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ABSTRACT 

 

Background: We have previously shown that angiotensin II type 2 receptor (AT2R) 

stimulation causes endothelium-dependent vasodilation which does not desensitize after 

chronic angiotensin II type 1 receptor (AT1R) blockade, suggesting a role for AT2R in 

antihypertensive treatment.  

Material and Results: We recorded mean arterial pressure (MAP) and investigated AT2R by 

western blot analysis, immunohistochemistry and function in isolated mesenteric resistance 

arteries (205 m diameter) from Wistar-Kyoto (WKY) and spontaneously hypertensive rats 

(SHR) receiving for 4 weeks in drinking water: placebo, AT1R blockade (candesartan, 2 

mg/kg/d), angiotensin converting enzyme inhibitor (perindopril, 3 mg/kg/d), non-selective 

vasodilator (hydralazine, 16 or 24 mg/kg/d) or candesartan + hydralazine (16 mg/kg/d). 

In precontracted isolated arteries AT2R stimulation (Angiotesin II in the presence of 

candesartan) caused vasodilation in WKY rats (MAP=118 mmHg) and vasoconstriction in 

SHR (MAP=183 mmHg). In SHR treated with candesartan (MAP=146 mmHg) or hydralazine 

(16 mg/kg/d; MAP=145 mmHg) AT2R-induced contraction was reduced by 50%. In SHR 

treated with perindopril (MAP=125 mmHg), AT2R stimulation induced a vasodilation. In 

SHR treated with hydralazine (24 mg/kg/d; MAP=105 mmHg) and in SHR treated with 

hydralazine (16mg/kg/d) + candesartan (MAP=102 mmHg) an AT2R mediated-vasodilation 

was restored. Immunochemistry and Western-blot analysis showed that AT2R expression, 

lower in SHR than in WKY was restored to normal level by treatments reducing arterial 

pressure in SHR. 

Conclusions: Our results suggest that in resistance arteries of SHR 1) AT2R is down 

regulated by hypertension and 2) specific and non-specific anti-hypertensive treatments 

restore AT2R expression and vasodilator functions. 
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INTRODUCTION 

 

Angiotensin II (Ang II), the key effector of the renin-angiotensin-aldosterone system, has an 

important role in the control of blood pressure and blood volume. Angiotensin II activates at 

least two receptor types. (
1
,
2
), the Ang II type 1 receptors (AT1R) the Ang II type 2 receptors 

AT2R(
3
,

4
,

5
).  Stimulation of AT2R undoubtedly induces relaxation in several vascular 

territories (
6

,
7

). In most blood vessels AT2R-dependent relaxation is associated with 

activation of the bradykinin (BK) and/or nitric oxide (NO)/Guanosine 3', 5'-cyclic 

monophosphate (cGMP) pathway (
8
,
9
,
10

,
11

). In vitro, the vasodilator role of AT2R is supported 

by evidence based on enhance Ang II-mediated vasoconstriction in the presence of AT2R 

blockade or in AT2R knockout mice (
12

,
13

,
14

). AT2R mRNA and protein expression was 

demonstrated in resistance arteries from normotensive rats (
15

,16). We have previously shown 

in mesenteric resistance arteries from WKY, that AT2R is involved in NO-dependent flow-

mediated dilation (
16

), whereas in SHR flow (shear stress) stimulation of the endothelium is 

associated to an AT1R and endothelin-1 type A receptor activation, thus counteracting 

endothelium-dependent dilation (
17

,). Furthermore, acute administration of an AT2R inhibitor 

reversed both the acute antihypertensive effects and elevated level of BK, NO and cGMP in 

renal interstitial fluid caused by AT1R blockade in renal wrap and salt-restricted rats (
18

,
19

). 

Finally, we have recently shown the reproducibility of the vasodilator effect of AT2R 

stimulation under acute and chronic AT1R blockade (
20

), further supporting the assumption 

that AT2R stimulation might play a role in the antihypertensive effect of AT1R blocking drugs. 

Thus, we speculate that AT2R-stimulation, and hence vasodilation, might play a role in 

antihypertensive treatments, especially when AT1R blocking agents are used. Indeed, AT1R 

antagonists induce an important rise in circulating angiotensin II. AT2R might then be 

chronically overstimulated, participating to the maintenance of a vasodilation, particularly 

since this effect was not easily desensitized (20). 

Thus, in the present study, we evaluated the vasomotor role of AT2R in resistance arteries 

isolated from SHR (hypertensive conditions) and after various chronic antihypertensive 

treatments, including angiotensin-converting enzyme inhibition, AT1R blockade or a non-

selective treatment, as well as AT2R expression and immunolocation.  We hypothesized that 

AT2R-mediated dilation, which was impaired in untreated SHR, would be re-established in 

mesenteric arteries taken from treated SHR in parallel with reductions in blood pressure. 

 



METHODS 

 

Animal model 

7-8 weeks old male WKY and SHR rats were separated into 8 groups receiving for 4 weeks in 

drinking water: WKY: placebo or AT1R antagonist (candesartan cilexetil, 2mg/kg/d), SHR: 

placebo, ACEI (perindopril, 3mg/kg/d), candesartan (2mg/kg/d), the non-selective 

antihypertensive drug (hydralazine, 2 groups: 16 or 24 mg/kg/d) or candesartan  + hydralazine 

(16 mg/kg/d).  

The protocol used was in accordance with the European Community standards on the care and 

use of laboratory animals (authorization no.00577). 

 

MAP Measurement 

After 4 weeks of treatment, rats were anesthetized with sodium pentobarbital (50mg per kg, 

i.p.). Mean arterial pressure (MAP) was measured in the right carotid artery using a catheter 

connected to a GOULD transducer and an analog-digital signal recording system 

(Biopac)(16,17)  

 

Isolated mesenteric artery 

A 3-4 mm-long segment of mesenteric artery (205  11 m, internal diameter measured at 75 

mmHg in the absence of tone) was dissected, cannulated at both ends and mounted in a video 

monitored perfusion system (
21

) as we have previously described (16,17,20). Briefly, arteries 

were bathed in a physiological salt solution (PSS) maintained at 37°C, pH 7.4. The pO2 was 

160 mmHg and the pCO2 37 mmHg (16,17,20). The artery was superfused (4 ml/min) and 

flow through the vessel was maintained at a rate of 100 µl/min, with intraluminal pressure set 

at 75 mmHg (20). Arterial diameter was measured (Living Systems Instrumentations, 

Burlington, VT, USA) and recorded continuously (Biopac, Lajolla, CA, USA). Vessels were 

allowed to stabilize for at least 30 minutes before drugs were added to the PSS superfusion. 

The integrity of the endothelium was assessed by testing the relaxing effect of acetylcholine 

(Ach, 1 µmol/L) after precontraction with phenylephrine (PE, 1 µmol/L). The arteries were 

then exposed to candesartan (100 nmol/L) for at least 30 minutes before exposure to Ang II 

while they were precontracted with PE (1 µmol/L) and serotonin (0.1 µmol/L) in order to 

induce a stable reduction in diameter. When this response had reached a plateau, a 

concentration-response curve to Ang II (0.1 nmol/L to100 nmol/L) or Ang II (100 nmol/L) 



was performed and changes in diameter were measured. Ach (1 µmol/L) was used to 

completely dilate the vessels. A number of 8 rats was used in each group. 

In separate series of experiments (n=5 per group), AT2R stimulation was repeated before and 

after application of one of the following drug: the cyclooxygenase inhibitor indomethacin (10 

µmol/L), the thromboxane A2-PGH2 receptor blocker SQ29548 (10 µmol/L), the bradykinin 

B2 receptor blocker HOE140 (0.1 µmol/L), the endothelin receptor blocker bosantan (10 

µmol/L).  

Stimulation of AT2R was also performed before and after endothelium removal (5 second of 

air perfusion, n= 4 rats per group) in WKY rats, untreated SHR and in SHR treated with 

candesartan plus hydralazine (16 mg/kg/d).  

 

Western Blot Analysis of AT2 Receptors 

 

Western blot analysis of AT2R was performed in mesenteric resistance arteries of WKY rats 

and SHR (n=8 per group). Mesenteric arteries were also isolated from SHR treated with 

hydralazine (24mg/kg/d, for 18, 23, or 48 days, n=5 per group) or with candesantan + 

hydralazine (16mg/kg/d, n=5 per group). Mesenteric arteries were homogenized using a lysis 

buffer (1% sodium dodecyl sulfate SDS, 10 mmol/L Tris-HCl [pH 7.4], 1 mmol/L sodium 

orthovanadate , 2.5 mg/L leupeptin and 5 mg/L aprotin). Extracts were incubated at 25 °C for 

30 minutes and then centrifuged (1 000g, 15 minutes, 14°C). Proteins concentration was 

determined using the Micro BCA Protein Assay Kit (Pierce). After denaturation at 100°C for 

5 minutes, equal amounts of proteins (15 g) were loaded on a 9% polyacrylamide gel and 

transferred to nitrocellulose membranes for 12 hours (40 V, 4°C). Membranes were blocked 

with 10% albumin bovine (BSA) in TBST (20 mmol/L Tris [pH 8.0], 150 mmol/L NaCl, and 

0.1% Tween-20) for 1 hour and were then incubated with AT2R rabbit polyclonal antibody 

(dilution 1:100, Santa Cruz, Califonia, USA) in washing solution at room temperature for 20 

hours. The membranes were then washed and incubated with the anti-rabbit horseradish 

peroxidase antibody (dilution 1 : 5000, Amersham Pharmacia Biotech, Orsay, France) for 1 h 

at room temperature. After 3 washes with TBS-T, immunocomplexes were detected by 

chemiluminescent reaction (ECL-kit; Amersham Pharmacia Biotech) using a computer based 

imaging system (Fuji LAS 1000 plus; Fuji Medical System). Quantification was performed by 

densitometric analysis.  



 

Immunofluorescence Analysis of AT2 Receptors 

 

Segments of  mesenteric resistance arteries (n= 6 rats per group) were mounted in embedding 

medium (Miles, Inc), frozen in isopentane pre-cooled in liquid nitrogen, and stored at -80°C 

on transverse cross sections 7 m thick. Sections were incubated with candesartan (30 min, 10 

nmol/L, 25°C), then with fluorescent Angiotensin II (FITC-bound angiotensin II, 30 min, 10 

pmol/L, 25°C, Molecular Probes). Fluorescence staining was visualized using confocal 

microscopy (Biorad MRC-600). Control experiments were performed after incubation with 

non-fluorescent Angiotensin II. Image analysis was performed using Histolab (Microvision, 

France). Briefly, pixels quantification was performed after separating the media and the 

endothelial layer. Data is given as percentage of control (fluorescence in WKY taken as 

100%).  

 

Statistical analysis 

 

Results are expressed as means  s.e. mean. The significance of the different treatments was 

determined by ANOVA or two tailed Student’s paired t-test. P values less than 0,05 were 

considered to be significant. Number of rats was used for the analysis. 

 

Drugs 

 

Candesartan cilexetil was kindly provided by Astra-Zeneca (Sweden). Other products were 

purchased from Sigma. 

 

 

RESULTS 

 

Mean Arterial Pressure and AT2R Mediated dilation in isolated arteries  

 

Figure 1 shows typical recordings obtained with mesenteric arteries isolated from a WKY rat 

(fig. 1A) and from SHR (fig. 1B). Mean arterial blood pressure was 1188 mmHg (n=8) in 

WKY rats and 18311 mmHg (n=8) in SHR. Isolated arteries were first incubated with 



candesartan (100 nmol/L, 30 min) and pre-contracted with phenylephrine (544 m, diameter 

decrease). Then, addition of Ang II (100 nmol/L) induced a significant dilation (243 m, 

diameter increase) in control WKY. By contrast, in SHR the stimulation of AT2R led to a 

significant contraction (83 m, diameter decrease, Fig. 1B). In both WKY and SHR the 

arteries were able to fully dilate when acetylcholine was added after ang II. Diameter changes 

in response to AT2R stimulation (dilation in WKY rats or contraction in SHR) were 

suppressed by the AT2R antagonist PD123319 (1 µmol/L). In the presence of candesartan and 

PD123319 Ang II produced no significant change in diameter (2±3 µm, n=5 in WKY and –

1±2µm, n=4 in SHR).  

The contraction induced by ang II (100 nmol/L) in arteries isolated from SHR was 

significantly reduced by indomethacin (10 µmol/L, 6±2 versus 12±3µm reduction in diameter, 

n=5), SQ29548 (10 µmol/L, 6±3 versus 14±3µm reduction in diameter, n=5) and by bosantan 

(10 µmol/L, 7±3 versus 16±3µm reduction in diameter, n=5). The combination of 

indomethacin (10 µmol/L) and bosantan (10 µmol/L) suppressed ang II-induced contraction 

in SHR (2±3 versus 14±3µm reduction in diameter, n=5). The bradykinin B2 receptor blocker 

HOE140 (0.1 µmol/L) did not significantly affect angII-induced contraction in SHR (13±3 

versus 15±4µm reduction in diameter). In WKY rats angII-induced dilation was significantly 

reduced by L-NAME (4±2 versus 24±4 µm) and by HOE140 (6±3 versus 26±5 µm). 

The stimulation of AT2R produced a concentration dependent dilation in arteries isolated 

from WKY rats and a concentration dependent contraction in arteries isolated from SHR (fig. 

1C, n=8 per group).  

 

Concentration dependent stimulation of AT2R (angII 0.01 to 100 nmol/L) was repeated 

in arteries isolated from WKY rats and SHR submitted to various treatments. Maximal 

responses to AT2R stimulation and mean arterial blood pressure determined in the different 

groups are shown in figure 2. 

 

There was no significant difference in MAP and AT2R mediated dilation between control 

WKY rats (1188 mmHg; 243 m, diameter increase, n=8) and WKY rats treated with 

candesartan (1089 mmHg, 195 m diameter increase, n=4). 

 

In SHR, candesartan partly depressed MAP (1468 mmHg, n=4 versus 18311 mmHg, n=8; 

P<0.01 versus SHR and P<0.01 versus WKY rats) and tended to reduce AT2R mediated 



contraction, although this did not reach significance (83 m versus 32 m diameter 

decrease).  

In SHR, treatment with perindopril reduced MAP (n=4, 1256 mmHg, P<0.01) and AT2R 

stimulation induced a significant vasodilation (62 m, diameter increase) which was 

significantly lower than AT2-induced dilation in WKY rats.  

In hydralazine (16 mg/kg/d, n=4)-treated SHR, MAP decreased to a level that was still higher 

than in WKY rats (14511 mmHg, n=6; P<0.01 versus SHR and P<0.05 versus WKY rats) 

and stimulation of AT2R induced a vasoconstriction (31 m diameter decrease, n=6). 

In SHR treated with a higher dose of hydralazine (24 mg/kg/d, n=4) MAP was reduced to a 

normal value (10510 mmHg, NS versus WKY rats) and AT2R induced a significant 

vasodilation (277 m, diameter increase, NS versus WKY rats).  

In SHR treated with candesartan plus hydralazine (16 mg/kg/d) MAP was reduced to normal 

level (n=4, 1029 mmHg, NS versus WKY rats) and AT2R induced a significant vasodilation 

(225 m diameter increase, NS versus WKY rats).  

Endothelium removal did not affect AT2R-dependent contraction in untreated SHR (12±3µm 

with endothelium versus 14±3 µm contraction without endothelium, n=4). On the other hand, 

AT2R-dependent dilation was abolished by endothelium removal in both untreated WKY 

(24±4 versus 3±2 µm dilation, n=4) and SHR treated with candesartan plus hydralazine (16 

mg/kg/d: 26±4 versus 4±2 µm increase in diameter, n=4).  

 

Western Blot Analysis of AT2R 

 

In resistance arteries isolated from untreated WKY (n=8) rats and untreated SHR (n=8), as 

well as from SHR treated with hydralazine alone (24 mg/kg/d, n=5) or hydralazine (16 

mg/kg/d, n=5) combined with candesartan, AT2R expression was quantified. Western-blot 

analysis showed that AT2R was significantly less expressed in SHR than in WKY rats (46%) 

in isolated mesenteric resistance arteries (fig. 3). Hydralazine (24mg/kg/d) gradually raised 

AT2R expression in SHR treated for 18, 23 and 48 days. After 48 days, AT2R expression was 

significantly higher than in SHR, but it remains significantly lower than in WKY (70%, Fig. 

3). However, after 44 days of treatment, candesartan plus hydralazine (16 mg/kg/d) restored 

AT2R expression in SHR to a level equivalent to that found in WKY (96,7% versus 100%, 

Fig. 3).  

 



 

Immunohistology analysis of AT2R 

In WKY, immunofluorescence analysis of mesenteric resistance arteries, using confocal 

microscopy, indicated that AT2R was present in the endothelium, in the smooth muscle and in 

the adventitia. In the endothelium AT2R immunofluorescence was lower in SHR than in 

WKY rats (5±3% of WKY, NS, n=6 per group). In the media a significant fluorescence could 

be detected although it was lower than in WKY rats (32±6%, P<0.01 n=6). In SHR treated 

with candesartan + hydralazine (16mg/kg/d) immunofluorescence of AT2R was restored to a 

level equivalent to that found in WKY rats (compared to WKY: 88±11% in the endothelium 

and 81±18% in the media) (Fig. 4).    

 

 

DISCUSSION 

 

The present study demonstrates that AT2R stimulation induced a vasoconstriction in untreated 

SHR resistance arteries associated with a decrease in AT2R expression. Specific or non-

specific anti-hypertensive treatments restored AT2R expression and its vasodilator function 

when the decrease in pressure was sufficient. 

Recent evidence suggests that AT2R stimulation causes vasodilation in small resistance 

arteries in normotensive rats (6,7,11,16,17,20,
 22

). This vasodilation may play an important 

role in the regulation of arterial blood pressure by increasing resistance arteries diameter. 

Vasodilation induced by AT2R stimulation has been described in several vascular territories 

and is usually associated to NO production by endothelial cells and cGMP production by 

smooth muscle cells (
23

). In some, but not all arteries investigated bradykinin B2 receptor 

activation is involved in AT2R-dependent dilation (9-11,22). Importantly, AT2R-mediated 

dilation does not desensitize, by contrast with AT1R-dependent contraction, supporting the 

assumption that AT2R dilation might have a role in the treatment of hypertension (20,
24

). 

Furthermore, in agreement with previous studies (21
25

) AT2R were found in resistance 

arteries using western blot and RT-PCR analysis. Using immuno-fluorescence AT2R were 

localized in endothelial and smooth muscle cells, as in previous studies in rat mesenteric 

arteries (16) and skeletal muscle arterioles (
26

). 

     We found that AT2R stimulation in SHR induced a vasoconstriction, in agreement 

with previous studies showing that in young hypertensive rats AngII-induced contraction was 

decreased by AT2R blockade (25). Interestingly, this effect involved stimulation of ET-1 and 



probably thromboxane A2. We found that AT2R expression was lower in SHR resistance 

arteries than in WKY rats. However, a decreased expression cannot readily explain a reversal 

of dilation into contraction. The mechanism of this reversal remains to be discovered, but may 

involve a switch in signaling from constrictor to dilator mechanisms due to increased 

endothelial AT2R expression. Indeed, our immunohistological analysis of AT2R in 

mesenteric arteries from SHR showed undetectable AT2R labeling in the endothelium that 

was re-established with antihypertensive treatment that normalized blood pressure. In 

addition, AT2R-dependent contraction in SHR is not affected by endothelium removal 

whereas AT2R-dependent dilation is abolished in the absence of endothelium. Thus the 

difference in the type of response might reflect a change in AT2R expression between the 

endothelium and the smooth muscle. Nevertheless, due to the small size of the resistance 

arteries AT2R expression and mRNA level were not significantly decreased by endothelium 

removal in either SHR or WKY rats (unpublished data). In addition, cultured endothelial cells 

rapidly loose AT2R phenotype, thus preventing a study of AT2R expression in cultured 

endothelial cells from WKY rats or SHR.  

Stimulation of the NO-cGMP pathway by AT2R has been initially shown in aortic 

cells (
27

). In the dog coronary circulation NO production by ang II is activated through both 

AT1R and AT2R stimulation (
28

). Several other evidences suggest that AT1R and AT2R may 

not always oppose each other, at least concerning NO production (23). In the mesenteric 

circulation we found that AT2R-dependent flow-mediated dilation requires NO production 

and that exogenous stimulation of AT2R in the same arteries produces dilation (16).  

In WKY rats, candesartan did not significantly change MAP and AT2R mediated dilation was 

preserved, as we have previously reported (20). By contrast, candesartan partly decreased 

MAP and AT2R mediated vasoconstriction in SHR. Similarly, a low dose hydralazine, also 

partly reducing MAP, inhibited AT2R mediated vasoconstriction. Obviously, these treatments 

were not able to normalize MAP and to restore AT2R vasodilator function. Indeed, it was 

only when MAP was sufficiently reduced in SHR that AT2R mediated vasodilation was 

observed.  First, using an ACEI inhibitor, MAP was decreased to a level similar to that 

observed in WKY. In this case, stimulation of AT2R induced a vasodilation. A further 

decrease in MAP, using a higher dose of hydralazine or candesartan plus hydralazine, was 

also associated with a vasodilator effect of AT2R stimulation.  

Interestingly, the different groups studied allowed a correlation to be drawn between MAP 

and the type and amplitude of the response to AT2R-stimulation (figure 2). Thus, from high 

to low MAP, AT2R-stimulation moved progressively from contraction to dilation. In addition, 



this effect was associated with a different AT2R expression. In SHR, AT2R expression was 

low in the wall of mesenteric arteries, compared to WKY. After MAP reduction in SHR, 

AT2R expression was restored to the level of WKY. However, it is difficult to determine if 

AT2R-mediated dilation is a cause or a consequence of the reduction in blood pressure.  In the 

combined candesartan/ hydralazine group of SHR, the time course for AT2R expression, 

assessed by Western blots, was in parallel with the restoration of maximal AT2R-mediated 

dilation and normotension, which may indicate a primary role for AT2R.  On the other hand, 

equivalent reductions in MAP caused by hydralazine were associated with maximal AT2R-

mediated dilation despite suppressed AT2R expression. These discrepancies in AT2R 

abundance between treatments may reflect distinct AT2R locations within the vasculature.  

Indeed, more precise immunohistological analysis demonstrated that AT2R expression was 

located in the endothelial and smooth muscle cells in WKY, whereas, in SHR AT2R was not 

detectable in the endothelium. On the other hand, in SHR treated with candesartan plus 

hydralazine, MAP was restored, AT2R stimulation induced a vasodilation and AT2R 

expression was equivalent to that found in WKY. In this group, immunohistology of AT2R 

showed the presence of the receptor in both endothelia and smooth muscle cells.  Thus we can 

speculate that the presence or absence of AT2R on endothelial cells has a key role in 

determining the type of response, at least in part, as the inhibition of the vasodilation in WKY 

by L-NAME does not uncover a vasoconstriction due to receptors located on the muscle, as 

revealed by immunohistology. We can also assume that MAP per se is the effector 

determining the type of response induced by AT2R stimulation (figure 2C). 

In conclusion, in resistance arteries of SHR 1) AT2R is down regulated by 

hypertension and 2) specific and non-specific anti-hypertensive treatments restore AT2R 

expression and vasodilator functions. Whether or not this AT2R plasticity directly contributed 

to the blood pressure reduction, this AT2R dilator mechanism is likely to contribute to the 

maintenance of a vasodilator state during chronic treatment. 
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Figure 1: Typical recordings obtained in mesenteric arteries isolated from WKY (A) and 

SHR (B) rats and perfused under a pressure of 75 mmHg, a flow of 100 µl/min and in the 

presence of candesartan (100
 
nmol/L). After a precontraction with phenylephrine (PE), 

angiotensin II (Ang II, 100
 
nmol/L) was added to the bath containing the artery. Finally 

acetylcholine (1 µM) was added in order to fully relax the artery (n=8 per group).  

The lower panel (C) shows concentration-response curves to ang II obtained in the conditions 

described above.  
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Figure 2:  

Upper panel (A): Angiotensin II (Ang II, 100 nmol/L) mediated-dilation (diameter increase) 

or contraction (diameter decrease) in the presence of candesartan (100 nmol/L), obtained in 

isolated mesenteric arteries of the normotensive rats (WKY) or spontaneously hypertensive 

rats (SHR) perfused in an arteriograph under a pressure of 75 mmHg and a flow of 100 

µl/min). Rats were treated for 4 weeks with candesartan (TCV, 2mg/kg/d), perindopril (PER, 

3mg/kg/d), hydralazine (Hydra, 16 or 24 mg/kg/d), or candesartan + hydralazine (TCV 

2mg/kg/d +Hydra 16mg/kg/d). 

Middle panel (B): Meaning arterial pressure measured in the groups of rats described above.  

Mean ± SEM is presented (n=8 per group).  

Lower panel (C): Relationship between mean arterial pressure (MAP) and AT2R mediated-

diameter-changes in resistance arteries (from data shown on panel A and B). 

*P<0,05, versus control WKY;  

#P<0,05, versus control SHR. 
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Figure 3: Western blot analysis of AT2R in mesenteric resistance arteries of normotensive 

(WKY, white bar, n=8) rats or spontaneously hypertensive rats (SHR, black bar, n=8). One 

group of SHR were treated with hydralazine (hydra, 24mg/kg/d) for 18, 23, or 48 days ,(n=5 

per group). Another group of SHR was treated with candesantan + hydralazine (TCV + Hydra 

16mg/kg/d, n=5 per group). Representative blots are shown below. 

 

*P<0,05, versus control WKY;  

#P<0,05, versus control SHR. 
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Figure 4: Confocal immuno-histological analysis of AT2R in mesenteric resistance arteries of 

the normotensive (WKY) rats, spontaneously hypertensive rats (SHR) or SHR treated with 

cadesantan (TCV, 2mg/kg/d) and hydralazine (Hydra, 16mg/kg/d). Each image is 

representative of 4 different arteries (6 rats). 


