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Abstract 

 

The study of protein structures’ local conformations has a long history principally based on the 

analysis of the classical repetitive structures (i.e. α-helix and β-sheet), and also on the 

characterization of some particular structures in the coil state (e.g. turns). The secondary 

structures are interesting for describing the global protein fold but miss all the orientations of the 

connecting regions and so neglect many particularities of the coil state. 

 

In order to take these structural features into account, we have identified a local structural 

alphabet composed of 16 folding patterns of five consecutive residues, called Protein Blocks 

(PBs). Conversely to the secondary structures, the PBs are able to approximate every part of the 

protein structures. These PBs have been used both to describe precisely the 3D protein backbones 

with an average rmsd of 0.42 Å, and to perform a local structure prediction with a rate of correct 

prediction of 48.7%.  

 

In this chapter, we present the interest of the Protein Blocks by comparing the secondary 

structure assignment with the assignment in terms of PBs. We highlight the discrepancies 

between different secondary structure assignment methods and show some interesting 

correspondence between particular local folds and the Protein Blocks. Then, we use the Protein 

Block prediction to classify proteins into the classical structural classes, namely all α, all β and 

mixed. The prediction rate of theses different classes is good, i.e. 71.5%, with no confusion 

between all α and all β classes. Finally, we present a new approach named TopKAPi that stands 

for “Triangular Kohonen Map for Analyzing Proteins”. It enables to classify and analyze proteins 
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according to their Protein Block frequencies using for this purpose a novel unsupervised 

clustering method: a triangular self-organizing Kohonen map. This method enables to determine 

new relationships between local structures and amino acid distributions. This new methodology 

could be of great interest in proteomics and sequence alignment.  
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Introduction 

 

The first protein structure obtained by X-ray diffraction [1] had marked the beginning of the 

description and analysis of protein structures. Two ways have since been followed with the 

theoretical methods and the descriptive methods. In the first years, due to the limited number of 

available structures, the first kind of approaches was used for proposing potential local structures 

based on physico-chemical properties (e.g. the γ-helix [2]). Their presence and interest in 

experimentally determined structures were confirmed or not only in a second step [3]. In this 

chapter, we focus on the second kind of approaches based on the description and characterization 

of particular local fold structures observed in experimentally determined protein structures. 

Figure 1 summarizes different levels of description of the protein folds that we are going to 

follow in this introduction: (i) the 3-states secondary structures, (ii) the secondary structures with 

more distinct states, (iii) the structural alphabets and (iv) the description of the complete protein 

topology. 

(i) the 3-states secondary structures. One of the major events in the protein history is the 

series of seven consecutive papers of Pauling and Corey in 1951. They described an impressive 

number of potential local folds including the α-helix and the β-sheet [2, 4]. The average 

characteristics of these local structures are described in Table 1. The α-helix (or 3.613 helix) is 

characterized by intramolecular hydrogen bonds between amino acid residues i and i +4 [5]. Its 

extremities show specific physicochemical stabilizations [6]. The β-sheet is defined by hydrogen 

bonds between neighboring parallel (or antiparallel) chains [4]. As for the α-helix, its edges have 

been widely analyzed [7 - 9]. Many studies have also analyzed the packing of these two repetitive 

structures [10 - 13] and the sequence - structure relationship between sequence and structure [14 - 
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17]. 

 

Figure 1. Protein structure analysis. From the 3D atom coordinates of a protein structure different 
analyses are possible. Theoretical approaches consist in predicting potential interesting local 
structures based on physicochemical criteria. Descriptive approaches are based on the analysis of 
known local structures at different levels of organization: (i) the secondary structures defined by 
three states (helicoidal, extended and non-helicoidal /non-extended). (ii) a more detailed 
description (see Text). Another way to describe the protein structures is by (iii) the use of 
structural alphabets that are characterized by different states (references : R90 [125], F97 [126], 
C99 [129], B98 [127], d00 [128], B00 [161], U93 [120], U89 [118], S96 [121], P92 [119]). The 
local folds combinations create local topologies referred to as (iv) super-secondary structures 
which describe the complete protein topology.  
 

The high propensity of these helicoidal and extented local structures in experimentally 

determined structures has since achieved one kind of dogma, the ‘secondary structures’ 

composed of the α-helix, the β-strand and a state corresponding to everything else, the coil. The 

structures are often limited to this simple description.  
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 φ ψ ω nrp tpr pitch iHb atHloop b. rad. 
 (°) (°) (°)  (Ǻ) (Ǻ)   (Ǻ) 

α - helix (3.613) -64 -41 180 3.6 1.5 5.5 i - i+4 13 2.3 
 -57.8 -47.0        

3.10 –helix (3.010) -71 -18 180 3.0 2.0 6.0 i - i+3 10 1.9 
 -74 -4        

π - helix (4.46) -57 -70 180 4.4 1.15 5.0 i - i+5 6 2.8 
polyproline II -75 145 180 3.0 3.12 9.0    
Antiparallel β -139 135 -178 2.0 3.4 6.8    

Parallel  β -119 113 180 2.0 3.2 6.9    
 

 
Table 1. Characterization of classical local folds with their dihedral angles (φ, ϕ and ω, in italics are given the 
theoretical values), the number of residues per turns (nrp), the translation per residues (tpr), the pitch, the 
intramolecular hydrogen-bond between (CO, NH) (iHb), the atoms found in the H-bonded loop (atHloop) and the 
backbone radius. 

 

(ii) the secondary structures with more distinct states. Different studies have examined and 

extended these definitions both in creating new states and refining the assignment criteria. They 

have improved our knowledge of the repetitive helicoidal and extended structures and have 

highlighted the interest of the coil state too many times badly described as ‘random‘ coil. 

The new local folds pointed out exhibit interesting energetic and / or geometrical properties. 

Thus, less common helices, like 310 – helices are characterized by intramolecular hydrogen 

bonds between amino acid residues i and i +3 [18 - 20] and π-helices (i.e. 4.46-helices) with 

hydrogen bonds between amino acid residues i and i +5 [21 - 25]. These two types of helicoidal 

structures are often encountered at the extremities of longer α-helices and seem to play an 

important role in the stabilization of longer helicoidal structures [26]. The π-bulges constitute a 

particular kind of discontinuity in helicoidal structures. Like the π-helices, they are not frequent 

but seem directly associated to protein functions [23, 27]. The Polyproline II helices correspond 

to a specific local fold initially found in fibrous proteins [28, 29]. They contribute to the creation 

of coiled coil supersecondary structures characteristic of these proteins. They are also found in 

globular proteins and are not composed only of Proline [30 - 33]. Among the predicted helicoidal 
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local folds never observed in proteins we can quote the γ-helix (or 5.1117-helix) [2, 3], the 2.27-

helix and the 4.314-helix [18]. As for the Polyproline I, it is only found in apolar solvents.  

In the same way, accurate analyses have been carried out for the β-sheet category. An 

interesting point is that since the description of the β-strands, several analyses have shown that a 

strand can be found independently of a β-sheet and named the E-strand [34]. Moreover, 

orthogonal ββ motifs, i.e. consecutive strands, have been identified, forming a ‘L’ structure with 

an angle of 90° [13, 35]. Globally, the irregularities within the β-strands have been classified into 

4 distinct classes of β-bulges [36, 37] and can be related to the of proteins’ function and stability 

[38].  

The regions between the repetitive helicoidal and extended structures have been intensively 

studied too. Thus, Venkatachalam, using a theoretical approach close to Ramachandran method 

[39], determined small local folds characterized by the reversing of the polypeptide chain 

maintained by a hydrogen bond between two close residues, i.e. the turns [40]. After this 

description, a classification was done and has greatly evolved. The tight turns are characterized 

by precise dihedral angle values and short distance between their ends [41]. The two most studied 

turns are the γ- (3 residues) and the β-turns (4 residues). The γ- turns are composed of two 

categories, classic and inverse [42 - 45]. The β-turns have a more complex history. At the 

beginning, the four main categories were the types I, I’, II and II’ [46, 47]. The extension of the 

β-turn classification created new categories: the turns III, III’, V and V’, the turn VI characterized 

by a Proline, the turn VII associated with a kink and the turn IV corresponding to all the non 

classified turns [48]. The first analyses of turns in protein structures used this classification [49 - 

52]. However, at the beginning of the 80’s, different turns have been excluded, the turns III and 

III’ which were too close to the 3.10 helix, the turns V, V’ and VII which were too rare and their 
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definitions inaccurate [53]. Wilmot and Thornton defined the turn VIII which is associated with 

an important number of observations [54]. It is the first turn not directly associated with a 

stabilizing bond between its ends. The definitions used by Thornton’s group [37, 55] are 

considered as the standard. Nevertheless, some analyses have been done using the excluded turns 

V, V’ and VII [56, 57]. Shorter turns (e.g. 2 residues δ-turns) [58] and longer ones (e.g. 5 

residues α-turns [59, 60] and 6 residues π-turns [61, 62]) have been less studied. The different 

classes of turns can be overlapping, e.g. two β-turns can have 3 positions in common. The turns 

can also be multiple at the same position, e.g. a β-turn can encompass a γ-turn [63 - 65]. The 

turns account for some 25% of the structures. 

Other interesting local structures, less frequent than the turns have also been identified in 

the coil state. For instance, the Ω-loops constitute a particular category characterized by a small 

distance at their extremities and an important number of contacts in their structure [66, 67]. They 

correspond to compact globular loops mainly located at the surface of the proteins [68]. They 

may be directly associated with the protein functions [69, 70] and folding [70].  

However, even if the coil state is better characterized, some local folds still remained 

unassigned. Hence, another approach is developed and consists in classifying the protein 

fragments between α-helices and / or β-sheets. Different kind of classifications has been carried 

out. The first type consists in analyzing only specific successions from one state to another. For 

instance, the study of the connections between two successive β-strands has been studied and has 

resulted in the classification of the β-hairpins [71 - 74]. Interestingly, the short length hairpins are 

often characterized by a specific turn [13] and the longer ones by a β-bulge in one of the strands 

[75]. Sometimes stabilization by disulfide bonds can be observed [76]. The β-hairpins are well 

studied in molecular dynamics [77, 78]. The same approach was performed for the short loops 
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connecting two α-helices and resulted in the characterization of the α-α corners which are similar 

to the ‘L’ structure of orthogonal ββ [79]. Other studies have focused on one precise loop 

category like α-helix-turn-β-strand [80], or on particular combinations of β-strands like the Ψ-

loop [55, 81]. The second type of classification consists in more systematic analyses of the short 

and medium loops. Many studies have been carried out for short loops connecting α-helices and 

β-sheets [82 - 84]. Others have also been done systematically for the short [85, 86] and medium 

loops [87, 88], whatever the flanking regions.  

All theses methods can only be used for short length loops [89] or for combination of small 

loops [90] since longer loops are less frequent and considered as too variables. Nevertheless, the 

different loop classifications have shown their interest in local structure prediction to construct 

loops in non-complete structures [91 - 95]. Databases of loops useful for molecular modeling 

have been created [88, 96 - 98].  

 

Even if the repetitive secondary structures have been intensively analyzed [17, 99], the 

characterization of the α-helices and the β-strands has led to different assignment methods based 

upon energetic, geometrical and/or angular criteria, which do not always agree particularly at the 

edges. The first software has been developed by Levitt and Greer and used only the Cα  positions 

as these atoms are the most precisely defined by X-ray crystallography [100]. Table 2 

summarizes the different methods analyzed in this study in this research with the number and 

type of states they focus on. DSSP [101] is the most popular method. Moreover, it is the basis of 

the secondary structure assignment given by the Protein DataBank [102, 103]. It is based on the 

hydrogen bonding patterns. 
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Table 2. Secondary structure assignment methods with the number of states for the helicoidal states, the extended 
states and the non-repetitive states. In brackets are given the number of states corresponding to one specific category 
and in parenthesis is given the one letter code corresponding to the state.  

 

STRIDE [104] uses the same criteria with parameters slightly different and the computation 

of backbone dihedral angles. SECSTR focuses on the correct assignment of 3.10 – and π-helices 

[24]. Recently, DSSPcont tries to optimize the parameters of DSSP by taking into account 

methods helicoidal state strand state coil  states 

DSSP α-helix (‘H’) β-strand (‘b’) turn (‘T’) 8 

 310-helix (‘G’) β-sheet (‘E) bend (‘N’)  

 π-helix (‘I’)  coil  

STRIDE α-helix (‘H’) β-strand (‘b’) turns (‘T’) 7 

 310-helix (‘G’) β-sheet (‘E’) coil  

 π-helix (‘I’)    

PSEA α-helix β-strand coil 3 

DEFINE α-helix β-strand coil 3 

PCURVE α-helix β-strand coil 3 

XTLSSTR α-helix β-strand h-bonded turn (‘T’) 7 

 310-helix  unh-bonded turn (‘N’)  

   polyproline II (‘P’)  

   coil  

SECSTR α-helix β-strand coil 5 
 310-helix    

 π-helix    

HELANAL α-helix [5] / / 5 

EXTENDED-BETA / β-sheet [5] / 6 

  β-strand   
PROMOTIF α-helix β-strand γ-turn [2] 25 

  β-bulge [10] β-turn [10]  

   β-hairpins  

SUMMARY α-helix [5] β-sheet [6] γ-turn [2]  

 310-helix β-strand β-turn [10]  

 π-helix β-bulge [10] β-hairpins  

   polyproline II  

TOTAL 7 17 14 38
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multiple NMR models assignment and tries to compensate at best the fluctuations of the 

assignment between the different model observations [105 - 107]. However, the results are not 

really improved. DEFINE [108] like Levitt and Greer method, uses only the Cα positions. It 

computes inter-Cα distance matrices and compares the results to ideal repetitive secondary 

structures. PCURVE [109] is based on the helicoidal parameters of each peptide unit and 

generates a global peptide axis. PSEA [110] assigns the repetitive secondary structures from the 

sole Cα position using distance and angles criteria. XTLSSTR uses all the backbone atoms to 

compute two angles and three distances [111]. It is especially dedicated to the spectroscopists. 

PROMOTIF uses an implementation similar to DSSP but focuses on the characterization of γ- 

and β-turns, β-hairpins and β-bulges [55].  

The assignment methods may generate particular problems. Hence, DSSP may assign very 

long helices which do not correspond to reality [112]. Bansal and co-workers have analyzed and 

classified the helices and showed that important part of them are in fact curved or composed of 

distinct helices [113]. In the same way, Woodcock and co-workers [114] noted that these 

methods do not assign the same state to certain residues, especially those located at the 

beginnings and ends of repetitive structures, i. e. the secondary structure assignments differ 

according to the chosen method. This observation has led to the development of a consensus 

approach [115] which represents an average measure of DSSP, DEFINE and PCURVE. This 

study has shown that less than 2/3 of the residues are associated to the same state by these three 

algorithms. The use of one or another method does not reflect the same type of reality. For 

instance, the α-helix defined by DSSP, with its eight states grouped in only three states, does not 

correspond only to the α-helix (3.1613 helix), but incorporates the 3.10 helix and the π-helix (4.46-

helix). In the same way, β-sheets (DSSP ‘E’ state) correspond to β-strands implicated in parallel 
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or anti-parallel characteristic patterns but not β-strands without hydrogen bond partner (DSSP ‘B’ 

state). These features may induce difficulties in analyzing the protein structures or dynamic 

trajectories. So, it is important to note that the repetitive structures definitions only reflect a given 

classification. 

 

(iii) the structural alphabet. Various teams have tried to proceed without using classic 

secondary structure descriptions. Instead, they categorize the 3D structures without any a priori. 

Thus, every local fold is associated to one specific small prototype. The complete set of 

prototypes defines “a structural alphabet” [116, 117]. Numerous structural alphabets have been 

defined and differed by the description parameters of the protein backbone (Cα coordinates, Cα 

distances, α or dihedral angles) and by the method used for defining them (hierarchical 

clustering, empirical function, Kohonen Maps, neural network or Hidden Markov Model) [116]. 

Each structural alphabet or fragment library is defined as a series of N prototypes of l residues 

length. N is highly variable (between 4 and 123), l only varies between 4 and 7. 

Two main types of research must be distinguished. The first one consists in describing an 

important number of prototypes to reconstruct precisely a protein structure. The second one aims 

at predicting the 3D structures from the sole knowledge of the sequence and so is limited to few 

prototypes. 

Hence, the earliest works used hundred of prototypes (N = 83 to 120) to reconstruct protein 

structures [118 - 121]. Levitt's group [122, 123] and Micheletti and co-workers [124] tried to 

optimize the construction of such libraries from geometrical point of view. This structural 

description allows new insight into protein 3D structures and reveals peculiar sequence 

specificity [116].  
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However, to perform a prediction from the sequence, the number of prototypes, N, must be 

smaller, i.e. a correct prediction implies the selection of a more limited number of local 

conformations as shown by Rooman's and Fetrow's works [125, 126]. Indeed to capture most of 

the local folds, it is advisable to have a balance between a number of states sufficient for 

approximating correctly the local folds and limited for ensuring a correct prediction level. An 

alphabet composed of N = 10 to 20 states corresponds to this goal [127, 128]. These methods 

have proved their efficiency both in the description and the prediction of small loops [129, 130] 

or long fragments [131 - 137]. Bystroff and Baker’s I-Sites must be pointed out as one of the 

most interesting structural alphabet. It has been used with a high efficiency for improving new 

fold methods [138, 139].  

The different alphabets have in common to describe more precisely the repetitive structures 

(helicoidal and extended) and their edges, and to focus on a better description of the coil state. 

 

In this work, we use the structural alphabet we have defined in a previous study. It is 

composed of 16 mean protein fragments of 5 residues length called Protein Blocks. These PBs 

have been used both to describe the 3D protein backbones and to perform a local structure 

prediction [128, 133]. A comparison between different structural alphabets has shown its 

informativity [140]. 

 

(iv) the local structures describe the protein topology. The succession of secondary 

structures defines the supersecondary structures, i.e. αβ, βα, ββ and αα. Their combinations 

generate some particular motifs like the greek key (ββββ) or the Rosmann fold (βαβαβ) [141]. 

They can be used to define the complete topology of the proteins like in the TOPS family 
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database [142]. Thus, they are used to classify proteins into different structural families like that 

of SCOP [143] or CATH [144], even if a recent study has shown the difficulties to find a good 

consensus between all these classifications [145]. Most of these classifications give few major 

families and then a important number of sub-families. Nevertheless, these descriptions have 

proved their efficiency to find distant structural homologues [146] or to work with genomic data 

[147]. They are the classic benchmark of fold recognition [140].  

Here, we examine the relationship between the structural alphabet and the 3D structure 

topology.  

 

The results of our study are divided into three consecutive parts. (i) As proteins are 

classically described by their content in secondary structures, we looked at the correspondence 

between the different secondary structure states and our Protein Blocks. We highlighted the 

differences between many secondary structure assignment methods. (ii) We have previously 

described a Bayesian approach to predict the Protein Blocks from the sequence [128]. It has been 

improved and gives now a prediction rate of 48.7%. In the second part of this chapter, we 

analyzed the results of the prediction and their use to protein classification according to their 

structural classes. These classes are defined as all-α, all-β and mixed (α+β and α/β) following 

the definitions of Michie and co-workers [148]. (iii) Finally, we described a new method called 

TopKAPi, for Triangular Kohonen map for Analyzing Proteins. Firstly, it allows classifying and 

analyzing protein structures based only on the Protein Blocks frequencies. Then, it permits to 

analyze the amino acid distributions associated with this new classification. We show new 

insights into the sequence and structure relationships. 
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Materials and Methods: 

 

 

Figure 2. Main principles of this study. The first step consisted to extract from a non redundant databank the dihedral 
angles of the protein structures. (1) These last allowed to encode the 3D structures in terms of Protein Blocks. (2) 
Using different assignment algorithms the 3D structures were encoded also in terms of secondary structures. (3) We 
first analyzed the agreement between secondary structures and PBs. (4) Then, using the amino acid sequences, we 
computed amino acid occurrence matrices associated to each PB. (5) We used this information to perform Bayesian 
prediction and from the prediction in terms of PBs, (6) we computed the predicted frequencies of PBs per protein. (7) 
We analyzed the correspondence between the predicted frequencies of PBs and the class of the proteins (all α, all β 
or mixed). (8) In parallel, from the true PBs and the amino acids of the proteins, we computed the frequencies of PBs 
and amino acids per protein. (9) We learnt these frequencies of PBs per protein using an adapted triangular Self-
Organizing Maps, named TopKaPi. Then, we analyzed (10) the amino acid distributions in TopKaPi and (11) the 
different clusters of PBs. 

 

Figure 2 gives the main steps of the research carried out in this chapter and described here. 

 

Data sets: Different sets of proteins were used in this work. The four first ones have 

already been used in a recent work [133]: PAPIA from PDB-REPRDB database [149], PDBselect 
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databank [150, 151], culled-Pdb (now PSICES) [152], SCOP - ASTRAL [143, 153]. We have 

preferentially used the PAPIA set which is composed of 717 protein chains and 180,854 residues. 

The set contained proteins with no more than 30% pairwise sequence identity. The selected 

chains had X-ray crystallographic resolutions less than 2.0 Å and an R-factor less than 0.2. Each 

selected structure had RMSD value more than 10 Å with every representative chain. A new 

updated data set (noted PAPIA03) has been composed from PDB-REPRDB database [149] with 

the same criteria as PAPIA and is composed of 1,407 protein chains and 293,507 residues. We 

have verified that the amino acid compositions were not significantly modified between the two 

protein sets. Each chain was carefully examined with geometric criteria to avoid bias from zones 

with missing density. 

 

 

Figure 3. Backbone representation of the 16 Protein Blocks with MOLMOL software [162]. PB a to PB p are 
displayed from left to right and from top to bottom. 
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Protein Blocks (PBs): The structural alphabet we defined in a previous study [128] is 

composed of 16 local prototypes called “Protein Blocks” (PBs). They are overlapping fragments 

of 5 residues in length, encoded as sequence windows of 8 consecutive (ψ, φ) pairs. They were 

obtained by an unsupervised classifier similar to Kohonen Maps [154, 155] and Hidden Markov 

Models [156]. Figure 3 gives a representation of the 16 Protein Blocks. The PBs m and d 

correspond to the prototypes for the central α-helix and the central β-strand, respectively. PBs a 

through c primarily represents β-strand N-caps and e and f, C-caps. PBs g through j are specific 

to coils, PBs k and l to α-helix N-caps, and n through p to their C-caps. This structural alphabet 

allows a reasonable approximation of the protein 3D-structures with a RMSD now evaluated at 

0.42 Å. This value has been assessed again in this study with the new databanks. 

 

Protein coding: Protein structures are encoded as sequences of φ - ψ  dihedral angles, so 

that a protein of M amino acids long is defined by a signal of 2(M-1) dihedral angular values. 

Each fragment of M residues (M=5) centered at the α-carbon Cαn is represented by a vector of 8 

dihedral angles (Ψn-2, Φn-1, Ψn-1, Φn, Ψn, Φn+1, Ψn+1, and Φn+2). The fragment is compared 

to each PB with the RMSDa measure [121], i.e. Euclidean distance using angle values. The 

lowest RMSDa value for the 2(M-1) angles determines the assignment of the PB (Fig2, arrow 1). 

 

Secondary structure assignments: They have been done with ten distinct softwares. The 

seven first ones correspond to DSSP [101] (CMBI version 2000), DEFINE [108] (version 2.0), 

PCURVE [109] (version 3.1), STRIDE [104], PSEA [110] (version 2.0), XTLSSTR [111], 

SECSTR [24] (Table 2). Default parameters were used for each softwares. Three more programs 
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have been used: HELANAL [113] to analyze the α-helices, EXTENDED-BETA, which 

corresponds to an alphabet developed in Kevin Karplus’ laboratory to study more precisely the β-

strands [140] and PROMOTIF [55]. DSSP was used to define the α-helices analyzed by 

HELANAL. Hence, we encoded the 3D protein structures in terms of secondary structures using 

these different algorithms (Fig. 2, arrow 2), and analyzed the correspondence between the 

secondary structure and the PB assignments (Fig. 2, arrow 3). 

 

Z-score : Amino acid occurrence matrices were computed for each PB and normalized into 

Z-scores as follows : Z-score= (nobs (i,x) - nth (i,x))/ √ nth (i,x), with nobs (i,x) the occurrence 

number of observing amino acid i in PB x, and nth (i,x) the occurrence number expected. nth (i,x) 

= Nx . fi, where Nx and fi denote the occurrence number of PB x and the frequency of amino acid i 

in the entire databank respectively (Fig. 2, arrow 4). Positive Z-scores, more than a user-fixed 

threshold ε (respectively negative, less than -ε) correspond to overrepresented amino acids 

(respectively underrepresented). 

 

Prediction of PBs by a Bayesian probabilistic approach: The goal is to predict the optimal 

PB for each position along a sequence of length L (Fig. 2, arrow 5). To this end, we used a 

Bayesian probabilistic approach similar to that proposed in a previous work [128]. We focused on 

the conditional probability of observing the PBk given an amino acid chain X, (a1, a2,..., ap), 

noted P(PBk / X). Bayes' theorem accomplishes the inversion between the sequence X and the 

structure PBk. This leads to:  

 

P(X | PBk) = P(a1 | PBk) x P(a2 | PBk) x....x P(ap | PBk) 
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A window of length p (p =15 here) is slide along the sequence and centered on a position s. 

To define the optimal Protein Block, PB* for a given amino acid fragment X at a site in a protein, 

we used the prediction score Rk: 

 

Rk =P (X | PBk) / P(X) = P(PBk | X) / P(PBk) 

 

The ratio Rk measures the information provided by the knowledge of the amino acid chain X 

in the prediction of the Protein Block PBk. This criterion is equivalent to a ratio of likelihood's. 

The optimal structural block PBk among the 16 possible blocks is defined as PB* = argmax{Rk}. 

Then PB* is assigned to the central residue of the chain X. The final prediction rate, noted Q16, is 

the ratio between the number of PBs correctly predicted and all the PBs of the protein. 

To assess the prediction, the databank was divided into two sets. The first one was used to 

define the PBs sequence-structure relationship and hence to compute : P(PBk / X). The second set 

was used to perform the prediction. 

To improve the prediction rate, we used the concept of the sequence families which lies on 

the fact that a local fold can be associated to different clusters of sequences. The initial prediction 

rate was of 34.2% and was improved to 40.7% [128]. Now, with a new approach (manuscript in 

preparation), the prediction rate reaches 48.7%. 

 

Protein classes assignment: To define for a protein its class, we have used the definition of 

Michie and co-workers: an all-α protein is characterized by a frequency of α-helix of more than 

60% and of β-strand less than 15%, and, an all-β protein by a frequency of α-helix of less than 
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15% and of β-strand of more than 35% [148]. 

 

Analysis of the protein structural classes from the prediction in terms of PBs: the predicted 

PBs frequencies per proteins were computed from the results of the Bayesian prediction. They 

were analyzed using a Principal Component Analysis (PCA) [157] in regards to their structural 

classes [148] (all α, all β or mixed) (Fig. 2, arrows 6 and 7). 

 

Prediction of the structural classes from the prediction in terms of PBs: For the 3 structural 

classes, mean values of each predicted PB frequencies were computed. The prediction step is a 

comparison between the each target protein predicted PB frequencies and the mean values for the 

3 structural classes using an Euclidean distance. The smallest distance defines the assignment to 

the predicted class. 

 

TopKAPi. In parallel, we computed the true PB frequencies per protein (Fig. 2, arrow 8) 

and learnt them using a Self-Organizing Map, named TopKaPi for Triangular Kohonen map for 

Analyzing Proteins (Fig. 2, arrow 9). Kohonen Map or SOM (Self – Organizing Map) is an 

efficient way to classify data [155]. The analysis of the results is highly facilitated by the 

nearness of related clusters. The main specificity of our SOM, is to be a triangle. It is composed 

of w = G x (G-1)/2 neurons (triangle side of G neurons). A neuron wt is similar to the vector v 

(dimension 16). The learning is iterative and consists in 5 consecutive steps:  

(i) random choice of an observation vector v .  

(ii) v is compared to every w neurons using an Euclidean distance.  

(iii) the winning neuron w* , the closest to v, is identified, i.e. the Euclidean distance is 
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minimal. 

(iv) each neuron wt of the SOM is modified : 

wt +1 <- wt + (v - wt) α(n)  π(n) 

with α(n) the learning factor and π(n) the neighbourhood factor α(n) is defined as α0 / (1 + 

(n / N)), with α0  = 5 /1000, n the number of observation vectors learnt and N the total number of 

observation vectors. π(n) controls the diffusion process and is defined by exp(-2(r-r*)2/ ρ(n)2), r 

is the coordinates of the neurons wt, r* the coordinates of the winning neuron w*, ρ(n) = ρ0 / (1 + 

(n / N)) with ρ0 = 2.4.  

(v) the process is reiterated from (i) to (iv) with another vector.  

(vi) To learn all the observation vectors of the databanks, the whole databank is used C 

times (C = 50).  

Then, we analyzed the correspondence between the different clusters obtained and the 

relationship between local structure in terms of PB distribution and frequencies of amino acids 

(Fig. 2, arrows 10 and 11). 

 
 

  stride psea pcurve define xtlsstr secstr 

dssp 95.28 80.40 77.56    61.81 80.36 93.53 

stride  81.44 77.99    62.07    80.50    91.40 

psea          83.26    64.66    75.90    80.11 

define           64.92    60.11    61.55 

pcurve            74.56    77.38 

xtlsstr             79.47 
 
Table 3. Agreement rate between the different states defined by seven secondary structure assignment methods. 
 

 

 

H
A

L author m
anuscript    inserm

-00134564, version 1



Structural alphabet  

 

Part I: Secondary structures and PBs 
 

Correspondence between the different secondary structure assignment methods. The 

secondary structure definitions are often considered as fixed and the assignment unique [4, 5]. 

However, as we have noted in the introduction, the reality is less simple. Table 3 gives the 

agreement ratios between the different Secondary Structure Assignment Methods (SSAMs). These 

values are computed as the proportion of identical assignment between two SSAMs. To compute 

these ratios, we have carried out for the SSAMs with more than 3 states a reduction of their N 

states to a classical 3-state alphabet (helix, extended and coil). We have done the classical 

associations for the helicoidal states (i.e. α-helix, 3.10 –helix and π-helix), the extended states (i.e. 

extended strand and β-sheet) and the coil state (the other states: turn, bend, polyproline II and 

coil), even if these associations are not always pertinent. Table 3 shows that two SSAMs can 

strongly disagree. 

A first cluster of SSAMs can be distinguished with DSSP [101], STRIDE [104] and 

SECSTR [24], which have agreement rates within the range [91.4%; 95.3%]. These 3 SSAMs 

will be noted DSS (DSSP – STRIDE – SECSTR). They have in common a similar assignment 

criterion, i.e. the hydrogen bonds computation. Interestingly, between these three methods, the 

extended structures are not the ones that have the most disruptive assignment. When a divergence 

in the assignment occurs, in 80% of the case it is between the helicoidal state and the coil state. 

This fact is particularly clear for SECSTR which was designed to better assign the less frequent 

helicoidal states (3.10 and π-helices). 

When different assignment criteria are compared (e.g. distances or angles), the agreement 

rates are within the range [75.9%; 83.2%] for DSS, PSEA [110], PCURVE [109] and XTLSSTR 

[111]. DEFINE [108] is clearly an outlier SSAM. It creates long successions of identical states, 
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and its helix frequency is only equal to 27%. This value is largely inferior to all the other SSAMs 

since the helix frequency is always greater than 31%. Moreover, it is the only one to create high 

assignment confusion between helix and strand. This awkward confusion is within the range [2% 

- 5%] between DEFINE and all the other methods. For the others, this confusion α / β is always 

less than 0.05%. Thus, we show that the definition of new rules and methods since the beginning 

of the 90’s has not changed the heterogeneity of the secondary structure assignments and that the 

remarks of Woodcock and co-workers [114] about the difficulties of comparing different 

assignment methods still remain true.  

 

Example of a protein coding using different secondary structure assignment methods. 

Figure 4 gives the example of the secondary structure assignments obtained for the Hhai 

Methyltransferase protein (PDB code: 10MH) using the different SSAMs. As Table 3, this figure 

highlights the difficulties of comparing these methods.  

Firstly, the secondary structures of the Hhai Methyltransferase are assigned with a 3-state 

alphabet by DSSP, STRIDE, PSEA, DEFINE and PCURVE, and the difficulties of finding a 

consensus (cons.) between all these methods appear clearly since they are very few stars 

corresponding to a perfect match between the 5 SSAMs. The main disagreements are observed 

for the α-helices and β-strands edges and length. With the consensus method (noted C93) 

described by Colloc’h, Etchebest and co-workers [115] which involves the three oldest methods 

among these five ones, i.e. DSSP, DEFINE and PCURVE, we observe a rate of complete non 

agreement (i.e. one method assigns a α-helix, the second one a β-strand and the third one a coil) 

of 1%. 
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AA     MIEIKDKQLTGLRFIDLFAGLGGFRLALESCGAECVYSNE 
DSSP3  CCCCCCCCCCCCEEEEECCCCCHHHHHHHCCCCEEEEEEC 
STRID3 CCCCCCCCCCCCEEEEECCCCCHHHHHHHHCCCEEEEEEC 
PSEA   CCCCCCCCCCCEEEEEECCCCCHHHHHHHHHEEEEEEEEE 
DEFINE CCCCCCCCCCCCCCCEEEEEECHHHHHHHHHHEEEEEEEE 
PCURVE EEECCCCCCCCEEEEECCCCCCCHHHHHHHCCCCCCEEEC 
cons.  ...********....*.....*.******.......***. 
PB     ZZdfblfkghiacddehklnommmmmmmmnopacfbdcdf 
[C93]  CCCCCCCCCCCCEEEEECCCCCHHHHHHHHCCCEEEEEEC 
XTLSS. CPPCEEETTTTEEEEEECTTTHHHHHHHHTTCPPPCEEEC 
SECSTR CCCCCCCGGGGCEEEEECCCCCHHHHHHHCCCCEECCEEC 
DSSP   CCCCSSCTTTTCEEEEESCTTCHHHHHHHTTTCEEEEEEC 
STRIDE CCCTTTTTTTTTEEEEETTTTTHHHHHHHHCCCEEEEEEC 
HELAN. ----------------------sssssss----------- 
BETAEX ------------qpqpp----------------qqeeqp- 

 
AA     WDKYAQEVYEMNFGEKPEGDITQVNEKTIPDHDILCAGFP 
DSSP3  CCHHHHHHHHHHHCCCCCCCHHHCCCCCCCCCCEEEEECC 
STRID3 CCHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCCEEEEECC 
PSEA   EEHHHHHHHHHHCCEEEEECCCCCCCCCCCCCCEEEECCC 
DEFINE EEHHHHHHHHHHHHEEEEEEHHHHHHHHEEEEEEEEEEEE 
PCURVE CCHHHHHHHHHHCCEEEECCCCCCCCCCCCCCEEEEEEEE 
cons.  ..**********.....................****... 
PB     bfklmmmmmmmnopacdedfklpcfklpccdfbdcddddf 
[C93]  CCHHHHHHHHHHHCEEEECCHHHCCCCCCCCCEEEEEEEE 
XTLSS. CHHHHHHHHHHHHEEEPPCNNNNCGGGGPPPCEEEECCPP 
SECSTR CCHHHHHHHHHHHCCCCECCGGGCCCCCCCCCCEEEEECC 
DSSP   CCHHHHHHHHHHHSCCCBCCGGGSCTTTSCCCSEEEEECC 
STRIDE CCHHHHHHHHHHHCCCCBCTTTTTTTTTTCCCCEEEEECC 
HELAN. --vvvvvvvvvvv--------------------------- 
BETAEX -----------------b---------------ppppq-- 

 
AA     CQAFSISGKQKGFEDSRGTLFFDIARIVREKKPKVVFMEN 
DSSP3  CCCCCCCCCCCHHHCCCCCCHHHHHHHHHHHCCCEEEEEE 
STRID3 CCCCCCCCCCCHHHCCCCCHHHHHHHHHHHHCCCEEEEEE 
PSEA   CCCCCCCCCCCCCCCCCCCCHHHHHHHHHHCCCCEEEEEE 
DEFINE EHHHHHHHEEEHHHHHHHHHHHHHHHHHHHHHHHEEEEEE 
PCURVE CCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHCCEEEEEEE 
cons.  ....................**********....****** 
PB     klmPfkbnonojmlmklmmmmmmmmmmmmnopabdcdddd 
[C93]  CCCCCCCCCCCHHHCCHHHHHHHHHHHHHHHCC-EEEEEE 
XTLSS. TTTCNNNCCCTTTTTTTNNGGHHHHHHHHHHCCEEEEEEE 
SECSTR CCCCCCCCCCCGGGGGGGGGGGHHHHHHHHHCCCEEEEEE 
DSSP   CTTTCSSSCCCGGGSTTTTTHHHHHHHHHHHCCSEEEEEE 
STRIDE TTTTTTTTCCCGGGTTTTTHHHHHHHHHHHHCCCEEEEEE 
HELAN. --------------------vvvvvvvvvvv--------- 
BETAEX ----------------------------------mmmmmz 

 
Figure 4. Example of multiple secondary structure assignments for the N-terminal extremity of the protein 10MH 
with DSSP3 and STRID3 (DSSP and STRIDE reduced to 3 states), PSEA, DEFINE, PCURVE, a consensus method 
(cons. with a star when the 5 methods agree), the consensus defined by Colloc’h and co-workers ([C93]), XTLSSTR, 
SECSTR, DSSP, STRIDE, HELANAL and the extended BETA alphabet (BETAEX). For the labels see Table 2. 

Box 2 

Box 1 
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Secondly, the secondary structure assignments are represented for the methods that give 

more than three states and the results are even more difficult to analyze. For instance, at the N-

terminus of the protein (box 1), when XTLSSTR assigns two positions as PolyProline II followed 

by a strand and a series of turns, DSSP shows a small bend followed by a turn, STRIDE a longer 

series of turns, and SECSTR assigns a 310 helix instead of the turns. The box 2 is another 

interesting example, because it reflects classical confusing problems. The 3-state descriptions 

give a region mainly in coil or with a short helix (except for DEFINE). The consensus C93 also 

gives a short helix. SECSTR and DSSP assign a 310 helix which stays coherent with C93. 

Nevertheless, XTLSSTR and STRIDE assign those positions as turns. This classical confusion 

between 310 helix and turns is the main reason of the exclusion of type III β-turn from the β-turn 

classification. In the following positions, we observe the same feature but inversed. XTLSSTR 

assigns a 310 helix when STRIDE and DSSP give a turn. 

The interest of the Protein Blocks appears through this example. When most of the SSAMs 

agree, the assigned PBs are coherent with the regular secondary structure states. For instance, the 

core of the α-helices are described by PB m and the core of the β-strands by PBs c and d. In 

addition, the PBs give a more detailed description in the confused positions. For example, in box 

2, the Polyproline II helix assigned by XTLSSTR has its N-cap characterized by the PBs fklpc, a 

well characterized series of 5 PBs identified in a previous work as a Structural Word (SW). A 

SW is a series of PBs which is found with an important occurrence in the databank. The SWs 

identified have shown a particularly high structural stability [133]. This SW fklpc is characterized 

by a strong kink which induces a significant change in the backbone orientation. Its last dihedral 

angles are mainly associated to β-strand values. Thus, it is coherent with a transition between a 

tight turn and a Polyproline II helix, this last having dihedral angle values in the β-strand upper 
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left region of the Ramachandran Map. 

 

 

Figure 5. Example of secondary structure assignments for the protein 10MH with (a) DSSP, (b) 
STRIDE, (c) PSEA, (d) DEFINE, (e) PCURVE, (f) XTLSSTR and (g) SECSTR. All the methods 
have been reduced to three states with the helicoidal states in red ribbons, the extended state in 
green arrows and the coil in blue line. 

 

Figure 5 shows the global 3D structure of the Hhai Methyltransferase according to the seven 

assignment methods. This picture highlights again the heterogeneity of the secondary structure 

assignments. For instance, we can note the helices in the upper right of each picture. With DSSP 

and STRIDE, two helices are found creating an α-α corner, i.e. two helices which are orthogonal 

[79]. With PSEA, only one helix remains, the shorter one is not considered. DEFINE assigns all 

in helicoidal state in a surprising way, i.e. even the residues which are in the kink (deviation of 

90°). XTLSSTR gives the same result as PSEA, but shorten more the remaining helix. SECSTR, 

as already noted, does a treatment very similar to DSSP and STRIDE with slight differences at 

the extremities. With the exception of some particularly well characterized structures like the 

Schellman box, the precise determination of repetitive structure capping limits is highly difficult 

[16].  
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Moreover, some algorithms are highly sensitive to the quality of the protein structures, i.e. 

resolution and temperature factors. For instance, a limited change in resolution or temperature 

factors can modify the DSSP secondary structure assignments. 

 

The Protein Blocks and the classical secondary structure 3-state description. Table 4 (parts 

a and b) gives the complete distribution of the 3-state secondary structures for the seven studied 

methods in the Protein Blocks. As seen in the last paragraphs, DEFINE has a distinct behaviour 

in regards to the other methods, so we will not take it into account in the following sections.  

For all the methods, we observe that the PB m is associated to the α-helix with a mean 

frequency of 90%. The 10% left correspond to coil. The α-helix is also described by the PBs n 

(67%) and l (54%). The PB d is associated at 72% to the β-strand and at 28% to the coil. These 

values underline one more time the β-strand definition problem. The main interest of our 

structural alphabet is a better description of the coil state by PBs i (90%), b (87%), j (82%), p 

(82%), h (80%), f (71%), o (66%), k (56%), c (54%) and e (51%). 

Tables 4a and 4b enable to further analyze the differences between the secondary structure 

assignment methods. For seven PBs (i.e. PBs a, b, g, i, j, o and p), we observe some significant 

differences in their secondary structure assignments. For instance, the PB o has an α-helix 

frequency of 29.3 % and a coil frequency of 70.2% with DSSP whereas these frequencies are 

equal to 49.7% and 49.9%, respectively with STRIDE, although these two methods are really 

close. The PBs g, i and p also present high variations in their α-helix and coil frequencies 

according to the different methods. The PB a shows high differences with β-strand and coil 

frequencies of 20.0 % and 79.8% with DSSP versus 26.3% and 73.6% with STRIDE. 

Furthermore, its β-strand frequency is only equal to 16.3% with SECSTR. A low value of 
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SECSTR compared to DSSP and STRIDE is also observed for PBs b and i: the β-strand 

frequencies of PB i and b are equal to 6.1% and 14.1% for DSSP, to 6.6% and 15.1% for 

STRIDE and only 0.5% and 0.4% for SECSTR. This last point is intriguing as SECSTR was 

specifically dedicated to perform a better assignment of the helicoidal states than DSSP and 

STRIDE while giving a similar assignment for the extended state. 

We compare all the SSAMs according to their 3-state secondary structure frequencies in the 

different PBs. For the helicoidal state, we observe a hierarchy XTLSSTR > DSS > PCURVE > 

PSEA in the frequencies associated to PB m. For the extended state, it is the inverse for the 

frequencies characterizing the PB d, with XTLSSTR < DSS < PCURVE < PSEA. Finally, for the 

coil state, we can roughly note the hierarchy PSEA > PCURVE > DSS > XTLSSTR.  

 

The Protein Blocks and the secondary structure N-state description. Table 5 focuses on 

three SSAMs that describe the secondary structures with more than three states, i.e. DSSP, 

STRIDE and SECSTR, and shows the correspondence with the PBs. The helicoidal state is 

characterized by α-helices, 3.10 –helices and π-helices. For the α-helix state, the frequencies in 

the different PBs are close except as previously noted for the PB o which has an α-helix 

frequency equal to 22.2% for DSSP, 41.4% for STRIDE and only 14.5% for SECSTR. All the α-

helix frequencies are lower for SECSTR. However, it is the opposite for the 3.10 –helices and in a 

lesser extent for the π-helices, since for the PBs from g to p the 3.10 –helix frequencies are 2 to 

10% greater than DSSP and STRIDE. This last fact is consistent with the main purpose of 

SECSTR. The PB l has a 3.10 –helix frequency of 19.2%. The PB g and p are also especially well 

furnished with 3.10 –helix frequencies of about 17%. The π-helix frequencies are low, but far 

superior with SECSTR. 
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The coil state defined in Table 4 is decomposed in four categories, namely the coil (‘C’), the 

turn (‘T’), the bend (‘N’) and the isolated β-bridge (‘B’). As observed in Table 4, the non-

repetitive structures present equivalent frequencies in the different PBs according to the three 

SSAMs. However, Table 5 shows that between the different types of classification, the results are 

clearly distinct. The turns of DSSP (states ‘T’ and ‘N’) are not equivalent to the turns of STRIDE 

(‘T’). Their average frequencies per PBs differ by more than 10%. The turns of DSSP are more 

frequent in PBs o (+25%), p (+25%), b (+19%) and j (+17%) and the turns of STRIDE (‘T’) are 

more frequent in PBs f (+21%), e (+21%), a (+11%) and g (+7%). This point is particularly 

important as the turns are commonly used to describe more precisely the protein structures. For 

the isolated β-bridge (‘B’), the frequencies are really similar between DSSP and STRIDE, the 

difference between the two assignment methods is always less than 0.9%. For the extended 

strand, the results are the same as previously found. These results highlight the complexity of 

describing only particular regions. The differences in the number of analyzed local folds can bias 

the analysis of the results. 

 

The Protein Blocks and the precise description of the repetitive secondary structures. Table 

6 summarizes the distribution of the α-helices and extended strands using more detailed 

descriptions.  

The helices of the Protein DataBank [102, 103] are known not to be ideal helices according 

to the thermodynamical properties. The use of the SSAMs often creates helices that are too long. 

The longest helices in the Protein DataBank contain about 60 residues. Barlow and Thornton 

[112] have shown that 3/4 of the helices are not linear, i.e. they are curved or kinked. HELANAL 

[113] allows to redefine helices into 5 categories: short (less than 9 residues), linear, curved, 
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kinked or unassigned. We have used DSSP definitions of the helices to compute the assignment. 

As expected, the most frequent PB associated with the different categories is PB m with 48.6% 

associated to curved helices, 17.5% to short helices, 10.3% to kinked helices and only 8.5% to 

linear helices. PB m represents 70.1% of the PBs associated to short helices, 82.6% to linear 

helices, 84.2% to curved helices and 84.4% to kinked helices. We observe that the short helices 

are described by several other PBs including PB n (18.6%), l (16.8%) and k (13.5%), with PB n 

frequency greater than that of PB m. For the other types of helix, PB m remains the most 

important although for the curved helices for instance many other PBs are involved in their 

description. 

In the same way than for HELANAL, the extended beta alphabet used the DSSP outputs to 

define different new labels : isolated β-bridge (‘b’), extended strand in parallel sheet (‘p’) or 

parallel edge (‘q’), antiparallel sheet (‘a’), antiparallel edge (‘z’), parallel and antiparallel mixed 

(‘m’) and strand only (‘e’). As expected, the PBs d, c and also e are the most frequent ones. In 

addition, two interesting facts must be pointed out. The first one is the isolated β-bridge (‘b’) 

which is characterized by the PB g with a frequency of 3.6% even though it is not a PB 

particularly associated to extended structures. The second one is the distribution of the extended 

strand alone (‘e’) which is mainly associated to the PB b, a PB associated with long loops and 

Ccap of β-strand, and to PB i, which is more associated to the coil state than to the extended 

state. 

 

These results show that even for the repetitive not-so ideal structures, the Protein Blocks 

constitute an interesting analyzing tool.  
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The Protein Blocks and XTLSSTR 9-state description. Table 7 summarizes the 

correspondence between the 16 Protein Blocks and the 9 states defined by XTLSSTR. This 

method has some interesting particularities like the assignment of turns not with the classical 

dihedral angle criteria but defined as hydrogen- or non hydrogen bonding-turns, and of 

polyproline II helices. Moreover, it identifies the Ccaps of the 3.10 –helices and of the polyproline 

II helices. This SSAM gives different results in regards to the precedent methods. The PB f is 

now associated with a non negligible proportion of α-helix (12.7%) and of 3.10 –helix (5.7%). 

This last fact is related to the PB g 3.10 –Ccap frequency (7.4%) since the main transition of PB f 

is PB g. This value is coherent with the DSS frequency of 3.10 –helix associated to PB g (DSSP, 

STRIDE and SECSTR frequencies are equal to 8.5%, 7.4% and 17.3%, respectively; cf. Table 

5a). The PBs o and p are associated to the 3.10 –Ccap (frequencies of 11.2% and 12.5%, 

respectively). In addition, we observe that globally more hydrogen bond turns are found than 

unhydrogen bond turns. Several PBs are involved in their description with no particular 

specificity related to the hydrogen bond stabilization. As for the polyproline II helices, they 

appear more frequent in globular proteins than expected [23]. Their dihedral angle distribution is 

often confused with β-strands in the upper left of Ramachandran Map and so is confused with the 

β-sheet assignment. This feature is observed again in these results where PBs a, c, d, e and g have 

polyproline II frequencies equal to 22.1%, 23.1%, 17.1%, 20.0% and 14.7%, respectively. Some 

PBs are specific to the C-cap of the polyproline II helix, e.g. PBs f and h. These observations are 

in agreement with the main transitions between successive PBs since PB e often goes to PB f and 

PB g to PB h.  

 

Thus, the goal of this detailed analysis was to emphasize the fact that the “classic” 
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secondary structures can be described with different criteria which results in ambiguous 

assignments. Moreover, we have highlighted the interest of using more than three states for better 

describing protein structures through a structural alphabet. The 16 PBs enable to analyze 

specifically every part of the protein structures.  

 

In the next section of this chapter, we propose a prediction scheme of the protein structural 

classes from the PB prediction. 

 

Part II: PBs and protein structural classes 
 

Goal. The question tackled in this section is the potentiality of classifying one protein into 

its true protein class from the sole knowledge of its prediction in terms of Protein Blocks. The 

process used is in three steps : (i) Protein Blocks are predicted from the sequence, (ii) the relative 

frequencies of the 16 PBs are computed and the three mean frequencies vectors, called 

prototypes, representing the three protein classes are computed from the learning protein set (iii) 

the comparisons between the three mean prototypes representing the protein classes and the 

relative frequencies of the 16 PBs are done for target proteins to predict their classes. 

Having a good idea of the protein classes can be an efficient way for refining the prediction 

research. For instance, it can enable to direct the prediction of a protein, i.e. if a protein is all-α, 

the information derived from all-β proteins would not be used for this protein. The interest of this 

study is not to use the true PBs, but the predicted PBs. The prediction rate is, as previously said, 

equal to 40.7% [128]. Hence, the difficulty here is to predict accurately protein classes from this 

partial information.  
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Protein classes. As noted by Thornton and co-workers, the secondary structures form 

particular motifs that define the global protein topology, e.g. the TIM barrel fold [141]. This 

information is used to classify the protein structures. Different algorithms have been developed 

and the classification is done either automatically like in the CATH database [144] or mainly 

manually like in the SCOP database [143]. Different classes are defined and give information 

about the relationships between the proteins. Interestingly, the different methods give the same 

types of hierarchical relationships with few superfamilies and many subfamilies. On the basis of 

their secondary structures, the folds are grouped into four main classes: all-α (essentially α-

helices), all-β (essentially β-strands), α + β (α−helices and β-strands are largely segregated) and 

α / β  (α−helices and β-strands are largely interspersed). The assignment of a structure to a 

particular class is in some cases a difficult task. In fact, even with an automatic classification, a 

manual inspection is needed. From the sole knowledge of the amino acid sequence, the task is 

even more complicated when no homologous sequence is found.  

 

 

Bayesian prediction of the Protein Blocks: In a previous study [128], we have tackled the 

Protein Blocks prediction from the amino acid sequence. To this end, we extracted the amino acid 

preferences for each local pattern and used this information in a Bayesian process to predict the 

structural motifs able to be adopted by a given protein chain. With this strategy, for each amino 

acid sequence, the potential series of Protein Blocks is predicted [128, 133]. To evaluate the 

prediction, we computed a Q16 ratio which corresponds to the number of well predicted PBs. This 

value is similar to the Q3 of secondary structures with more states to predict, i.e. N=16 
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possibilities against N=3 for the secondary structures.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 8. Bayesian prediction with Q16 value for the 16 Protein Blocks with their corresponding frequencies and 
prediction rate for the (simple) Bayesian prediction and the improved prediction using the sequence families with the 
original results (Proteins, 2000) [ADB00] and the new one (new approach). 

 

With the new databank used in this study, we have an initial Q16 ratio equal to 35.4%, which 

is very similar to the result of our previous work, i.e. 34.4% [128]. Table 8 (col 3) gives the 

prediction rates for each of the 16 PBs. The high differences of the PB frequencies in the 

databank need to be taken into account (Table 8, col 2) since some of the PBs are overrepresented 

like PBs m and d (30.2% and 18.8% respectively). Consequently, we made sure that the Q16 ratio 

was not biased by over-predictions of PBs m and d.  

However, associating one PB with one class of sequences is a restrictive point of view. A 

Bayesian 
prediction 

Sequence 
Families 

Sequence 
Families PB 

PB 
frerquency 

(%) simple (Proteins, 
2000) 

New 
approach 

a  3.9 59.2 53.5 57.4 
b  4.4 12.7 27.0 23.3 
c  8.1 26.4 32.9 35.8 
d  18.8 28.3 34.8 47.3 
e  2.4 40.1 35.9 38.2 
f  6.7 29.7 36.2 33.0 
g  1.1 30.3 35.1 29.8 
h  2.4 42.6 42.7 40.9 
i  1.9 37.7 41.0 37.5 
j  0.8 49.1 47.2 48.5 
k  5.5 38.5 35.2 34.9 
l  5.5 37.5 32.1 36.7 
m  30.2 39.7 50.8 68.3 
n  2.0 51.2 44.7 51.7 
o  2.8 49.2 45.8 47.9 
p  3.5 30.5 33.9 31.1 

Q16  35.4 40.7 48.7 
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same fold pattern (or PB) may be associated with different types of sequences (1 Protein Block -> 

n sequences). Thus, we have defined a new process to split the set of fragment sequences 

associated with one PB into different clusters. These clusters allow a better description of the 

sequence specificities associated with each PB. They are called sequence families (see [128] for 

more details). In our previous work, this process allowed to increase the Q16 ratio from 34.4% to 

40.7% (see Table 8, col. 4). Since, we have improved the splitting process (unpublished results) 

which gives a better Q16 ratio now equal to 48.7% (see Table 8, col. 5). A clear improvement was 

observed for the PBs m and d (+28.6 and +19.0%, respectively), but also for the other PBs (with a 

mean improvement rate of +2.1%).  

From this improved prediction, we have analyzed the association between the predicted PB 

frequencies and the protein structural classes. To carry out this analysis, we have focused on three 

protein classes, i.e. all-α, all-β and mixed. In this last class, we have merged the α + β and α / 

β proteins as our approach does not take account of the secondary structures sequentiality. The 

categorization of the proteins has been done using the criteria of Michie and co-workers [148] 

and DSSP secondary structure assignment. 

 

Analysis of the prediction informativity. In a first step, we have analyzed the informativity 

of the prediction, i.e. the information contained in the relative predicted frequencies of Protein 

Blocks. For this purpose, we have performed a Principal Component Analysis (PCA) on the 

relative frequencies of the predicted PBs obtained for each protein. Such a descriptive approach 

allows quantifying this informativity by coding all the data in their original dimension, i.e. 

without information loss. The first component explains 92% of the information; the others 

represent less than 1.0%. This shows that the information of the predicted Protein Block 
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frequencies has an important determinism.  

 

 

Figure 6. Values of the first component of the Principal Component Analysis carried out on the 
predicted frequencies of Protein Blocks, for the three studied protein classes all-α (blue), all-β 
(red) and mixed (black). 

 

Figure 6 shows for each structural class the distribution of the first component values. We 

observe that the all-α proteins are the only one to have a first component value that can be less 

than -0.2. At the opposite, none of the all-β proteins is found at a value less than 0.0. The mixed 

group is between the two first ones and overlaps more the all-β proteins than the all-α proteins. 

Figure 7 shows the projection of the two first components. The all-α (red crosses) and the all-β 
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proteins (blue crosses) seem to be distinguishable using the PCA and form two distinct clusters. 

The first component is the most discriminative. However, the all-β proteins used more the second 

component than the all-α proteins. This analysis shows that we are able to discriminate the three 

structural classes according to the protein PB predicted frequencies. 

 
Figure 7. Description of the two first components (see Figure 6) for the three studied protein 
classes, all-α (blue ‘+’), all-β (red ‘x’) and mixed (black ‘–‘). 

 

Prediction of the structural classes: In this part, we have identified the PBs principally 

involved in the different classes and we have used the predicted PB frequencies for prediction 

purpose. Figure 8 shows the relative frequencies of the predicted Protein Blocks for each 

structural class. These frequencies are normalized in regards to the frequencies of the predicted 

Protein Blocks in the databank and centred on 0, i.e. 0 represents the background frequency of the 

PB. The α - β proteins have average frequencies close to the background random Protein Block 
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frequencies. The all - β proteins have over - representations of the Protein Blocks from PB a to 

PB j and under – representations for the others. The all - α proteins have under – representations 

of the Protein Blocks from PB a to PB j and an important over – representation of PB m. These 

results are highly coherent with the definition of the different classes. 

 

 

Figure 8. The three average prototypes of the relative predicted frequencies (RF) of the 16 
Protein Blocks  for the three studied protein classes all-α (blue), α-β (black) and all-β (red). In 
abscise are the Protein Blocks from PB a to PB p, in ordinate are given (RF – 1.0) to highlight the 
frequency differences in regards to the random distribution. 

 

 
predicted  

all - α α – β all - β 
all - α 10.2 2.32 0.00 
α – β 12.7 50.6 9.7 

 
true 

all - β 0.00 3.7 10.7 
 
Table 9. Correspondence between the true classification of the proteins and the predicted class using the results of 
the Bayesian prediction. 
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From these 3 mean representations of the protein classes, we have developed a simple 

prediction strategy of the protein class from the PB predicted frequencies. Each target protein’s 

predicted PB frequencies vector is compared with the three vectors of the protein classes using an 

Euclidean distance. The minimal distance gives the predicted class, i.e. the minimal difference 

between the protein and the prototype. Table 9 summarizes the results of the prediction by giving 

the confusion matrix between true and predicted protein classes. The prediction rate is equal to 

71.5%. The prediction rates for the two extreme classes, i.e. all - α and all - β are high, i.e. 84% 

and 74%, respectively. The rate of correct prediction is lower for the mixed class, i.e. 69%. These 

results show that our simple prediction scheme is efficient. No confusion between all - α and all-

β proteins is observed.  

This work shows that from the prediction step, we can tackle the protein class with a good 

accuracy. It is interesting since the prediction is actually done indiscriminately for all types of 

globular proteins. By focusing on one particular class, we can supervised more efficiently the 

prediction. Hence, it can be useful to learn separately (all - α and α - β) proteins and (all - β and 

α - β) proteins. 

 

Part III: Triangular Kohonen map for Analyzing Proteins (TopKAPi) 
 

In the continuity of our previous work, we have attempted to assess the contribution of our 

structural alphabet for discriminating protein structures. A first step consisted in encoding the 

protein structures of our non-redundant databank in terms of Protein Blocks, and, in translating 

this information into PB frequencies, then into Z-scores. This work is related to the representation 

of relationships into a set of related proteins [159, 160]. 
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A Sammon Map [158] was computed with this data and defined in a 2D space. 

Interestingly, it showed a triangular pattern (figure not shown). It must be noted that the Sammon 

Map is only an approximated projection of the protein set. To carry out an unsupervised 

clustering of the proteins, the approach SOM (Self – Organizing Map) is a good choice [154, 

155]. We computed a specific SOM that takes into account the triangular projection, “a triangular 

SOM”. This particular SOM is called TopKAPi, for Triangular Kohonen map for Analyzing 

Proteins. After having performed different trials with TopKAPi, we have selected a triangular 

network with a side of G = 11, i.e. a total of 66 neurons.  

The interest of such an approach is to control the training to avoid a possible redundancy in 

the clustering. In fact, we have defined the initial PBs Z-score distributions in the network. From 

the previous analysis, we have selected the three proteins forming the largest triangle in the 

space, i.e. the sum of the distances between the three selected proteins is maximal. After locating 

these normalized PBs distributions at the vertices of the triangular network, we have defined the 

PBs distribution in each neuron by linear interpolation. The PBs distribution neurons evolve 

thanks to the concept of information diffusion around the winner neuron. 

This choice states on a protein location evenness over the network allowing a number of 

proteins per neuron adequate for estimating the Z-scores. After training, we observed a median 

number equals to 13 proteins per neuron. The two maximums are equal to 95 and 89.  

 

Learning step. Figure 9 shows the distribution of the proteins in the network neurons. The 

size of the circles is proportional to the numbers. Every neuron is characterized by an average 

distribution normalized in Z-scores. The 66 PB distributions are shared into five classes (labelled 

from G1 to G5; see the colors of Figure 9) by a hierarchical clustering. The average distributions 

associated with the clusters are displayed. Two subsets of proteins are easily pointed out: the 
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structures “all-α helix” (characterized by a high positive Z-score for PB m) and the structures 

“all-β sheet” (characterized by a high positive Z-score for PB c, d, e, h and i). The other clusters 

are intermediate groups since the Z-scores distributions are reduced in magnitude. 

 

 
Figure 9. Final Triangular Kohonen map for Analyzing Proteins (TopKAPi) with the number of 
associated data for each neuron. From a hierarchical clustering, 5 clusters have been identified 
(blue, red, green, yellow and cyan) and the mean distribution of Protein Block Z-scores are 
indicated.  
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Figure 10. Sammon map of the TopKAPi neurons (cf. Figure 9). 

 

Figure 10 gives the Sammon map [158] obtained using inter-neuron distance matrix. We 

observe a coherent repartition of the five clusters more linear than expected. Nevertheless, it 

shows the complete antagonism between all-α proteins and all-β proteins. It highlights too the 

interest of the triangular representation of TopKAPi which allows the emergence of the cluster 

colored in blue characterized by an underpresentation of PBs d and m. 

 

Protein Blocks distributions. Figure 11 gives the overrepresentation (in pink and red) and 

the underepresentation (in yellow and blue) observed in every neuron (the grey corresponds to 

values close to 0). Before interpreting these figures, we have carried out a hierarchical clustering 

of these Z-score distributions per block. Figure 12 gives the dendogram showing the PB 

associations in the protein description. Two specific protein blocks are clearly distinguishable, as 

expected PBs m and d which correspond to α-helix and β-strand cores, respectively. 
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Figure 11. Distribution of the 16 Protein Blocks (PB a to PB p) in every neuron of TopKAPi 
(brown : Z-score < 4.4, red : Z-score within the range [-4.4; -1.96], grey : Z-score within the 

range [-1.96; +1.96], cyan : Z-score within the range [1.96; 4.4], red : Z-score > 4.4). 
 

Another class of PBs is defined: {k, o, p, l, n} associated to the N- and C-caps of the α-

helix. The last class is heterogeneous; it groups the N- and C-caps of the β-strand and the coils. 

The PB subset {e, h, i} is more frequently associated to β-β transition. The PB subset {g, a, j} is 

more specific to coil or flexible regions. The last subset {f, b, c} is more ambiguous containing 

N- and C-caps of β-strand and coils.  
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From the protein classification into five clusters (G1-G5), previously defined, and this PB 

classification, we point out:  

(i) class G1: an overrepresentation of PB m and an underrepresentation of a large subset of 

PBs {a, b, c, d, e, f, h, i}. The graph of PB m shows large contrast in the Z-scores. This group is 

specific to all-α proteins. 

(ii) class G2: an overrepresentation of PBs located in helices and their extremities i.e. {l, m, 

n, o} and an underrepresentation of PBs located in β-strands. The Z-scores are less high than in 

G1. 

(iii) class G3: an overrepresentation of certain PBs {a, e, g, h, i, j, k, l, p} related to protein 

showing little regular secondary structures, i.e. mainly composed of coils. 

(iv) class G4: an overrepresentation of PBs b, c, d and f associated to protein showing high 

frequency of β-strands. 

(v) class G5: an overrepresentation of PBs a to f, h to i and an underrepresentation of PBs l, 

m and n. This group is specific to “all β” proteins associated to high Z-scores for PBs c and d. 

 

Amino acid distribution. Figure 12 shows the Z-score distributions per amino acid. We 

observe a higher heterogeneity in the locations of over- and under-representations. This can be 

explained by the fact that the training is only based on the structure, i.e. the PB distribution. 

In each protein cluster, we highlight some amino acid propensities to be located in certain 

protein classes such as:  

 

(i) class G1: overrepresentations of L, Q, E, K with underrepresentation of C, P and G. The 

presence of these amino acid frequencies is a specificity of all-α proteins. 

H
A

L author m
anuscript    inserm

-00134564, version 1



St
ru

ct
ur

al
 a

lp
ha

be
t  

 

 

Fi
gu

re
 1

2.
 D

is
tri

bu
tio

ns
 o

f t
he

 2
0 

ty
pe

s o
f a

m
in

o 
ac

id
s (

I, 
V

, L
, M

, A
, F

, Y
, W

, C
, P

, G
, H

, S
, T

, N
, Q

, D
,E

 R
, K

) i
n 

ev
er

y 
ne

ur
on

 o
f 

To
pK

A
Pi

 (b
ro

w
n 

: Z
-s

co
re

 <
 4

.4
, r

ed
 : 

Z-
sc

or
e 

w
ith

in
 th

e 
ra

ng
e 

[-
4.

4;
 -1

.9
6]

, g
re

y 
: Z

-s
co

re
 w

ith
in

 th
e 

ra
ng

e 
[-

1.
96

; +
1.

96
], 

cy
an

 : 
Z-

sc
or

e 
w

ith
in

 th
e 

ra
ng

e 
[1

.9
6;

 4
.4

], 
re

d 
: Z

-s
co

re
 >

 4
.4

). 

H
A

L author m
anuscript    inserm

-00134564, version 1



Structural alphabet  

 

(ii) class G2: presence of I, A, E and K. Few differences are observed between clusters G1 

and G2. It seems that the amino acids specific to α-helices, i.e. A and L, are not found in the same 

protein types. 

(iii) class G3: this group containing low proportion of regular secondary structures shows 

high affinities for amino acids such as A, C, G and S. 

(iv) class G4: this intermediate group close to the “all-β” does not show significant 

relationship with the amino acids. We observe a large heterogeneity of the Z-score values. 

(v) class G5: The graph reveals high contrast on positive Z-scores for certain amino acids, 

e.g. C, V, G, S and T. 

 

This study has allowed the definition of five protein classes characterized by PB 

distributions and associated with under or overrepresentations of certain amino acids. This 

classification is not only based on the proportions of the PBs located in α-helix or β-strand, but 

also on the proportions of PBs located in this extremities of the regular secondary structures or in 

the coils. A further work associating the PB distributions and the amino acid distributions in the 

training should improve the definition of the protein classes. 

 

Conclusion 

 

Through this chapter, our aim was primarily to highlight the interest of a structural alphabet 

composed of local structural prototypes, i.e. the 16 Protein Blocks, to describe every part of 

protein 3D structures. Also, we accurately compared the 3-state secondary structure assignment 

with the assignment in terms of PBs. The analysis of the correspondence between the different 
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secondary structure assignment methods showed high discrepancies: 20% of the residues are 

assigned to different states. The agreement ratio between two Secondary Structure Assignment 

Methods (SSAMs) is highly dependent of the metrics used and the difficulties of comparing 

different assignment methods have been pointed out several times.  

The Protein Blocks encompass most of the features of the secondary structure description 

with 3 or more states. They describe more precisely the repetitive structures (helicoidal and 

extended), their edges and the coil state which is composed of really distinct local folds. We 

highlighted interesting correspondences between particular local folds and the PBs.  

Use Protein Blocks prediction to classify proteins into the classical structural classes, 

namely all-α, all-β and mixed gave a good prediction rate, i.e. 71.5%, with no confusion between 

all α and all β classes. Predicting protein structural classes can be interesting for then directing 

the prediction in terms of PBs from sequence and for understanding the protein folding of 

particular protein classes. 

Finally, our novel clustering approach, TopKAPi enables to classify and analyze proteins 

according to their Protein Block frequencies. Moreover, we have characterized some propensities 

of amino acids to be located in the five protein clusters previously defined. 

In conclusion, the structural alphabet is a tool for analyzing local protein structures, so 

allowing one to work with a chain of characters rather than with carbon α coordinates. Moreover, 

a structural alphabet facilitates the definition of ‘Structural Words’, PB series of high frequencies, 

specific to a folding pattern. Hence, it constitutes a new way for characterizing local folds. Also, 

it represents an intermediate step for protein modelling in terms of the 16 PBs. The present study 

reveals the interest of a structural alphabet for defining the protein classes. Other multiple 

perspectives appear with this way of representing 3D protein structures and particularly in 
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molecular modelling. 
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