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Abstract
Background: Dystrophin has a key role in striated muscles mechanotransduction of
physical forces. Although cytoskeletal elements play a major role in the
mechanotransduction of pressure and flow in vascular cells, the role of dystrophin in
vascular functions has not yet been investigated. Thus we studied endothelial and
muscular responses of arteries isolated from mice lacking dystrophin (mdx).
Methods and results: Carotid and mesenteric resistance arteries (120µm diameter) were
isolated and mounted in vitro in an arteriograph to control intraluminal pressure and
flow. Blood pressure was not affected by the absence of dystrophin. Pressure (myogenic)-,
phenylephrine- and KCl-induced tone were unchanged. Flow (shear stress) -induced
dilation in arteries isolated from mdx mice was decreased by 50 to 60%, whereas dilation
to acetylcholine or sodium nitroprusside were unaffected. L-NAME-sensitive flow-dilation
was also decreased in arteries from mdx mice. Thus the absence of dystrophin was
associated to a defect in signal transduction of shear stress. Dystrophin was present in
vascular endothelial and smooth muscle cells, as shown by immunolocalization and
localized at the level of the plasma membrane, as seen by confocal microscopy of perfused
isolated arteries.
Discussion: This is the first functional study of arteries lacking the gene for dystrophin.
Vascular reactivity was normal with the exception of flow-induced dilation. Thus
dystrophin could play a specific role in shear stress-mechanotransduction in arterial
endothelial cells. Organs damages in diseases such as Duchenne's dystrophy might be
aggravated by such a defectuous arterial response to flow.

Short abstract
Dystrophin plays an active role in the transduction of mechanical forces in striated

muscle. We showed that the absence of dystrophin altered specifically the
mechanotransduction of shear stress due to flow by the endothelium of arteries isolated
from mice lacking the gene for dystrophin (mdx), whereas other forms of vascular tone,
dilators or constrictors, were unaffected.
Thus dystrophin plays a specific role in shear stress-mechanotransduction in arterial
endothelial cells. Finally, organs damages in diseases such as Duchenne's dystrophy might
be aggravated by defectuous arterial responses to changes in blood flow.
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Introduction
Flow (shear stress)-induced dilation is a fundamental mechanism for the control of

vascular tone. Shear stress is the main physiological stimulus for vascular endothelial cells,

triggering the release of vasoactive agents 1-7. Its role in the control of blood flow supply

to organs is fundamental7. Flow-induced dilation allows the adaptation of feeding arteries

to the metabolic needs of each organ7,8. Mechanotransduction of shear stress involves the

extracellular matrix and cell structure proteins8-18. Depolymerization of F-actin into G-

actin is rapid upon shear stress stimulation12,19 and the absence of the gene encoding for

the intermediate filament vimentin greatly lowers the vascular response to shear stress20.

Dystrophin is a main cytoskeletal structure protein21-28 involved in skeletal and cardiac

muscle cells mechanotransduction21,28-30. Although dystrophin is present in vascular

smooth muscle cells25, 31-33 no functional study in blood vessels has been performed and
especially in response to mechanical stimuli such as pressure and flow, the main effectors

of vascular tone and blood supply1-8. The possibility that a specific vascular malfunction,
such as a decrease in local blood flow supply to end-organs, has never been investigated
in dystrophin-related diseases such as the Duchenne's dystrophy, although it might, at
least, accelerate damages to tissues and especially damages to cardiac and skeletal muscles.
Thus, we tested the hypothesis that vascular mechanotransdution of the 2 main physical
forces to which vessels are continuously submitted (pressure and flow) could involve
dystrophin and that its absence might induce vascular disorders. Indeed, dystrophin has a
key position between membrane structure proteins and the actin cytoskeleton, although
never described as precisely in vascular cells, and disruption of the actin filaments has

been shown to specifically affect vascular responses to flow12. We used carotid and
mesenteric resistance arteries which represent the 2 main types of arteries, i.e., large
conductance (or compliance) arteries using their elastic properties to damp the energy
produced by the ejection of blood by the heart at each systole and resistance arteries using
their muscular tone and endothelial relaxing capacity to regulate blood flow supply to
organs.
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METHODS

Isolated arteries
Mdx mice and their control (C57-Bl10) were obtained from Iffa-Credo (L'Arbresle,
France). They were anesthetized for blood pressure measurement through a catheter in

the left carotid artery20. Then, right carotid and mesenteric arteries were isolated and

cannulated at both ends in a video monitored perfusion system44 (LSI, Burlington, VT) as

previously described20,34,45,46. Briefly, arteries were bathed in a physiological salt
solution (pH 7.4, pO2 160 mmHg, pCO2 37 mmHg). Pressure was controlled by a servo-

perfusion system and flow generated by a peristaltic pump. Diameter changes were
measured when intraluminal pressure was increased from 10 to 125 mmHg. Pressure we
then set at 75 mmHg and flow increased by steps. At the end of each experiment arteries

were perfused and superfused with a Ca2+-free physiological salt solution containing
EGTA (2 mM) and sodium nitroprusside (10 µM) and pressure steps were repeated in

order to determine the arteries passive diameter20,34,45,46. Contractions to
phenylephrine (1nM to 10µM), KCl (80 mM) and calcium (0.1 to 1 mM in a calcium-free
medium + 80 mM KCl) were separately tested. Dilation to acetylcholine and sodium
nitroprusside were tested after preconstriction of the arteries with phenylephrine (50% of

the maximal contraction)20,34.

Histomorphometrical analysis
Histomorphometry of the arteries was performed as previously described on segments
of arteries previously mounted in the arteriograph as described above. Pressure was set
at 75 mmHg and vessels were fixed in 10% formaldehyde in saline solution (30 min) and
sectioned (10µm thick sections). Morphometric analysis was performed with an

automated image processor45-47.

Immunolocalization of dystrophin and in situ confocal microscopy.
Segments of arteries mounted in embedding medium (Miles, Inc., Elkhart, USA), frozen in

isopentane45,46. Immunostaining was then performed on transverse cross section (5 µm
thin) incubated overnight at 4°C with anti-dystrophin antibodies (anti dys2, 1:20,
Novacastra) and then incubated for 30 min at 37°C with anti-rabbit antibodies conjugated
to peroxydase (Amersham). Samples were mesenteric resistance or carotid arteries,
gracilis muscle and heart from mdx and control mice, as well as human internal
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mammary and mesenteric arteries. Positive staining was visualized as a brown-orange

staining, using video microscopy45,46.
In another group of experiments immunostaining of dystrophin was performed in
isolated mesenteric arteries from control and mdx mice mounted in an arteriograph
under a pressure of 75 mm Hg and a flow of 50 µl/min, so that vascular cells were left in
physiological conditions. Cell membranes were permeabilized with β-escin (90 mg/ml, 10
min) to allow antibodies to reach dystrophin. A secondary antibody (anti IgG), bound to

streptavidine and Texas-red was used to labeled anti-dystrophin antibodies45,46.
Fluorescence staining was visualized using an Axiophot inverted microscope (Nikon,
Tokyo, Japan) equipped with an Odyssey XL confocal scanning system (Noran
Instruments, Midleton, WI, USA) allowing to visualized staining of endothelial cells in the
luminal side of the perfused artery.
Finally, we also used human mammary and epiploic arteries to immunolocalized, as
described above, dystrophin in endothelial and smooth muscle cells. These human
arteries were isolared from excess material normally discared after surgery.

Statistical analysis
Results were expressed as means ± standard error (s.e.mean). EC50 or IC50

(concentration of agonist required to induce half the maximum response) and Emax

(maximal response) were calculated for each artery20. Significance of the differences
between groups was determined by analysis of variance (one or two factor ANOVA, or
ANOVA for consecutive measurements, when appropriate). Means were compared by
paired t test or by Bonferroni's test for multigroup comparisons. P values less than 0.05
were considered to be significant.

Results

Animals
Body weight was not affected by the absence of dystrophin (33±3 vs 35±3g, mdx vs
control mice, n=12 per group). Similarly, blood pressure was normal in mdx mice (mean
arterial pressure: 86±5 mmHg in mdx vs 88±6 mmHg in controls mice, n=12 per group).

Isolated arteries
In isolated carotid and mesenteric resistance arteries under a physiological level of
intraluminal pressure a basal (myogenic) tone develops, which was antagonized by flow
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(shear stress)-induced dilation. Thus, increasing flow by steps induced a progressive
dilation (figure 1). In both carotid and mesenteric resistance arteries flow (shear stress)-
induced dilation was strongly attenuated in mdx mice (fig. 1). Pressure (tensile stress)-
induced tone (myogenic in resistance arteries) was unaffected by the absence of
dystrophin (mdx mice) in both type of vessels (figure 2). Other endothelium dependent
(acetylcholine) or independent (sodium nitroprusside) forms of dilation were not modified
in mdx mice, in both carotid and resistance arteries (table 1). Similarly, contractions to
calcium, KCl or phenylephrine (table 1), in addition to basal tone due to pressure (figure 2)
were not affected by the lack of dystrophin.
Blockade of NO synthesis by L-NAME reduced flow-induced dilation in both types of
arteries (figure 3, top). L-NAME was less efficient in arteries from mdx mice stimulated by
flow than in control mice (figure 3, bottom graphs). Direct stimulation of cGMP-
dependent dilation (endothelium-independent) with sodium nitroprusside was unaffected
in mdx mice (table 1).
Angiotensin II or endothelin-1 receptors inhibition, did not affect flow-induced dilation in
arteries from mdx mice (n=6 per group, data not shown).

Histomorphometry and passive properties of the vascular wall
Although no significant change in arterial wall thickness (figure 4) or passive diameter
(figure 5, mesenteric arteries and figure 6, carotid arteries) was found, arterial wall
structure was affected by the absence of dystrophin, as visualized by a larger wall to
lumen ratio (figure 4) and a lower compliance and distensibility of the carotid artery
(figure 6).

Immunolocalization of dystrophin
The protein dystrophin was present in both vascular smooth muscle and

endothelial cells in control mice (absent in mdx mice), but also in human internal
mammary and mesenteric resistance arteries (figure 7). Confocal scanning of an isolated
arteries, mounted in an arteriograph in order to maintain physiological levels of pressure
and flow in the lumen of the arteries, shows that dystrophin is present in both endothelial
and smooth muscle cells. In these cells, dystrophin was located at the level of the plasma
membrane (figure 8).

Discussion
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 This is the first study of vascular functions in relation to the genetic deficiency in
dystrophin. Interestingly, in mice lacking the gene for dystrophin, vascular reactivity
(endothelial and muscular) was normal, with the exception of flow (shear stress)-induced
dilation which was strongly attenuated.

Although dystrophin has been clearly shown to play a key role in force
mechanotransduction in striated muscles, its possible role in the mechanotransduction of
pressure and flow has never been investigated. Flow and pressure are 2 of the main
factors involved in the control of blood vessels tone and blood flow supply and
understanding their transduction pathway(s) is fundamental. Surprisingly, in both isolated
carotid and mesenteric resistance arteries pressure (tensile stress)-induced tone (myogenic
in resistance arteries) was unaffected by the absence of dystrophin, whereas flow (shear
stress)-induced dilation was strongly attenuated in mdx mice. Thus only
mechanotransduction of shear stress at the surface of endothelial cells, and not that to
pressure exerted on the whole vessel wall, was attenuated. Furthermore, in this mice
model with a strong attenuation of flow-induced dilation, blood pressure was normal.

This and our previous observations in mice lacking the gene encoding for vimentin20 and

in rats rendered hypertensive with a chronic infusion of endothelin34 strengthens the
hypothesis that flow-dilation has a key role in the control of local blood flow but is not
necessarily and/or directly related to the basal level of systemic blood pressure.
Flow-dilation was specifically attenuated in mdx mice. Other endothelium-dependent
(acetylcholine) and independent (sodium nitroprusside) dilation were not modified in mdx
mice. Similarly, contraction to calcium, KCl or phenylephrine, in addition to myogenic
tone due to pressure were not affected by the lack of dystrophin, showing that no
endothelium dysfunction and no defect in smooth muscle contractility or vasorelaxant
properties could be involved in the reduction in dilation to shear stress found in arteries
from mdx mice.
Although no significant change in arterial wall thickness or passive diameter was found,
arterial wall structure was affected by the absence of dystrophin, as visualized by a larger
wall to lumen ratio and a lesser compliance and distensibility (figure 2). Nevertheless,
these changes cannot explain a change only in endothelial response to flow, without
affecting other forms of tone. Indeed, in both mdx and control mice arterial tone before
inducing flow-dilation was similar.
Nitric oxide (NO) is major relaxing agent released by the endothelium after flow

stimulation5,7,35-38 and the blockade of its synthesis was less efficient in arteries from
mdx mice stimulated by flow, whereas direct stimulation of cGMP-dependent dilation
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with sodium nitroprusside was unaffected in mdx mice. Thus arteries from mdx mice are
less able to produce NO in response to shear stress. In addition, arteries from mdx mice
did not produce more endothelium-derived vasoconstrictor agents when stimulated by
flow, as angiotensin II or endothelin-1 receptors inhibition did not affect flow-induced
dilation in arteries from mdx mice. Thus the lack of dystrophin caused a specific defect in
the transduction of shear stress into a dilation through the NO-cGMP pathway in
endothelial cells being able to normally dilate to other relaxing stimuli. This attenuation in
flow-induced dilation might lead to a lesser adaptation to increases in blood flow in
organs when a metabolic need requires a higher blood flow supply. In addition, flow
(shear stress at the surface of the endothelial cells) being a major stimulus for vascular

cells growth and angiogenesis8,38-40, a defect in flow-mechanotransduction due to the
absence of dystrophin could be deleterious for the angiogenic process and consequently
blood flow supply to organs might be affected when an increase in blood flow is required
in situations such as exercise. In support of this statement, skeletal muscle contraction
induces a NOS-I-dependent arteriolar dilation which is decreased in mdx mice. This lower

dilation has been attributed to a lower capacity of the skeletal muscle to produce NO41

but in view of the present study we can also postulate that the increase in blood flow
required for the contraction might not be high enough in mdx mice, leading to a lesser
NO production in blood vessels as well. Also in support of our hypothesis the occurrence
of ischemia has been shown in skeletal and cardiac muscles of dystrophin deficient

patients42,43.
Finally, the protein dystrophin was present in both vascular smooth muscle and
endothelial cells in control mice (absent in mdx mice) and also in human internal
mammary and mesenteric resistance arteries. This location is in agreement with the

studies performed in skeletal and cardiac muscle cells29 and strengthens the possibility
that dystrophin, in vascular endothelial cells plays a major role in mechanotransduction.

Flow-mechanotransduction also involves integrins48. Although it is tempting to link the
two proteins in the same pathway, such a possibility requires further investigations. In
addition, integrins blockade with RGD peptides may suppress totally flow-induced

dilation48, whereas the absence of dystrophin in mdx mice decreased the response to 40-
50 % of that in control mice. This could reflect an adaptation of the endothelial cells to the
chronic absence of dystrophin and other proteins such as dystrophin-related proteins
could be involved in flow-mechanotransduction in mdx mice. Finally, the transduction
pathway beyond dystrophin leading to the activation of NO synthesis, and especially the
type of kinases involved, also remains to be elucidated

H
A

L author m
anuscript    inserm

-00135482, version 1



9

In conclusion we found that dystrophin plays a key role in the
mechanotransduction of shear stress by the vascular endothelium in both large and
resistance arteries. The present findings supports the concept that some elements of the
cytoskeleton, with a central role for dystrophin, may specifically transduce the signal
from shear stress to the enzymatic dilator machinery in vascular endothelial cells. This
observation might be of importance to better understand the development and possibly
to improve the treatment of dystrophin-related diseases.
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Table 1: Pharmacological profile of mice arteries. Contraction to phenylephrine (PE), KCl
(80 mM) and calcium (Ca2+) and dilation to acetylcholine (ACh) and sodium nitroprusside
(SNP) were obtained in mesenteric resistance arteries and carotid arteries isolated from
mice lacking the gene for dystrophin (mdx) and their control.

Mesenteric arteries: mdx control

SNP: IC50 43±7 32±8 nM
Imax 100±1 100±1 %

ACh: IC50 78±9 87±8 nM
Imax 99±2 96±3 %

PE: EC50 28±4 40±5 nM
Emax 86±8 93±8 µm

Ca2+ EC50 0.2±0.04 0.16±0.03 mM
Emax 105±11 128±20 µm

Carotid arteries: mdx control

SNP: IC50 61±17 90±30 nM
Imax 78±5 85±6 %

ACh: IC50 621±134 585±78 nM
Imax 68±5 74±3 %

PE: EC50 497±106 406±82 nM
Emax 85±6 96±6 µm

Ca2+ EC50 0.34±0.06 0.31±0.07 mM
Emax 74±7 72±6 µm

Contraction to KCl: mdx control

Carotid arteries: 93±8 100±12 µm
Mesenteric arteries: 112±8 118±6 µm

EC50 and IC50 represent the concentration necessary to reach 50% of the maximal effect;
Emax and Imax give the maximal effect of the drug (n=8 per group).
No significant difference between mdx and control mice was found.
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Figure 1: Vascular response to flow. Typical recordings showing changes in diameter in
response to step increases in flow in mesenteric resistance arteries isolated from control
(a) or mdx mice (b) and mounted in an arteriograph, under a pressure (P, top recordings)
of 75 mmHg. Flow-induced dilation obtained in mesenteric (c) and carotid (d) arteries was
strongly attenuated in mdx mice. n=14 per group.
*P <0.001; two-factor ANOVA, control vs mdx.

Figure 2: Changes in diameter in response to step increases in pressure in mesenteric
resistance (myogenic tone, upper panel) and carotid (basal tone, lower panel) arteries
isolated from mdx and control mice. n=14 per group.
No significant difference; two-factor ANOVA, control vs mdx.
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Figure 3: Effect of the inhibition of NO synthesis with L-NAME (0.1 mM) on flow-induced
dilation (upper panel) in mesenteric resistance (left) and carotid (right) arteries isolated
from mdx and control mice. In the lower panel, the inhibitory effect of L-NAME is shown
as a percentage of inhibition of flow-induced dilation. (n=9 to 14 per group).
*P <0.01; two-factor ANOVA, control vs mdx.

Figure 4: Arterial wall thickness (left panel) and wall to lumen ratio (right panel) in
mesenteric resistance and carotid arteries isolated from mdx and control mice. (n=6 to 8
per group).
*P <0.01; two-factor ANOVA, control vs mdx.
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Figure 5: Passive diameter determined in response to increases pressure levels in
mesenteric resistance arteries isolated from mdx and control mice. (n=10 and 14,
respectively).No significant difference; two-factor ANOVA, control vs mdx.

Figure 6: Passive arterial diameter (upper panel), cross sectional compliance (middle
panel) and distensibility (lower panel) in carotid arteries isolated from mdx and control
mice. (n=8 to 10 per group). *P <0.01; one-way ANOVA, control vs mdx.
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Figure 7: Immunolocalization of dystrophin in different type of arteries (peroxydase
staining: orange to brown when positive). Dystrophin was present in the tunica media
and in the endothelium of mesenteric (a,b) and carotid arteries (e). No staining in mdx
mice (carotid artery: d). A similar pattern was found in human mesenteric (c) and
mammary arteries (f).
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Figure 8: Immunolocalization of dystrophin (Texas-Red staining) in perfused resistance
arteries mounted in an arteriograph (pressure = 75 mmHg and flow = 30 µl/min) shows
the in situ localization of dystrophin in smooth muscle (a) and endothelial cells (b).
Confocal scanning was performed at a high speed (30 images per second) due to the
movements of the vessel wall during perfusion under pressure.
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Abbreviations:

Cyclooxygenase: COX,
Nitric oxide: NO,

NG-nitro-L-arginine methyl ester: L-NAME, 10 µM),
Ethylenbis-(oxyethylenenitrolo) tetra-acetic acid: EGTA,
mdx: dystrophin-deficient mice.
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