA2, ESR2, HDAC6, IRS1, NCOA3, NCOR1, PR, PRKAR1A, PTEN

Growth factor receptor and 
signaling genes

AKT2, EPHA2, ERBB2, ERBB4, IGF1R,  IRS1, PTEN

Cell cycle genes CCND1, CDK4, CDKN1B, E4F1, MAD2L1

Stem cells markers ABCG2, BMI1, EZH2

Others PTGS2/COX2, TACC1, ZNF217



 

 

19

 

Table 3 - Molecular signatures specifying breast cancer subgroups as defined by 

hierarchical clustering and Chi2 analysis. 

 

 

These signatures included up-regulated (bold characters) or down-regulated genes as 

indicated. No specific signature was found concerning subgroups 4, 8 and 11, except that a 

high proportion of tumours from group 4 exhibited the subgroup 3-signature (see Table 4).

SG1 SG2 SG3 SG5 SG6 SG7 SG9 SG10 SG12

ACADM ERRA BCL2 MTA3 ESR2 ABCC5 BCL2 ABCG2 AKT2

BMI1 IGF1 CCND1 SPP1 IGF1 AKT2 ERBB2 BMI1 CDKN1B

ERRG NCOA3 CDK4 KRT19 AREG GRB7 CDKN1B E4F1

MYC PTGS2 E4F1 MYBL2 EZH2 IRS1 EPHA2 EZH2

RXRA ESR1 HDAC6 NCOA3 ERBB2 HDAC6

GATA3 PRKAR1A PGC1A ERBB4 MAD2L1

GSTP1 SPP1 ESR1 PR

KRT19 GATA3 PRKAR1A

LIV1 GSTP1 PTEN

MAD2L1 IGF1R RXRA

MTA3 IGFBP4

PGC1A LIV1

SERPINB5 PR

TSK/E2IG4 MYBL2

ZNF217 MYC

SERPINB5

TFF1/pS2
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Table 4 - Percentage of tumours from subgroups 1 to 12 that show the best scores for 

the respective molecular signatures as defined by Chi2 analysis 

 

 

 

Columns represent the different tumour subgroups as defined by Eisen’s hierarchical 

clustering. Rows are related to the distinct molecular signatures determined by Chi2. The 

percentage of tumours from Eisen’s subgroups that exhibited proper molecular signatures are 

highlighted in bold. The sum of the % from each column may be higher than 100% as some 

tumours could exhibit extra signatures. As 41% of tumours from subgroup 4 exhibited the 

molecular signature that specified subgroup 3, tumours from subgroups 3 and 4 were 

assembled for the rest of the study. 

1 2 3 4 5 6 7 8 9 10 11 12

1 62 7 0 6 0 0 0 6 0 0 8 0

2 15 86 4 25 14 0 9 29 0 0 17 29

3 23 14 96 41 0 5 0 24 0 0 33 0

5 0 0 0 9 71 21 0 6 0 0 17 14

6 8 0 0 0 14 58 5 12 0 0 0 29

7 0 0 0 16 14 21 86 24 9 13 17 14

9 0 0 0 3 0 0 0 12 82 0 8 0

10 0 0 0 0 0 0 0 0 9 88 0 0

12 0 0 0 0 0 0 0 0 0 0 0 43

Subgroups defined by hierarchical clustering
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Table 5 - Bioclinical features of the tumours of the molecular subgroups as defined by 

hierarchical clustering and Chi2 analysis 

 

Only tumours from the Eisen’s subgroups, which were correctly classified according to the 

Chi2 defined molecular signatures, were considered in this study (i.e. 121 out of 199). Data 

related to subgroup 6 did not take into account the normal breast tissues. The sum of the 

percentages for a given subgroup may be less than 100% as tumor size, histological grade or 

lymph node status were occasionally not determined. 

 

 

Table 6  - Bioclinical features of the tumours of the validation set forming the 

molecular subgroups as defined by the Chi2 analysis 

 

Subgroup
Number of 
tumours

Age                                                                                                                                                                   
Clinical 
outcome

n % ER+ % ER- % <50 years % pT1 % pT2-3 % pN0 % pN1 % SBRI % SBRII % SBRIII
% 

recurrence

1 8 88 12 13 38 50 38 50 25 75 0 25

2 12 100 0 8 25 75 67 17 25 58 17 8

3/4 38 95 5 11 21 76 53 42 8 74 16 13

5 5 80 20 0 20 80 60 40 20 80 0 0

6 5 40 60 0 20 80 60 40 40 40 20 20

7 19 74 26 37 53 42 47 42 53 47 0 0

9 10 50 50 10 40 60 50 50 0 10 90 20

10 21 10 90 29 24 71 57 43 5 5 86 29

12 3 100 0 67 0 100 67 33 0 33 67 33

Overall 
cohort

121 70 30 18 29 68 54 40 18 49 31 15

      Hormonal status Tumour size                                                                                                                                                                                             Lymph node status Histological grade (SBR)

Subgroup
Number of 
tumours

      Hormonal status Age                                                                                                                                                                   Tumour size                                                                                                                                                                                             Histological grade (SBR)
Clinical 
outcome

n % ER+ % ER- % <50 years % <20 mm % SBRI % SBRII % SBRIII
% 

recurrence

SG1 7 100 0 71 43 0 71 29 43

SG2 1 100 0 100 100 0 0 100 0

SG3/4 28 93 7 39 46 18 39 43 46

SG6 18 89 11 67 78 22 39 39 28

SG7 11 82 18 73 82 27 9 64 27

SG9 14 57 43 64 36 0 0 100 57

SG10 30 30 70 70 40 3 17 80 53

Overall 
cohort

109 70 30 61 52 12 27 61 44
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Description of additional files 

Additional File 1 - Supplementary Tables, showing the post-operative treatments followed 

by the 199 patients of the studied cohort (Table S1), the histological types of the 199 tumours 

used in this study (Table S2), the bioclinical features of the tumours of the molecular 

subgroups as defined by hierarchical clustering of gene expression data (Table S3), the Chi2 

values and thresholds corresponding to Chi2 > 15 (Table S4) and the bioclinical data 

concerning the tumours used for the validation set (Table S5).  

 

Additional File 2 - Supplementary Figure S1, showing the correlation of individual tumour 

samples to the more representative core expression-based subtype profile. 
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