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Abstract 

High level of phospholipase A2 (PLA2) activity is found in serum and biological fluids during 

the acute phase response (APR). Extracellular PLA2 in fluids of patients with inflammatory 

diseases such as sepsis, acute pancreatitis or rheumatoid arthritis is also associated with 

propagation of inflammation. PLA2 activity is involved in the release of both pro- and anti-

inflammatory lipid mediators from phospholipids of cellular membranes or circulating 

lipoproteins. PLA2 may thus generate signals that influence immune responses. Here, group 

III secretory PLA2s were tested for their ability to promote generation of functionally mature 

human dendritic cells (DC). PLA2 treatment of differentiating monocytes in the presence of 

GM-CSF and IL-4 yielded cells with phenotypical and functional characteristics of mature 

DC. This maturation was dependent on the dose of PLA2 and PLA2-generated DC stimulated 

interferon gamma secretion by allogeneic T cells. The effects of PLA2 on DC maturation was 

mainly dependent on enzyme activity and correlated with the activation of NF-κB, AP-1 and 

NFAT. The data suggest that transient increase in PLA2 activity generates signals that 

promote transition of innate to adaptive immunity during the APR. 
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1 Introduction 

 

The acute phase response (APR) is a non specific physiological response to aggression of the 

organism whose main function is to favor tissue repair and pathogen elimination. This alarm 

system can be triggered by different kinds of stress such as injury, physical trauma or 

infection and result in the release of inflammatory mediators that induce transient and drastic 

modifications of plasma composition [1]. The concentration of numerous plasma proteins 

called acute phase reactants can be increased up to a thousand fold while that of other proteins 

like albumin is drastically decreased [2]. This systemic response of APR has numerous 

consequences especially on lipid metabolism. It is accompanied by alterations in lipoprotein 

composition and result in accumulation of oxidized low density lipoproteins (LDL) and 

generation of modified phospholipids [3, 4]. Because phospholipase A2 (PLA2) activity 

increases following cell injury and during inflammatory conditions, secretory PLA2 can be 

considered as an acute phase reactant [5]. 

PLA2s are enzymes that hydrolyze phospholipids at the sn-2 position to produce 

lysophospholipids and free fatty acids. Mammalian PLA2 isoenzymes are subdivided into four 

families, including cytosolic calcium-dependent and independent PLA2s, secretory PLA2s 

(sPLA2) and PAF-acetylhydrolases [6]. sPLA2s are low molecular weight enzymes that use 

calcium as cofactor. High amounts of sPLA2s are also found in snake and bee venoms. Bee 

venom group III sPLA2 is the major allergen of hymenoptera venom and is largely used in 

desensitization treatments [7]. A human group III sPLA2 (hGIII sPLA2) with high homology 

to the bee venom enzyme has recently been described [8]. High level of sPLA2 has been 

measured in synovial fluid of rheumatoid arthritis patients [9, 10], bronchoalveolar lavage of 

asthmatic patients [11] or in serum of individuals with systemic inflammatory disorders such 
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as septic shock [12], acute pancreatitis [13] and autoimmune diseases [14]. Some sPLA2s 

were characterized as acute phase reactants playing a role in atherosclerosis by altering high 

and low density lipoprotein catabolism and uptake [15].  

The effects of sPLA2s can be associated to their catalytic properties or to the engagement of 

cellular receptors [16, 17]. Different types of membrane receptors for sPLA2s have been 

identified. N-type receptors are mostly expressed in brain and bind neurotoxic sPLA2 with 

high affinity. M-type receptors that belong to the C-type lectin family are expressed in various 

tissues and display low affinity for the bee venom PLA2 (for review see [18]). Binding of 

PLA2 to the mannose receptor and glycosaminoglycans has also been reported and may 

trigger cellular activation and release of bioactive molecules like cytokines, leukotriene B4 

and platelet-activating factor (PAF) [19-21].  

PLA2 hydrolysis of PC can generate bioactive lipids such as lysophosphatidylcholine (LPC) 

and non esterified poly-unsaturated fatty acids that exert various effects on immune cells. We 

have recently shown that LPC promotes mature DC generation from differentiating 

monocytes [22, 23]. Non esterified poly-unsaturated fatty acids can modulate toll-like 

receptor (TLR) signaling, resulting in modified activation of NF-κB [24]. Furthermore, 

eicosanoids which are downstream metabolites of the PLA2 reaction, are involved in the 

regulation of functional properties of dendritic cells (DCs) with diverse effects. For instance, 

lipoxin A4 strongly inhibits IL-12 production by mature DCs [25], and prostaglandin E2 

regulates the migratory capacity of DCs [26] and their secretion of IL-12 [27].  

PLA2-mediated processing of PC can generate a number of bioactive molecules with opposite 

effects on immunity. Since the secretion of PLA2s is strongly stimulated during the acute 

phase response, we asked whether an increased PLA2 activity can generate signals identified 

by the innate immune system that would promote transition to an adaptive response. Here we 
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describe the effect of group III sPLA2s on the generation of functional human DC derived 

from monocytes.  
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2 Results 

 

2.1 Phenotypic maturation induced by group III sPLA2 

 

We have previously shown that LPC can induce the differentiation of mature DC directly 

from monocytes when it is added for the last 24 h of monocyte differentiation in the presence 

of GM-CSF and IL-4 [22, 23]. LPC can be generated from PC by PLA2 hydrolysis. Therefore, 

we asked whether sPLA2 could exert the same effects on differentiating monocytes. As 

expected, monocytes incubated for 6 days with GM-CSF and IL-4 differentiated to immature 

DC (control) expressing high levels of CD1a but no CD14, low levels of HLA-DR and CD40 

but no CD86, CD80 and CD83 (figure 1A). When bee venom sPLA2 was introduced in the 

culture medium for the last 24 h of differentiation, cells obtained at day 6 had the phenotype 

of mature DC with enhanced expression of HLA-DR, CD86, CD80, CD83 and CD40. The 

maturation induced by this PLA2 was weaker than that induced by LPS (figure 1A), especially 

for the up-regulation of CD83 and CD40. The addition of the endotoxin inhibitor polymixin B 

had no effect on PLA2-induced maturation (figure 1A) whereas it strongly inhibited an 

important dose of LPS (10 ng/ml) (data not shown). The maturation was dependent on the 

dose of PLA2 and maximal CD86 induction was obtained with 5 U/ml of PLA2 (figure 1B). 

Further experiments with bee venom PLA2 were therefore realized with 5 U/ml.  

 

2.2 Functional mature DC promoted by group III sPLA2 

 

To analyze their functional properties, PLA2-treated DC were washed and co-cultured with 

allogeneic T cells. We found that these DC were able to stimulate IFNγ secretion (figure 2A) 

whereas no IL-4 nor IL-5 secretion could be detected (data not shown). The concomitant 
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addition of polymixin B with PLA2 during DC differentiation did not affect the functional 

maturation induced by PLA2 (data not shown). To confirm the Th1 polarization of T cells, 

intracellular IL-4 and IFNγ synthesis by T cells was analyzed after restimulation by IL-2. T 

cells co-cultured with immature control DC led to a low number of IFNγ-producing cells and 

no production of IL-4 (figure 2B). Although with less efficiency than cells treated with 1 

µg/ml LPS, PLA2-generated DC increased the percentage of IFNγ-secreting T cells but not 

that of IL-4-producing T cells (figure 2B). Therefore, bee venom PLA2 was able to generate 

mature DC that have the ability to induce a Th1-oriented response in vitro. This polarization 

could not be explained by IL-12 secretion, since PLA2-treated cells did not secrete IL-12p70 

and secreted small amounts of IL-12p40 (43 ± 29 pg/ml) that were only slightly above that of 

untreated cells (13 ± 9 pg/ml).  

 

2.3 The catalytic domain of human group III sPLA2 induces DC maturation 

 

The catalytic domain of the human homologue of group III bee-venom PLA2 (hGIII sPLA2), 

that was produced as a recombinant protein in S2 insect cells and purified to homogeneity 

[28] also induced the maturation of DC, enhancing the expression of presenting and 

costimulatory molecules (figure 3A). These cells were functionally mature since they also 

stimulated the secretion of IFNγ by allogeneic T cells (figure 3B). Because of the rarity of this 

purified human PLA2, the following experiments were performed with the bee venom 

enzyme. 

 

2.4 PLA2 binding and internalization by DCs 
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Bee venom PLA2 was labeled with fluorescent Alexa488 to follow its binding and 

internalization by cells. Differentiating monocytes were harvested at day 5 (before any 

treatment by PLA2) and incubated on ice with increasing doses of fluorescent PLA2. The 

binding of PLA2 on cells was low, especially at the dose of 4 µg/ml, corresponding to the 

optimal active dose of 5 U/ml. Nevertheless, PLA2 binding reached saturation at 8 µg/ml 

(~500 nM) for 106 cells (figure 4A). This binding could be inhibited by competition with non-

labeled PLA2 and 80 % inhibition was observed with a ten-fold excess of non labeled PLA2 

(figure 4B). The data suggest that PLA2 binds to a specific receptor. The high concentration of 

bee venom PLA2 (~500 nM) necessary to reach saturation suggests that this receptor may be 

of low affinity. Chelation of calcium by 2 mM EDTA and addition of 5 µg/ml of mannan 

inhibited the binding of Alexa-PLA2 by 50 % and inhibitions by mannan and EDTA were not 

additive (data not shown), suggesting that at least one C-type lectin is involved in PLA2 

binding to differentiating monocytes. These results may be in line with those of 

Mukhopadhyay and Stahl showing that bee venom PLA2 binds to the macrophage mannose 

receptor (CD206) [29], a C-type lectin that is expressed on immature DCs. 

When the enzyme was incubated with cells at 37°C, the fluorescent PLA2 was efficiently and 

rapidly internalized (figure 4C). Internalized PLA2 could be visualized by a punctuated 

labeling in almost all cells (figure 4D). Binding / Internalization experiments revealed that the 

membrane receptor for PLA2 could trigger internalization of its ligand (figure 4E). Therefore, 

during the 24 h treatment of DC, PLA2 is likely to be internalized by both receptor-mediated 

endocytosis and constitutive pinocytosis which is highly efficient in immature DCs. The 

relative contribution of each pathway remains to be determined. 

 

2.5 Mechanism of action of sPLA2 
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The effect of PLA2 on DCs may be due either to a direct enzymatic effect or to membrane 

signals induced by PLA2 binding to surface receptors. The catalytic activity of the enzyme can 

be inactivated by progressive heating at 95°C, as measured by hydrolysis of arachidonoyl-

thio-PC (figure 5A). After denaturation of PLA2 for various periods of time (0 to 30 min), the 

same amount of enzyme (4 µg/ml) was added to the culture medium at day 5 of monocyte 

differentiation. The maturation state of the cells was estimated 24 hours later by analyzing 

their phenotype. We previously observed that CD86 is the most sensitive and reliable marker 

of activation, therefore CD86 expression was plotted according to the enzyme activity 

measured after heating (figure 5B). The induction of maturation correlated with the 

phospholipase activity, with a drastic decrease in CD86 induction when PLA2 was heated for 

only 5 min. After heat-inactivation of the enzyme for 30 min, its binding to DCs was not 

affected (figure 5C), indicating that sPLA2 binding is not involved or not sufficient by itself to 

induce DC activation. Thus, the generation of mature DC by PLA2 appears to depend on the 

enzyme activity.  

 

2.6 Transcription factors activated by sPLA2 

 

Activation signals of DC can induce maturation through several distinct pathways. Signals 

like those engaging Toll-Like Receptors (TLR) or inflammatory cytokine receptors result in 

the activation of NF-κB. Others like DC maturation triggered by FcR or LPC are independent 

of NF-κB. The role of nuclear factors was studied by electrophoretic mobility shift assays 

(EMSA) using specific DNA probes. As shown in figure 6 (A and C), NF-κB is activated by 

PLA2 treatment. NF-κB binding activity is induced after 4 hours of treatment with PLA2 and 

remains highly activated after 24 hours. PLA2 treatment also induced the activation of AP-1 

and NFAT (figure 6B-C). Peroxisome proliferator-activated receptors gamma (PPARγ) are 
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ligand–dependent transcription factors that are inhibited by LPC and activated by lipids such 

as HODE and HETE derived from linoleic and arachidonic acid [30]. They are involved in the 

regulation of inflammation and lipid metabolism. Using a DNA probe containing a 

peroxisome proliferator response element from CD36 promoter, no significant variation of 

PPARγ could be observed (figure 6B-C).  
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3 Discussion 

The aim of this work was to determine whether an increase in sPLA2 activity resulted in the 

release of endogenous lipid signals that can be detected by the innate immune system. In this 

paper, it is shown that treatment of differentiating monocytes by the bee venom PLA2 and the 

catalytic domain of hGIII sPLA2 generates cells with phenotypic and functional 

characteristics of mature DCs. PLA2-generated DC could activate a Th1 type response by 

allogeneic T cells, inducing the secretion of IFNγ but not that of IL-4. Although the bee 

venom PLA2 binds to specific membrane receptors on DCs, its biological effects seem to be 

associated to its enzymatic activity. We could exclude PLA2 contamination by endotoxins 

because: i, polymixin B did not affect PLA2-induced phenotypic and functional maturation, ii, 

sPLA2 did not induce important secretion of IL-12 and iii, heating of the enzyme completely 

abolished its effect. PLA2 treatment leading to mature DC generation also activated 

transcriptional factors known to be involved in the activation and regulation of an immune 

response. The data supported and extended the notion recently proposed that lipid mediators, 

whose production is highly controlled during the APR, may play a central role in 

immunoregulation. 

The biological effect of the bee venom PLA2 on DCs appears dependent on its enzymatic 

activity. Although most of the study was performed with bee-venom PLA2, similar data were 

obtained with the highly purified catalytic domain of hGIII sPLA2. Several other PLA2 may 

also participate to DC maturation in vivo. For instance, the lipoprotein-associated plasmatic 

PLA2 also called PAF-acetylhydrolase hydrolyzes oxidized phospholipids with shortened 

fatty acid in sn-2 position, increasing LPC content in oxLDL [31]. The human group IIA, V or 

X sPLA2s produced under inflammatory conditions can also modify lipoproteins and generate 

high amounts of LPC in LDL [32-34]. Lipolytic modifications of LDL by bee venom PLA2 
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increased the affinity of LDL for proteoglycans and glycosaminoglycans [35]. Under our 

experimental conditions, addition of purified LDL in the culture medium did not enhance 

PLA2 effect on DC generation (data not shown). This may be due to the presence of albumin 

which is known to retain and inactivate fatty acids and lysophospholipids generated by PLA2 

hydrolysis of native lipoproteins. Therefore these lipid mediators are likely to be the most 

efficient when generated via PLA2-mediated processing of membrane phospholipids. PLA2 

could also hydrolyze phospholipids from membranes of endocytic compartments following 

internalization of the enzyme. Human group II, V, X and XII as well as human and bee-

venom group III sPLA2 have been reported to generate external lipid mediators and hydrolyze 

phospholipids from the outer membrane leaflet [28, 36]. Lipids generated at the cell 

membrane may be directly detected by membrane receptors or enter the cells to be 

metabolized or directly interact with nuclear receptors.  

The treatment of DCs with the bee venom PLA2 results in NF-κB, AP-1 and NFAT activation. 

These transcription factors control the expression of numerous genes involved in the 

regulation of immunity. The role of NF-κB in DC maturation has been extensively studied 

[37-39]. This nuclear factor regulates genes involved in inflammation such as inflammatory 

cytokines (IL-1β, TNFα, IL-12, etc…) and chemokines (IL-8, MCP, etc…). It is also 

implicated in LPS, CD40 or TLR-induced DC maturation. NFAT has been widely studied in 

T-cell activation where it plays a key role in antigen receptor-mediated responses by 

controlling the expression of a number of genes including cytokines such as IL-2, IL-4, 

TNFα, IFNγ and ligands such as CD40 and Fas ligand (reviewed by [40]). AP-1 proteins are 

regulated by PKC and Ras/Rac dependent pathways. AP-1 and NFAT transcription factors 

can form stable complexes that bind composite NFAT:AP-1 DNA sites. These composite sites 

have been identified in genes involved in the immune response such as IL-2, GM-CSF and 

IFNγ [41]. Activation of these transcription factors may reflect the diversity of bioactive 
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molecules generated under PLA2 treatment and may be an efficient way to integrate complex 

signals, enabling a fine tuning of biological responses. PLA2-induced generation of mature 

DC probably results from the combined effects of several lipid mediators produced directly or 

indirectly by this enzyme. Among the various molecules resulting from PLA2 activity, LPC 

was the best candidate to mediate PLA2 effects on DC. Indeed, using the experimental 

procedures described above, we have shown previously that LPC is the major lipid mediator 

of oxidized LDL that can promote mature DC generation from differentiating monocytes by a 

G-protein coupled membrane receptor dependent pathway [22]. However, the transcription 

factors activated by LPC are different from those activated after bee venom PLA2 treatment 

[30]. Therefore, LPC is unlikely to be directly responsible for the effects of PLA2 on DC 

generation. Activation of NF-κB may be initiated by derivatives of both LPC and arachidonic 

acid. Further work is required to identify the lipid mediators and their signaling pathway. 

Although bee venom sPLA2 is a major allergen in humans, PLA2-generated DC do not display 

a Th2-type function in vitro when cells are obtained from non-allergic donors. Accordingly, it 

is known for other allergens such as Der p 1, one of the major allergens of the house dust 

mite, that Th2 polarization of monocyte-derived DC is due to the allergic status of the donor 

[42]. It would therefore be interesting to compare the effects of PLA2 on monocytes and DC 

from allergic versus non allergic individuals and to know whether environmental factors 

including histamine could reorient the function of PLA2-generated DC toward a Th2-type as 

previously observed for LPS [43]. The overall data presented here suggest that sPLA2 like bee 

venom or hGIII PLA2 can generate lipid mediators with immunoregulatory functions in vitro. 

Increased PLA2 activity during the APR may thus favor the development of the adaptive arm 

of immunity. 

 

 

 13

H
A

L author m
anuscript    inserm

-00136390, version 1



4 Material and methods 

 

4.1 Differentiation of monocyte-derived dendritic cells 

 

PBMC were isolated from human peripheral blood by density gradient centrifugation on 

Ficoll-Hypaque (Amersham Biosciences, Uppsala, Sweden). Mononuclear cells were 

separated from PBL by centrifugation on a 50 % Percoll solution. Monocytes were purified by 

immunomagnetic depletion (Dynal, Oslo, Norway) using a cocktail of monoclonal Abs anti-

CD19 (4G7 hybridoma), anti-CD3 (OKT3, ATCC, Rockville, MD, USA) and anti-CD56 

(NKH1, Beckman Coulter, Fullerton, CA, USA). Monocytes were more than 90 % pure as 

assessed by CD14 labeling. Monocytes were differentiated to immature DC during 6 days 

with 40 ng/ml human recombinant GM-CSF and 250 U/ml human recombinant IL-4 in RPMI 

1640 (Life Technologies, Rockville, MD, USA) supplemented with 2 mM glutamine (Life 

Technologies), 10 mM Hepes (Life Technologies), 40 ng/ml gentamycin (Life Technologies) 

and 10 % lipoprotein-deficient fetal calf serum (LPDS, Sigma, St Quentin-Fallavier, France). 

At the end of the differentiation (day 6), cells were harvested and analyzed. Cells were CD14- 

CD1a+ and viability was superior to 90 %.  

 

4.2 PLA2 treatment 

Bee venom PLA2 (Sigma; min. purity 87%; 1360 U/mg protein; one unit will hydrolyze 1.0 

µmole of soybean L-α-phosphatidylcholine per min at pH 8.9 and 25°C) was dissolved in 100 

mM Hepes buffer pH 8.5, aliquoted and stored at -20°C. The catalytic domain of the human 

group III sPLA2 was produced in insect cells and purified as previously described [28]. A 50X 

solution of PLA2 was prepared extemporaneously by dilution in 100 mM Hepes / 5 mM 

CaCl2 pH 8.5 buffer and 20 µl was added to 1 ml of differentiating DC at day 5. Cells were 

 14

H
A

L author m
anuscript    inserm

-00136390, version 1



incubated for 24 h with the indicated doses of PLA2 or LPS (1 µg/ml). Control cells were 

incubated with 20 µl of buffer alone. At day 6, cells and supernatants were harvested and 

analyzed. When indicated, polymixin B (10 µg/ml; Sigma) was added to the culture 10 min 

before sPLA2 (5 U/ml) or LPS (10 ng/ml) addition.  

 

4.3 PLA2 inactivation 

 

sPLA2 (250 U/ml) in Hepes-CaCl2 buffer was heated at 95°C for 5 to 30 min and the enzyme 

was kept on ice until the assay. Enzyme activity was assayed by arachidonoyl-thio-PC 

hydrolysis (Cayman Chemicals, Ann Arbor, MI, USA) as described [44]. 5 µl of buffer (150 

mM NaCl / 10 mM CaCl2 / 80 mM Hepes / 4 mM Triton X-100 / 30 % glycerol / 1 mg/ml 

BSA pH 7.4) was added to 10 µl of heated PLA2 and incubated for 60 min at room 

temperature with 200 µl of 1.5 mM arachidonoyl-thio-PC in the same buffer. After addition of 

10 µl of DTNB/EGTA solution (25 mM DTNB / 475 mM EGTA / 0.5 M Tris-HCl pH 8) and 

incubation 5 min, the absorbance at 414 nm was measured against the blank without PLA2. 

Enzymatic activity was measured in µmol of arachidonoyl-thio-PC hydrolyzed/min/ml. 

 

4.4 Phenotype analysis 

 

Phenotype was analyzed by flow cytometry on a FACSCalibur (Becton Dickinson, Franklin 

Lakes, NJ, USA) using FITC-conjugated anti-CD14, -HLA-DR, -CD80 and PE-conjugated 

anti-CD1a, -CD83, -CD86 all from Beckman Coulter. 

 

4.5 Mixed leukocyte reaction (MLR) 

 

 15

H
A

L author m
anuscript    inserm

-00136390, version 1



PBMC were isolated by density gradient centrifugation on Ficoll-Hypaque. After depletion of 

monocytes on Percoll gradient, PBL were recovered in the dense fraction. T lymphocytes 

were purified by immunomagnetic depletion using a cocktail of monoclonal Abs anti-CD19 

(4G7), anti-CD16 (3G8), anti-CD56 (NKH1), anti-glycophorin A (11E4B7.6) and anti-CD14 

(RMO52) all from Beckman Coulter. T lymphocytes were more than 95 % pure as assessed 

by CD3 labeling. Primary MLRs were conducted in 96-well flat-bottom culture plates. DC 

were treated or not at day 5 with PLA2, collected at day 6, extensively washed and 

resuspended in RPMI 1640 supplemented with 2 mM glutamine, 10 mM hepes, 40 ng/ml 

gentamycin and 10 % FCS (BioMedia, Boussens, France). Cells were then co-cultured with 2 

x 105 allogeneic T cells in 200 µl complete culture medium at 1/5, 1/10, 1/20 or 1/40 DC/T 

cells ratio. After 4 days, culture supernatants were tested for the presence of IFNγ by ELISA. 

To detect intracellular IL-4 and IFNγ, 2.104 DC were co-cultured with 2.105 allogeneic T cells 

for 5 days. Cells were restimulated with 100 U/ml recombinant IL-2 (Chiron) for 7 days. Cells 

were washed and incubated with 10 ng/ml PMA and 1 µg/ml ionomycin for 5h. 10 µg/ml 

brefeldin A was added for the last 2h. Cells were washed, fixed and permeabilized with 

cytofix/cytoperm solution (Becton Dickinson) and labeled with anti-IFNγ-FITC and anti-IL-

4-PE (Becton Dickinson). 

 

4.6 Cytokine measurement 

 

Culture supernatants were aliquoted and stored at –80°C. IL-12p40 and IFNγ levels were 

determined using ELISA kits from Biosource (Camarillo, CA, USA) and Endogen (Woburn, 

MA, USA) respectively. IL-12p70 was assayed using the human Th1/Th2 Cytometric Bead 

Array system (BD Biosciences). 
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4.7 PLA2 binding and internalization 

 

Bee venom sPLA2 (2 mg/ml) was labeled with Alexa488-protein labeling kit (Molecular 

Probes, Leiden, The Netherlands). Free Alexa488 was removed by gel filtration and labeled 

protein was recovered in PBS at 1.18 mg/ml.  

The binding of Alexa488-PLA2 was performed on differentiating cells harvested at day 5 and 

resuspended in culture medium. Alexa488-PLA2 was incubated with cells (106/ml) for 20 min 

on ice. In competition experiments, non labeled PLA2 was added into the medium 10 min 

prior to incubation with Alexa488-PLA2 on ice.  

Internalization was carried out at 37°C for 2 to 20 min in RPMI / 10 % LPDS medium. To 

follow receptor-mediated endocytosis, cells were first incubated on ice for 20 min with 10 

µg/ml Alexa488-PLA2, washed twice at 4°C, and then incubated at 37°C for 10 min. 

Internalization was stopped on ice with cold PBS containing 0.1 % BSA and 0.05 % NaN3. 

Cells were washed three times at 4°C in this buffer and analyzed by flow cytometry and 

fluorescence microscopy after cytospin and fixation. Slides were observed with the Leica DM 

IRB/E microscope or the Axioplan2 LSM510 Confocal microscope (Zeiss). 

 

4.8 Electrophoretic Mobility Shift Assay (EMSA) 

 

Differentiating cells were treated with 5 U/ml PLA2 at day 5 for the indicated times (0, 2, 4, 8 

or 24 h) as described above. After treatment, cells (4 x 106) were harvested and nuclear 

proteins were extracted: cells were washed twice with PBS, resuspended in 400 µl of ice-cold 

hypotonic buffer (10 mM Hepes (pH 7.9) / 10 mM KCl / 0.01M DTT / 1.5mM MgCl2 / 1X 

protease inhibitor cocktail (Sigma)), left on ice for 10 min, vortexed and centrifuged at 15,000 

g for 1 min at 4°C. Sedimented nuclei were resuspended in 40 µl ice-cold saline buffer (20 
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mM Hepes (pH 7.9) / 420 mM NaCl / 0.2 mM EDTA / 1.5 mM MgCl2 / 25% glycerol / 1X 

protease inhibitor mixture (Sigma)), left on ice for 20 min, vortexed and centrifuged at 15,000 

g for 5 min at 4°C. Nuclear protein concentrations were determined by Micro-BCA Protein 

Assay Reagent (Pierce, Rockford, IL, USA). The binding activity of nuclear proteins was 

determined using specific DNA probes as described [30]. Sequences of the double-stranded 

oligonucleotide used for detection of NF-κB: 5'-AGTTGAGGGGACTTTCCCAGG-3'; 

PPAR: 5’-GGGGTCAGTAAGTCAGAGGCCAGGGA-3’; AP-1: 5’-

GTGACTCATGACTCATGACTCATGACTC-3’ ; NFAT consensus: 5’-

CGCCCAAAGAGGAAAATTTGTTTCATA-3’. Oligonucleotides were end-labeled with [γ-

32P]ATP (Amersham Biosciences) by T4 polynucleotide kinase (New England Biolab, 

Beverly, MA). For the binding reaction, 1 µg of nuclear extract was added to a reaction 

mixture containing 2 µg of poly (dI-dC) (Amersham Biosciences), 4 µl of 5X binding buffer 

(final concentration: 10 mM Tris (pH 7.5) / 50 mM NaCl / 1 mM DTT / 1 mM EDTA / 5% 

glycerol), and 50000 cpm of [32P]-labeled oligonucleotide in a final volume of 20 µl and were 

incubated at room temperature for 20 min. Unlabeled competitor oligonucleotide was added 

in 50-fold excess to confirm the specificity of the binding reaction. The same amount of total 

protein was loaded on a 4% polyacrylamide non denaturing gel and DNA-protein complexes 

were separated from unbound DNA probe by electrophoresis in 0.5X Tris-glycine EDTA 

buffer. Gels were visualized using a Typhoon PhosphorImager (Molecular Dynamics, 

Sunnyvale, CA). Image Master software (Amersham Biosciences) was used for quantification 

of band intensities that were normalized to non specific background. 
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Figure legends 

 

Fig. 1. Phenotypic maturation induced by bee venom PLA2 

Monocytes were differentiated in LPDS medium containing GM-CSF and IL-4 [22, 23]. Cells 

were treated or not at day 5 with PLA2 or LPS and analyzed at day 6. A, Phenotype of cells 

treated with 5 U/ml PLA2 (filled profile), 5 U/ml PLA2 + polymixin (bold line), 10 ng/ml LPS 

(dotted line) or untreated control cells (thin line). B, Increasing concentrations of PLA2 (0, 2, 

5 or 10 U/ml) were added at day 5 and CD86 expression was analyzed at day 6. Data 

represent mean fluorescent intensities (mfi) normalized at 100 for control non-treated cells. 

Mean ± S.D. of three experiments.  

 

Fig. 2. Functional maturation induced by bee venom PLA2 

Monocytes were differentiated in LPDS medium containing GM-CSF and IL-4. Cells were 

treated or not at day 5 by addition of 5 U/ml PLA2 or 1µg/ml LPS and harvested at day 6. A, 

Control immature DC or PLA2-generated DC were harvested at day 6, washed and cultured 

for 4 days with allogeneic purified T cells (2 x 105/well) at DC / T cell ratios ranging between 

1/5 and 1/40. The amount of IFNγ in the supernatants of the coculture was measured by 

ELISA. B, Control immature DC, PLA2-generated DC or LPS-treated DC were harvested at 

day 6, washed and cultured for 5 days with allogeneic purified T cells (2 x 105/well) at 1/10 

DC/T cell ratio. Cells were expanded with 100 U/ml IL-2 for 7 days, washed and restimulated 

with PMA and ionomycin for 5 hours. Brefeldin A was added for the last 2 hours and cells 

were processed for intracellular labeling with anti-IFNγ-FITC and anti-IL-4-PE. 

 

Fig. 3. Phenotypic and functional maturation induced by the catalytic domain of hGIII-sPLA2 
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Monocytes were differentiated in LPDS medium containing GM-CSF and IL-4. Cells were 

treated or not at day 5 by addition of 700 nM hGIII sPLA2 and analyzed at day 6. A, 

Phenotype of cells treated or not with hGIII sPLA2. Data represent mean fluorescent 

intensities normalized at 100 % for control non-treated cells. B, 104 control immature DC or 

hGIII sPLA2 treated DC were harvested at day 6, washed and cultured for 4 days with 

allogeneic purified T cells (2 x 105/well). The amount of IFNγ in the supernatants of the 

coculture was measured by ELISA. 

 

Fig. 4. Binding and internalization of PLA2 

Monocytes were differentiated in LPDS medium containing GM-CSF and IL-4 for 5 days. 

Cells were washed and resuspended in cold LPDS medium. A, Cells were incubated on ice for 

20 min with increasing doses of Alexa488- PLA2 (0, 4, 8, 16 or 32 µg/ml). After washings, 

the amount of bound fluorescent PLA2 was measured by flow cytometry. Data represent mean 

± S.D. from mean fluorescent intensities (mfi) of three experiments. B, Cells were incubated 

on ice for 20 min with increasing amounts of non labeled PLA2 (20, 50, 100 or 200 µg/ml) 

and 20 µg/ml Alexa488-PLA2. After washing, mean fluorescent intensity of cells was 

measured by flow cytometry. Data are expressed in percentage of PLA2 binding without 

competitor. C, Cells were incubated with 2 µg/ml Alexa488-PLA2 at 37°C or on ice, washed 

and analyzed by flow cytometry. D, Cells were incubated with 4 µg/ml Alexa488-PLA2 on ice 

(up) or at 37°C (bottom), washed and observed in transmission (left) or fluorescence (right) 

microscopy. E, Receptor-mediated endocytosis: cells were incubated with 10 µg/ml 

Alexa488-PLA2 on ice for 20 min, washed and incubated at 37°C for 10 min. Cells were 

washed and analyzed by confocal microscopy. 

 

Fig. 5. Phospholipase activity is essential to induce DC maturation. 
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PLA2 in Hepes-CaCl2 buffer was heated or not at 95°C for 5 to 30 min. A, Enzyme activity 

was assayed by arachidonoyl-thio-PC hydrolysis. B, Monocytes differentiating to DC were 

treated at day 5 with 4 µg/ml of PLA2 heated for the indicated time. Cells were harvested at 

day 6 and their phenotype was analyzed. CD86 expression by PLA2 treated cells was plotted 

against the heating time of PLA2. C, Differentiating cells were washed at day 5, resuspended 

in cold LPDS medium and incubated for 20 min on ice with 4 µg/ml native PLA2 or 4 µg/ml 

denatured PLA2 (95°C for 30 min). Binding was measured as in figure 3. 

 

Fig. 6. EMSA on nuclear extracts from PLA2-generated DC. 

Monocytes differentiating to DC were treated at day 5 with 5 U/ml PLA2 for the indicated 

period of time. Cells were harvested and nuclear extracts prepared as described. Equal 

quantities of nuclear proteins were run for EMSA analysis, using 32P-labeled DNA probes 

specific for NF-κB (A), AP-1, NFAT and PPARγ (B). The specificity of binding was shown 

by competition with non labeled probe in excess (lane C). C, Binding activity of the above 

transcription factors was determined by quantification of band intensities on gel shift assays 

using Image Master software. 
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