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PPARα and liver circadian clock 

Abstract  

Recent evidence has emerged that PPARα, which is largely involved in lipid 

metabolism, can play an important role in connecting circadian biology and metabolism. In 

the present study, we investigated the mechanisms by which PPARα influences the 

pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the 

peripheral oscillator of the liver. We demonstrate that PPARα plays a specific role in the 

peripheral circadian control as it is required to maintain the circadian rhythm of the master 

clock gene bmal1 in vivo. This regulation occurs via a direct binding of PPARα on a PPRE 

located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARα gene 

expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene 

expression in cell culture and up-regulates hepatic bmal1 in vivo. Altogether, these results 

provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARα in 

peripheral clocks. 
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Introduction 

Circadian rhythms enable numerous organisms to adapt to daily environmental 

changes such as light, temperature and social communication and serve to synchronize 

multiple molecular, biochemical, physiological and behavioral processes. Circadian rhythms 

persist with an approximate 24 h periodicity even in temporally isolated subjects, indicating 

the presence of an autonomous time keeping system called circadian clock. In mammals, 

circadian rhythms are generated by the main pacemaker located in the suprachiasmatic 

nucleus (SCN) of the hypothalamus (1). To ensure that internal time coincides with 

environmental time, the clock must be adjusted, a process known as entrainment. In 

mammals, light received by the eyes synchronizes the oscillator through the retino-

hypothalamic tract and hence synchronizes the behavior of the organism with the daily 24 h 

light/dark cycle (For review : (2-6)).  

In addition to the SCN, other peripheral tissues such as liver, heart, kidney (7, 8) as 

well as isolated cells (9) express clock genes giving rise to circadian rhythms with a different 

phase from that observed in the SCN. Interestingly, these peripheral clocks can be resetted by 

alternative routes independently of the SCN, for example by forced change of feeding time 

(10, 11). Several lines of evidence suggest that the peripheral circadian clocks are not SCN-

independent but require inputs from the SCN to drive the rhythmicity and ensure an ordered 

response of the organism to environmental changes (12, 13). Thus, the SCN is believed to 

coordinate rhythms in the brain and body via a combination of neural and humoral diffusible 

and synaptic signals (7, 14, 15) 

Genetic analyses have identified master clock genes such as clock, bmal1, period 

(per1, 2) and cryptochrome genes (cry1, 2), as well as the orphan nuclear receptor genes, rev-

erbα and rorα  (16, 17). Other transcription factors functioning in the circadian regulation of 

gene expression, including DBP-related factors (18), Rev-erbβ, RORβ and γ  (19) have also 
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been identified. The clock mechanism mainly involves an integrated network of interacting 

self-sustained transcriptional-translational feedback loops, composed of positive and negative 

regulators, which drive their own rhythmic expression and the one of clock-controlled genes 

to perform a fine tuning of circadian gene expression (20).  

Recent reports have highlighted the interplay between circadian oscillators, 

metabolism and physiology. Whereas genes involved in the glucose and lipid metabolism are 

known to exhibit circadian variations (21-23), molecular studies have revealed a critical role 

for bmal1 and clock genes in regulating glucose homeostasis (24) and lipid metabolism (25-

28). Moreover, the cross-talk between RORα and Rev-erbα was shown to be physiologically 

important for the control of cholesterol and triglyceride metabolism (29-31). In turn, the 

peripheral clocks can be coordinately regulated by multiple circulating factors, which are 

affected by the metabolic status of the organism. Indeed, glucose, one of the major food 

metabolites that exhibits a plasma diurnal rhythm, is a direct resetting signal in cultured cells 

by down-regulating per1 and per2 RNA levels (32). The levels of glucose-regulated 

hormones such as insulin or glucagon immediately up-regulate per1 and per2 expression (13). 

In addition, other studies have revealed an important role of glucocorticoids and retinoids in 

the resetting of peripheral clocks (33, 34). Though the elucidation of the mechanisms that 

govern the connection between metabolism and circadian clock has just begun, it appears that 

several members of the nuclear receptor family are involved in this pathway. 

Evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARα), 

a member of the nuclear receptor superfamily that regulates the expression of numerous genes 

involved in lipid metabolism and energy homeostasis, can play a role in the normal circadian 

regulation. First, PPARα has been identified as a circadian clock-controlled gene with a 

diurnal rhythm at the mRNA and protein levels in rats and mice in many peripheral organs 

such as liver, heart, kidney and to a lesser extent in the SCN, where the central pacemaker is 
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located (7, 35, 36). This circadian expression of PPARα may be in part controlled by 

hormonal factors, since insulin and glucocorticoids regulate its mRNA expression (35, 37-39). 

A recent study has also shown that the circadian expression of PPARα mRNA is regulated by 

the peripheral oscillators in a CLOCK-dependent manner (27). Second, since daily variations 

in lipogenic and cholesterogenic gene expression are attenuated or abolished in mice in which 

the PPARα gene has been disrupted, PPARα may be an important mediator for the circadian 

regulation of lipid metabolism (40, 41). It is now believed that PPARα has a wider general 

role in transducing hormone messages involved in dietary status (42). These observations thus 

suggest that PPARα may be required in the control of circadian food-dependent fluctuations 

in gene expression. Third, PPARα is connected to the regulation of other nuclear hormone 

receptors such as Rev-erbα, as fenofibrate, a PPARα agonist, induces human and rat rev-erbα 

expression in liver through the direct binding of PPARα on an atypical DR2 element located 

in the rev-erbα promoter (30, 43). It was recently shown that CLOCK plays an important role 

in lipid homeostasis by regulating the circadian transactivation of PPRE-controlled target 

genes (26) and of PPARα gene itself via an E-box rich region in vivo and in vitro (27). Fourth, 

the partner of PPARα, RXRα, interacts with CLOCK protein in a ligand-dependent manner 

and inhibits CLOCK/BMAL1-dependent activation via an E-box element (34). Other results 

have also suggested that PPARα-deficiency disturbs the normal circadian regulation of certain 

SREBP sensitive genes in the liver (40, 44).  

Despite much evidence supporting a role of PPARα in metabolic control and energy 

homeostasis (45) and the accumulation of data connecting metabolism and circadian biology 

(3, 46, 47), little is known concerning the influence of PPARα on the circadian clock. In the 

present study, we investigated the mechanisms by which PPARα can influence the 

pacemakers acting in the SCN and in the liver. We report that PPARα deficient (PPARα-/-) 
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mice present similar locomotor activity with wild type (WT) mice without any molecular 

alteration of clock gene expression in the SCN. Interestingly, we show for the first time that 

PPARα is a direct regulator of bmal1 expression in liver via its direct binding on a PPRE 

located on the bmal1 promoter. This regulation is required to maintain the normal circadian 

oscillation of bmal1 in vivo. Stressing the importance of the regulatory pathway that exists 

between PPARα and the peripheral clock genes, we show that fenofibrate up-regulates bmal1 

gene expression in murine liver and induces circadian rhythm of clock gene expression in cell 

culture in a PPARα dependent manner. Reversely, we also observe that BMAL1 is an 

upstream regulator of the PPARα gene expression. Taken together our data implicate PPARα 

in a new regulatory loop that controls peripheral circadian clocks. 
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Results 

 

PPARα -/- mice display normal circadian locomotor activity and clock gene expression in 

the SCN. 

In order to evaluate the influence of PPARα on the function of the central circadian oscillator, 

behavioral analysis of the circadian rhythm was carried out using PPARα-/- and WT littermate 

mice. Animals were first synchronized for 2 weeks to a 12L:12D cycle. Under these light 

conditions, WT and PPARα-/- mice entrained normally and consolidated their locomotor 

activity to the dark period of the LD cycle (figure 1A). No difference in the total amount of 

daily activity was observed between WT and PPARα-/- mice (figure 1B). When placed in 

constant darkness, the PPARα-deficient mice do not display an arrhythmic behaviour with 

endogenous period similar between both genotypes (24,11±0,11 hrs and 24,12 ±0,08 hrs 

respectively in PPARα-deficient and WT mice). 

To determine if the inactivation of PPARα can alter the master oscillator in the SCN at the 

molecular level, we further compared the circadian expression profiles of clock genes in the 

SCN of WT and PPARα mutant mice (figure 1C). There is no significant difference in the 

amplitude and in the phase of the circadian expression of the tested clock genes (bmal1, per2, 

per3, cry2 and rev-erbα). This clearly suggests that there is no major molecular effect of the 

PPARα deletion at the central clock level and that the expression of PPARα  in the SCN is 

not essential for the basal maintenance of the central circadian timing system.  
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PPARα is required to maintain the amplitude of the circadian expression of bmal1 in the 

murine liver. 

To evaluate the role of PPARα on the circadian system of the liver (a peripheral clock), where 

it is mainly expressed, we analyzed the circadian expression of several clock genes in liver 

isolated from WT and PPARα mutant mice. As already reported, PPARα expression 

effectively follows a circadian rhythm in peripheral tissues such as liver, kidney and muscle 

(data not shown). Figure 2 shows that all the clock genes tested (bmal1, per1, per2, per3, cry2 

and rev-erbα) are expressed in a circadian manner with no modification in the phase of their 

rhythm between both genotypes. By contrast, the amplitudes of bmal1 and per3 expression 

are drastically affected in PPARα-deficient mice by comparison to the WT, with a significant 

decrease at circadian times CT1 and CT21 for bmal1 (where CT0 is subjective day beginning 

at 7 am and CT12 is subjective night beginning at 7 pm) and an increase at CT8 for per3. 

These data suggest that PPARα does not influence the phase synchronisation properties of the 

liver clock but affect the amplitude of two major clock genes bmal1 and per3. 

 

Food-induced phase resetting entrains circadian PPARα expression and is globally 

maintained in liver of PPARα -/- mice. 

Although the day-night cycle is the most obvious time cue, animals can also respond to other 

synchronizing signals and feeding time appears to be a potent temporal cue, or Zeitgeber, for 

the liver clock (10, 11). According to PPARα role in the hepatic lipid metabolism during 

starvation, we hypothesized its potential role in food phase resetting of the liver clock. To 

examine whether the daily feeding time can affect the phase of the PPARα circadian 

expression in the liver, WT mice were fed for two weeks exclusively during the day or during 

the night. As expected, mice fed exclusively during the day displayed an inversed phase in 
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circadian hepatic expression of bmal1, per1, per3 and rev-erbα gene by comparison to mice 

fed only during the night. Similarly, feeding during the day entirely inversed the phase of 

liver PPARα expression (figure 3A), result that is in agreement with the demonstration that 

PPARα is a clock-controlled gene in the liver (7, 36). Control mice fed only during the night 

displayed a similar phase of hepatic clock gene expression and PPARα than mice fed ad 

libitum.  

Next, we studied whether feeding time can also reset the phase of bmal1, per1, per3 and rev-

erb  expression in the absence of PPARα (figure 3B). Except the bmal1 expression which 

was refractory to resetting, per1, per3 and rev-erb  genes showed an inversed rhythm of their 

expression in the liver after daytime-restricted feeding compared to nighttime feeding in the 

PPARα knock-out context. The present results show that feeding time can reset the expression 

of per1, per3 and rev-erb  in the liver of PPARα-/- mice and suggest that bmal1 expression 

might be controlled by PPARα. 

 

Fenofibrate induces expression of clock genes in Rat-1 fibroblasts and up-regulates bmal1 

gene expression in liver.  

Since PPARα presents a circadian expression in liver, we first studied whether a shock with a 

serum-rich medium is able to induce an oscillation of PPARα in the well established in vitro 

model Rat-1 fibroblasts (9, 13, 48-50). As shown in figure 4A, PPARα gene expression is 

induced by a serum shock in Rat-1 fibroblasts with a maximal level reached 12 hours after the 

beginning of the treatment by comparison with the control. The induced-oscillating 

expressions of rev-erbα and cry1 after serum shock were in accordance with previously 

reported data (9, 51). In addition, rev-erbα expression is delayed (peak at 16 hours after the 

serum shock treatment) compared to PPARα expression which suggests that in Rat-1 
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fibroblats PPARα induces rev-erbα expression. Similarly to these observations, it seems 

likely that serum largely participates in the synchronization of the circadian oscillation of 

PPARα mRNA in fibroblast cultures. 

Fibrates are well-known activators of PPARα expression and are classical drugs used in the 

treatment of dyslipidemias. Using the same in vitro model, we then evaluated if fenofibrate 

can induce expression of PPARα gene. The addition of fenofibrate into the serum-free 

medium triggered a rhythmic expression of PPARα peaking 12-14 hours as observed after a 

serum treatment (figure 4B). Fenofibrate induced a PPARα  expression 6-fold higher than 

serum (figures 4A and 4B). 

Fenofibrate can also induce a rhythmic expression of clock genes. The temporal induction by 

fenofibrate of cry1, rev-erbα and bmal1 expression into the culture medium was almost 

similar to that observed after a serum-shock: cry1 mRNA level peaked at Zeitgeber times 

ZT8-10 (where ZT0 is time when the light switched on at 7 am and ZT12 is time when the 

light switched off at 7 pm), rev-erbα at ZT16-20 and bmal1 at ZT4 (figure 4C). Thus 

fenofibrate can act as a Zeitgeber in cell culture and trigger a rhythm of clock gene 

expression.  

To determine if fenofibrate can also reset the liver clock in vivo, the response of bmal1 and 

rev-erbα  genes to fenofibrate treatment was compared in liver of WT and PPARα-/- mice 

(figure 4D). In accordance with our previous results, fenofibrate was also able to markedly 

induce bmal1 mRNA levels in control mice but not in PPARα deficient mice, suggesting that 

bmal1 induction by fenofibrate is effectively mediated by PPARα. Similarly as it was 

previously reported in rat liver and human hepatocytes (30, 43), administration of fenofibrate 

in WT mice significantly increased the rev-erbα mRNA levels. As expected, rev-erbα 

expression in PPARα knock-out mice was not induced by fenofibrate, confirming that murine 
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rev-erbα induction by fenofibrate is mediated by PPARα. Taken together these data strongly 

suggest that fenofibrate can alter the endogenous rhythm of the liver peripheral clock and in 

vivo  

 

PPARα  is a direct regulator of bmal1 expression. 

To specify the regulation of bmal1 gene expression by PPARα suggested by our analysis of 

bmal1 expression in the PPARα-/- mice, we analysed the interaction of PPARα with the bmal1 

promoter. First we performed a bioinformatic research of potential PPARα binding sites 

(PPREs) on the bmal1 promoter region using the Nubiscan software. Two major PPREs were 

predicted at the positions -1519 (+, TGGACATGGGTCA) and -4943 (-, 

AGGGCTGAGGACA), the start site corresponding to the one identified in mouse testis (52). 

In order to evaluate whether PPARα binds to the bmal1 gene promoter in vivo, the occupancy 

of the potential PPRE binding sites by PPARα was analysed using ChIP assays performed on 

hepatocyte DNA using an anti-PPARα antibody (figure 5A). As previously shown in vitro, 

the DNA encompassing the rev-erbα Rev-DR2 site (position -45) was precipitated in vivo by 

the anti-PPARα antibody after fibrate treatment (figure 5A, lower panel, lanes 7 and 9), in 

accordance with a PPARα-Rev-erbα crosstalk through competition for binding to the same 

Rev-DR2 site (43). Moreover an amplification product was observed when the same DNA 

samples were PCR-amplified using primers covering the PPRE located at the position –1519 

in the bmal1 promoter (figure 5A, upper panel, lanes 7 and 9). No amplification product was 

obtained using primers flanking the site at the position -4943 (middle panel). These data 

further demonstrate that in mice in vivo, PPARα directly binds to the PPRE site located at the 

position -1519 of the bmal1 promoter in peripheral oscillators and therefore that bmal1 is a 

direct PPARα target gene. 
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PPARα mRNA expression is severely down-regulated in the liver of bmal1  mice. -/-

To test the hypothesis that the regulation of circadian PPARα expression involves bmal1 in 

the liver, we analyzed the daily accumulation of PPARα mRNA in the liver of bmal1-/- mice 

by quantitative PCR. PPARα mRNA expression is rhythmic in bmal1-/- mice with a maximum 

around ZT12 as observed in WT mice whereas the amplitude of the peak of expression is 

significantly dampened (figure 5B). This result suggests that BMAL1 is an upstream regulator 

of PPARα gene and is consistent with the recent observation that PPARα expression is also 

CLOCK-dependent (27). 
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Discussion 

 

A new regulatory feedback loop involved BMAL1 and PPARα in peripheral clocks. 

Molecular dissection of the mechanisms by which the clock oscillating system is controlled 

remains one of the most important challenges to assess the importance of the circadian 

regulation in diverse physiological and metabolic processes in mammals. In the present study 

we have integrated the PPARα gene and its protein into a new positive regulatory feedback 

loop in the liver. A model summarizing our main results is shown in figure 6. We show that 

PPARα  play an important role in the endogenous rhythmic property of peripheral clocks in 

vivo, whereas in the central clock PPARα deficiency does not alter the circadian expression of 

clock genes. These clock gene expressions are only affected in the liver of PPARα-/- deficient 

mice. First PPARα is not essential to drive the central circadian system since PPARα-/- mice 

entrained normally without arrhythmic behaviour in constant darkness and displayed no 

alteration in the amplitude and the phase of circadian expression of the clock genes (bmal1, 

per2, per3, cry2 and rev-erbα) compared to WT mice. The lack of PPARα-dependent clock 

regulation in vivo in the SCN can be due either to the absence of a circadian PPARα function 

in the central clock or to the presence of another isotype of PPAR (β, γ) or other nuclear 

receptors that are able to bind to the PPRE site and to exert a compensatory effect. Second, 

the expression of bmal1, an essential gene of the molecular oscillator, is drastically reduced in 

the liver of PPARα-/- deficient mice. This regulation of bmal1 transcription by PPARα  is 

likely through a direct binding of PPARα to the PPRE element located at the position –1519 

in the bmal1 promoter. In addition to the established transactivation of the circadian promoter 

rev-erbα by PPARα (43), our data largely support the view that PPARα also associates with 

the circadian bmal1 promoter in vivo. Interestingly, PPARα expression is strongly decreased 
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in the liver of bmal1  -/- deficient mice compared to WT mice. As no significant change in 

hepatic CLOCK level is found in bmal1  -/- deficient mice compared with WT mice (53), this 

suggests that BMAL1 itself is in return involved in the circadian transactivation of PPARα 

gene at the level of peripheral oscillators in mice. Other observations have also revealed that 

CLOCK is involved in the circadian transactivation of PPARα (27) and interacts with its 

partner RXR (34).  We propose that bmal1 is directly and positively regulated by PPARα and 

that BMAL1 imposes in return a circadian regulation on PPARα transcription. 

 

PPARα expression is resetted by feeding in peripheral clocks. 

Liver is known to be the organ reacting most rapidly to the temporal feeding regimen as it 

plays a dominant role in the metabolism and processing of food components, such as proteins, 

lipids and carbohydrates. It was clearly established that the circadian gene expression in 

peripheral hepatic cells is intimately connected to feeding (10, 11) and that PPARα is 

involved in food processing and energy homeostasis (45). A connection between circadian 

gene regulation, metabolism and energy homeostasis was also established. For example, 

glucose metabolism (e.g., 6-phosphofructokinase-2, aldolase and glucose phosphate 

isomerase) is under the control of the circadian time keeping system (23, 24). Rhythmic 

expression of numerous enzymes and transcription factors involved in protein and amino acid 

metabolism (e.g., serine dehydratase, DBP and 3-hydroxy-3-methylglutaryl coenzyme A 

reductase, (7, 54), in fat metabolism (e.g., cholesterol 7 alpha-hydroxylase, PPARα, 

HMGCoA lyase and reductase, (7, 35, 55) or in detoxification process (e.g., steroid 15 alpha-

hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5), Cyp2e1, Cyp17 and 

glutathione-S-transferase theta 2, (23, 56) was also observed in liver. Herein we show that the 

circadian expression of PPARα is resetted by feeding time and that in the absence of PPARα,  
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clock gene expression in liver is entrained by reversed feeding time, suggesting that PPARα 

does not play a major role in food resetting. We underline that after an extended duration of 

daytime feeding, the food imposed reversed phase of circadian gene expression in peripheral 

liver is similar between WT and PPARα-/- deficient mice. This is probably due to PPARα-

independent signalling pathway that plays a major role in the phase resetting of circadian gene 

expression by feeding time.  

 

Fibrates as a resetting signal in cell cultures and peripheral clocks. 

Previous studies have shown that PPARα expression is positively controlled by 

glucocorticoids and fibrates and negatively by insulin (37-39). Fibrates are also known to up-

regulate the expression of rev-erbα in the rat liver and in both rat and human primary 

hepatocyte cultures (30, 43). In vitro, PPARα mRNA was induced in rat fibroblasts culture 

after both a serum shock and more interestingly, a fenofibrate treatment. Moreover, 

fenofibrate efficiently stimulates the rhythmic expression of several clock genes such as cry1, 

bmal1 and rev-erbα. This suggests that fenofibrate is able to entrain rhythmic PPARα and 

clock gene expressions in Rat-1 fibroblasts. In vivo, rev-erbα mRNA level is up-regulated by 

fenofibrate in the mouse liver of WT animals. As this up-regulation of rev-erbα gene by 

fibrates is not observed in the PPARα deficient mice, we confirm in vivo that the induction of 

rev-erbα gene expression by fibrates is mediated by PPARα at the transcriptional level. 

Interestingly, the increased accumulation of PPARα after fibrate treatment leads in turn to a 

higher level of expression of bmal1 in WT mice. Other convincing evidence that the fibrate 

effect on the bmal1 expression is exerted at the transcriptional level via the PPARα protein is 

that fibrates have no effect on the bmal1 expression in the PPARα-/- mice. Taken together, 
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these results suggest that PPARα could play a role in integrating chemical signals inside the 

liver. 
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How circadian rhythm might influence a fibrate therapy? 

To date, fibrates are clinically used as hypolipidemic drugs that lower plasma cholesterol and 

triglycerides. They exert their effect by regulating the expression of several key genes 

implicated in lipid metabolism via PPARα activation. Interestingly, fibrate therapy represents 

a cost-effective approach in the clinical management and the prevention of cardiovascular 

diseases in a growing population suffering from lifestyle-induced metabolic dysfunctions such 

as obesity, insulin-resistance and diabetes (57). Although important differences in lipid 

metabolism exist between mice and human, including the function of PPARα (58, 59) our in 

vitro and in vivo studies suggest that the regulation by fibrates of the circadian expression of 

clock genes may influence the success of a treatment as it would suggest a potential induction 

and subsequently a dysfunction of their expression after fibrate supply in patients. The 

validity of this hypothesis remains to be demonstrated in human. Therefore, one additional 

question to address is how fibrate administration at a selected time of the day can impact the 

efficacy and the success of the treatment. It will be of interest to decipher the molecular 

mechanisms involved in the circadian expression of clock genes and PPARα-regulated genes 

in presence or absence of fibrates to provide new insight in the downstream circadian 

physiological and cellular processes governed by PPARα itself. Similarly, such understanding 

should lead to new strategies for pharmacological manipulation of the human clock to 

improve the treatment of dyslipidaemias. 

In summary, our data indicate that PPARα is a specific element of the liver oscillatory clock 

in mammals and plays an important role in integrating signals into the clock machinery. We 

clearly demonstrate that in vivo, PPARα  is required to maintain normal circadian oscillation 

of the master clock gene bmal1 in liver. This regulation occurs via a direct binding of PPARα 

on a PPRE located in the bmal1 promoter. In addition, BMAL1 is an upstream regulator of 
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the PPARα expression. This finding provides a new regulatory pathway for the circadian 

system and suggests that some transcription factors may have a specific role in the peripheral 

clocks. Further studies are now required to determine the exact impact of circadian rhythms 

on the metabolic processes governed by PPARα in peripheral organs. This can be addressed 

by investigating the circadian regulation of PPARα target genes and some of the downstream 

targets in the peripheral clock in WT, PPARα-/- and other clock mutant mice. The complete 

elucidation of the signalling elements involved in the interactions between central and 

peripheral clocks and the mechanisms that govern the interplay between metabolism and 

circadian oscillators will also have a major impact on the circadian field in the next future.  
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Material and methods 

Cell culture, serum and fibrate shock 

Rat-1 fibroblasts were grown in DMEM supplemented with 5% fetal calf serum and a mixture 

of penicillin/streptomycin/glutamine (PSG). The serum shock was done as described 

elsewhere using 50% horse serum (9). For the fibrate shock, the medium was exchanged with 

DMEM-PSG supplemented with 50μM fenofibrate (Sigma) after the cells reach confluence 

(time 0). This medium was replaced with fenofibrate-free DMEM-PSG medium after 2 hours. 

At 0, 4, 8, 12, 16, 20, 24 hours after shock, cells were lysed and kept at –70°C until RNA 

extraction. Whole-cell RNAs were extracted using GenElute Mammalian Total RNA 

extraction Kit from Sigma. 

 
Animal experiments 

Purebred WT and homozygous PPARα-/- mice on an SV129 background were used. All 

experiments were done with male mice between 6 to 8 weeks of age. Animals were kept 

under a 12 hours light:dark cycle (12L:12D) and food and drinking water were available ad 

libitum, except when indicated otherwise. The experimental protocols of the current research 

were approved by the rules and regulations of french veterinary services. 

- Locomotor activity recording: Adult male mice (n=8 for both WT and PPARα-/-) 

were exposed to 12L:12D cycle for at least two weeks. For monitoring locomotor activity, 

mice were housed individually in cages equipped with infrared motion captors placed over the 

cages and a computerized data acquisition system (Circadian Activity Monitoring System, 

INSERM, France). Activity records were analyzed with the Clocklab software package 

(Actimetrics, Evanston, IL). For each animal, the total duration of activity was determined 

every 2 or 12 hours during the LD cycle and then averaged for WT and knockout mice. 
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Animals were then allowed to free run in constant darkness for at least 15 days. The 

endogenous period in DD was subsequently determined using the Clocklab software.  

- Circadian expression of clock genes in wild type versus PPARα -/- mice: 12 WT and 

12 PPARα-/- mice were maintained for a period of two weeks in a 12L:12D cycle and 

transferred in constant darkness (DD) the day before the sacrifice. Livers and SCN were 

removed at circadian times CT 1, 8, 14, 21, stored at -70°C until RNA extraction and analysed 

by quantitative RT-PCR. The experiment was done twice.  

- Restricted feeding: Mice (n=24 both for WT and PPARα-/-) fed during the day 

received food when light was on (7 am to 7 pm) whereas mice (n=24 both for WT and 

PPARα-/-) fed during the night received food from 7 pm to 7 am for two weeks. Water was 

freely available over the experimental period. As controls, WT and PPARα-/- mice (n=24 for 

both) were fed ad libitum. Mice were transferred in DD the day before sacrifice. Livers were 

dissected at indicated circadian times (CT 1, 8, 14, 21), stored at -70°C until RNA extraction 

and analysed by quantitative-RT-PCR. 

- Fenofibrate response: In this experiment, mice (n=32 both for WT and PPARα-/-) 

were treated for two weeks with fenofibric acid (vehicle DMSO) mixed in the drinking water 

at the final concentration of 7 mM. Control animals (n=32 both for WT and PPARα-/-) were 

treated with vehicle in the drinking water. Livers were removed at circadian times CT 1, 8, 

14, 21, stored at -70°C until RNA extraction and analysed by quantitative RT-PCR. 

 - Analysis of Bmal 1-/- mice: WT and homozygous bmal1-/- mice on B6 background 

(both females and males aged from 8 to 14 weeks provided by C. Bradfield, Wisconsin, USA) 

were kept under 12L:12D cycles and fed ad libitum. Livers were removed at indicated 

Zeitgeber time. Reverse-transcribed total RNAs from 3 to 5 animals per time point were 

analysed by quantitative -RT-PCR as described below. 
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RNA extraction and Quantitative RT-PCR 

Total RNAs were prepared from cells or from organs according to the manufacturer's 

instructions (Sigma) and reverse transcribed using random primers and MMLV Reverse 

Transcriptase (Invitrogen). cDNA were then used as template for a quantitative real-time PCR 

assay using the QuantiTect SYBR Green PCR reagents (Qiagen) and the DNA Engine 

Opticon system (MJ Research). Each couple of oligonucleotides used were designed to 

hybridize on different exons. The sequences of forward and reverse primers were as follows:  

bmal1 forward 5’-CCAAGAAAGTATGGACACAGACAAA-3’ 
bmal1 reverse 5’-GCATTCTTGATCCTTCCTTGGT-3’ 
cry1 forward 5’-CTGGCGTGGAAGTCATCGT-3’ 
cry1 reverse 5’-CTGTCCGCCATTGAGTTCTATG-3’ 
cry2 forward 5’-TGTCCCTTCCTGTGTGGAAGA-3’ 
cry2 reverse 5’-GCTCCCAGCTTGGCTTGAA-3’ 
per1 forward 5’-GGAGACCACTGAGAGCAGCAAG-3’ 
per1 reverse 5’-CGCACTCAGGAGGCTGTAGGC-3’ 
per2 forward 5’-ATGCTCGCCATCCACAAGA-3’ 
per2 reverse 5’-GCGGAATCGAATGGGAGAAT-3’ 
per3 forward 5’-GGCGTTCTACGCGCACACTGC-3’ 
per3 reverse 5’-CGCTGGTGCACATTCATACTGCG-3’ 
pparα forward 5’-CGCTATGAAGTTCAATGCCTT-3’ 
pparα reverse 5’-TGCAACTTCTCAATGTAGCC-3’ 
rev-erbα forward 5’-CATGGTGCTACTGTGTAAGGTGTGT-3’ 
rev-erbα reverse 5’-CACAGGCGTGCACTCCATAG-3’ 
36B4 forward 5’-ACCTCCTTCTTCCAGGCTTT-3’ 
36B4 reverse 5’-CCCACCTTGTCTCCAGTCTTT-3’ 
 

The efficiency (>95%) and the specificity of the amplification were controlled by generating 

standard curves and carrying out melting curves and agarose gels of the amplicons 

respectively. The relative levels of each RNA were calculated by 2-CT (CT standing as the 

cycle number in which SYBR Green fluorescence exceeds a constant threshold value) and 

normalized to the corresponding non cyclic 36B4 RNA levels. The presented values are 

means ± SEM of duplicates of the same reaction for at least 3 different mice or 3 

experimental points. 
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The significance of differences was assessed by distribution-free two-way ANOVA. Paired 

student’s tests were used to compare WT and PPARα-/- or bmal1-/-mice. Results are presented 

as mean ± SEM. Differences were considered significant when p ‹ 0.05.  

 

Chromatin Immunoprecipitation (ChIP) assays 

ChIP experiments were performed as already described in IJpenberg et al. (60). Briefly, WT 

and PPARα-/- mice (n=3) were fed for 5 days with either Wy14,643 (50mg/kg/day) or vehicle. 

Immunoprecipitation of liver extracts was done using a PPARα antibody and the 

immunoprecipitated DNA was PCR amplified using primers flanking either the rev-erbα 

Rev-DR2 (GTGTCACTGGGGC) or potential PPARα response element (PPRE, usually 

AGGTCANAGGTCA) on the bmal1 promoter predicted using the computer program NUBISCAN 

available at the following website www.nubiscan.unibas.ch (61). An equal volume of non-

precipitated genomic DNA (Input) was amplified as positive control. One fifth of PCR 

products were separated on an ethidium bromide-stained 2% agarose gel.  
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Figure legends  

Figure 1: Entrainment and free running locomotor activity of WT and PPARα-/- mice 
A. Representative actograms of locomotor activity for WT and PPARα-/- mice under12L:12D 
cycle and DD conditions. After 2 weeks of entrainment under a 12L:12D cycle, mice were 
placed in DD. Horizontal bar at the top of each actogram depicts the lighting conditions of LD 
cycles. Time spans in darkness are marked by grey shadowing.  
B. 24-h profiles of spontaneous locomotor activity of WT (open boxes) and PPARα-deficient 
mice (solid boxes). The distribution of activity was determined every 12 hours during LD 
cycle. Shadowed areas indicate the dark period. Results are expressed as the means ± SEM of 
values from 8 animals per group. 
C. Circadian expression of bmal1, per2, per3, cry2 and rev-erbα mRNAs in SCN of WT 
( ) and PPARα-/- mice ( ). Real-time PCR was used to determine transcript levels at 
4 circadian times (CT1, 8, 13, 21). Transcript levels are displayed as relative quantity (RQ) 
after normalization to the non cyclic 36B4 expression levels in the same sample. Results are 
expressed as the means ± SEM of values of two independent experiments, each realized with 
3 animals for both genotypes at each time point. Statistically significant differences between 
WT and PPARα-deficient mice are indicated by * (p<0,05). 
 
Figure 2: Circadian expression of bmal1, per1, per2, per3, cry2 and rev-erbα mRNAs in 
liver of WT ( ) and PPARα-/- mice ( ) using real-time PCR. Transcript level values 
are expressed as relative quantity (RQ) after normalization to the corresponding non cyclic 
36B4 expression levels. Results are shown as the mean ± SEM of values of two independent 
experiments, each with 3 animals for both genotypes at each time point. There were 
significant variations between the two genotypes at CT1 and CT21 for bmal1 and CT8 for 
per3 as indicated by * p<0,01. 
 
Figure 3: Circadian gene expression in liver after restricted feeding in WT and PPARα-/- 
mice.  
A. PPARα expression in the liver of food-entrained WT mice (daytime ( ) or nighttime 
feeding ( ).  
B. Circadian accumulation of bmal1, per1, per3 and rev-erbα mRNAs in liver of WT and 
PPAR α-/- mice as a function of daytime ( ) or nighttime feeding ( ). Transcript 
levels are displayed as relative quantity (RQ) after normalization to the corresponding non 
cyclic 36B4 expression levels. The presented values are expressed as means ± SEM of 
duplicates of the same reaction for 6 different mice per genotypes. 
 
Figure 4: Effect of serum shock or fenofibrate on clock gene expression. 
A. Accumulation of PPARα ( ), cry1 ( ) and rev-erbα ( ) mRNAs in Rat-1 
fibroblasts shocked with 50% of horse serum. PPARα accumulation in absence of horse 
serum ( ) is reported as a control of non-induction. The presented values are means ± 
SEM of duplicates of the same reaction for 3 different experimental points. 
B. Accumulation of PPARα mRNAs in Rat-1 fibroblasts shocked with 50 μM fenofibrate 
( ) or with vehicle ( ) as controls. The presented values are means ± SEM of 
duplicates of the same reaction for 3 independent experimental points. 
C. Accumulation of bma1l, cry1 and rev-erbα mRNAs in Rat-1 fibroblasts shocked with 
fenofibrate ( ) or with vehicle ( ) as controls. The presented values are means ± 
SEM of duplicates of 3 independent experimental points. 
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D. Circadian accumulation of bmal1 and rev-erbα mRNAs in liver of WT and PPAR α-/- mice 
treated (black boxes) or not (white boxes) with fenofibrate. In this experiment, mice were 
treated for two weeks with fenofibric acid (vehicle DMSO) mixed in the drinking water at the 
final concentration of 7 mM. Control animals were treated with the vehicle in the drinking 
water. Real-time PCR was used to determine transcript levels. Transcript level values are 
displayed as relative quantity (RQ) after normalization to the non cyclic 36B4 expression 
levels in the same sample. Results are expressed as the means ± SEM of values from 8 
animals for both genotypes at each time point.  
 
Figure 5: Reciprocal regulation of BMAL1 and PPARα 
A. ChIP of the potential bmal1 and rev-erbα PPRE elements with PPARα antibodies. WT 
and PPARα-/- mice (n=3 for both genotypes) were fed for 5 days with either Wy14,643 or 
vehicle (V). ChIP of liver extracts was performed with a PPARα antibody (PPAR-Ab) and 
analysed by PCR for enrichment of the PPRE element of the bmal1 promoter (top panels) and 
of the rev-erbα promoter Rev -DR2 (bottom panel). p.i.: preimmune serum; Input: non-
precipitated genomic DNA. 
B. Daily expression of PPARα mRNAs in WT ( ) and bmal1 mutant mice ( ) using 
real-time PCR. Transcript levels were normalized against the non cyclic 36B4 transcript level 
in the same sample. Results are expressed as the means ± SEM of values from 3-5 animals at 
each time point. Statistically significant differences between WT and deficient mice are 
indicated by * p<0,0001. 
 
Figure 6: Model of cross-talk between PPARα and circadian pathways depicting the control 
of circadian regulation by PPARα in peripheral clocks.  
In mammals, circadian rhythms are generated by the main pacemaker located in the 
suprachiasmatic nucleus (SCN) of the hypothalamus, which synchronizes the peripheral 
oscillators and ensure an ordered response of the organism in terms of physiology, 
metabolism and behavior to environmental changes. These peripheral clocks can be resetted 
by alternative routes such as feeding time. Herein, we show that PPARα is entirely resetted 
by feeding time. We propose that bmal1 transcription is directly positively regulated by 
PPARα and that BMAL1 imposes circadian regulation on PPARα transcription (bold arrows). 
The amplified accumulation of PPARα under fibrate treatment leads in turn to a higher level 
of expression of bmal1 gene (dashed arrows).  
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