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Abstract

The prediction of loop conformations is one of the challenging problems of homology
modeling, due to the large sequence variability associated with these parts of protein
structures. In the present study, we introduce a search procedure that evolves in a struc-
tural alphabet space deduced from a hidden Markov model to simplify the structural
information. It uses a Bayesian criterion to predict, from the amino acid sequence of a
loop region, its corresponding word in the structural alphabet space.

Results show, that our approach ranks 30% of the target words with the best score,
50% within the 5 best scores. Interestingly, our approach is also suited to accept or not
the prediction performed. This allows to rank 57% of the target words with the best
score, 67% within the 5 best scores, accepting 16% of learned words and rejecting 93% of
unknown words.

Keywords : Loop conformation, conformation prediction, proteins
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1 Introduction

One of the most challenging problem in homology modeling remains the prediction of
loops conformation. Being the less conserved regions of protein structures, they often
cause serious errors in protein models because of their flexibility and the preferred occur-
rence of insertions and deletions. They are however known to often play an important
role in protein function and stability [1]. Loop regions are organized as non repetitive
conformations connecting regular secondary structures. They represent on average close
to 30% of a protein. Although the conformations of these regions are, by essence, irreg-
ular, many preferred conformations have been identified [2-5]. Some authors have also
suggested a relationship between loop conformation and sequence [6-7]).

Several attempts have been made to automate the prediction of the conformation of the
loops. Due to the number of the possible conformations, the prediction of the conformation
of loops has often been considered using conformational sampling techniques [8-11]. A
possible limitation of the size of the combinatorial is to look for conformations existing in
the protein structures [12-14].

Finally, with the increasing number of structures available, several attempts have been
carried out to classify the loop conformations, and to extract some relationship with their
associated sequences to perform prediction [15-19]. However, doing so, the authors are
confronted with the problem of defining the different representative conformations used
as templates, and to establish a relationship with some sequence signature.

Here, we explore whether a structural alphabet, composed of Structural Building Blocks
(SBBs), learned by applying a Hidden Markov Model [20] from a collection of known
structures, can be used to discretize the loop conformational space and to perform con-
formational prediction from loop amino-acid sequence. Previous work has shown that the
distribution of SBBs differs according to loop type [21].

The advantage of using a structural alphabet is that it simplifies the structural informa-
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tion, hence the combinatorial problem associated with conformational search. Also, using
such representation, it is in theory possible to perform a fast search for classes of “words”
that could represent the conformation of a given loop. Finally, such a representation is
well suited for automated search. The aim of our work consists in (i) searching for the
words of fixed size characterizing exhaustively the different three dimensional configura-
tions of coils, and (ii) predicting these words from the sequence windows (encompassing
these series of structural blocks) by a Bayesian approach using probability estimations
deduced from Dirichlet functions. A criterion of predictability is introduced in the pa-
per, it indicates the ability of discriminating the words learned (i.e. those present in the
training set of coils) and the new words (i.e. the configurations newly appearing in the

assessing set of coils).

2 Materials and methods

2.1 Definition of the structural alphabet

The structural alphabet used in this study was obtained by fitting a Hidden Markov
Model (HMM) on a collection of proteins of known structure [20]. The structures were
described as consecutive overlapping blocks of 4 residues. Each block was described by a
4-distances vector: the three distances between the non consecutive a-carbons (de,1-c,s3,
deoi-coa, doga—coa), and the oriented distance of the last a-carbon to the plane formed
by the three first ones. Given such data, HMM then produces a short structural building
blocks (SBBs) description of the structures. The dependence between the successive SBBs
is taken into account by a first order Markov chain. The geometry associated with each
block is reported Table 1. Note that SBBs are not only described by their geometry
but also by their transitions with others. For example, SBBs «; and a5, describing o-

helices, close in terms of geometry, are distinguishable by their transitions while ; and
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(2, strongly connected, both decompose [-strands. The variability of each SBB is less
than 1A. Since in this study, we are interested in the loops connecting some elements of
secondary structure, the distribution of each SBB in the three usual secondary structure
types (helix, coil or B-strand) is also reported. The transition matrix associated with the

Markov process is described in Camproux et al. [20].

2.2 Encoding of the protein structures in the structural alpha-

bet space

Knowing both the average geometry associated with each SBB and the transition matrix
associated with the first order Markov process, it is possible to translate from protein
three-dimensional coordinates into the SBB space, or “alphabet space”, by using the
Viterbi algorithm [22]. This algorithm directly estimates the most probable series of
SBBs underlying a structure. Its advantage is that it is, in theory, much more accurate
than a simple step by step procedure. Hence, the use of the transition matrix between

blocks is implicitely taken into account in the present study.

2.3 Collection of protein structures

The encoding into the alphabet space was performed for a collection of non-redundant
protein structures taken from the “culled PDB” (http:// www.fccc.edu/ research/ labs/
dunbrack/ culledpdb.html). In order to keep a balance between the largest number of
proteins selected for learning and the representativity of the dataset, we have used the non
redundant set presenting less than 50% sequence identity. Since loop sequences are known
to be less conserved than core sequences [23], sequence identity of the loops is expected
to be lower. We removed the proteins for which some ambiguity occur in the coordinates,

such as missing residue or the presence of alternative conformations. This resulted in a
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collection of 878 proteins, representing after encoding a total of 195 421 SBBs.

2.4 Identification of loops in the alphabet space

Given a protein description according to the structural alphabet, each loop is identified
by a “structural alphabet word”. For example, for avar loops, we search for words of given
length [, delimited on both sides by two occurrences of SBBs al or o2. The pattern is
thus: 2{ay, az} - I(X) - 2{a1, a2}, where 1 is the length of the loop, X any character (no
series of ay or ag) apart from oy or az at the two first and two last locations. In this
study, we have considered aa and 33 loops using respectively {ay, as} and {51, 52} as
bounds, from 3 to 13 residues long (3 <1 < 13) and their associated words. This results
in a bank of structural alphabet words noted word; describing loops of length 1 for aa
loops or 33 loops type. For each l-value, classes of words are defined, those differing by
at least one SBB. We will label classy; a particular class of words among a collection of

N; words found in the learning set to describe a given type of loop of length [.

2.5 Scoring function

To predict words of length [ starting from a sequence in the 20 amino-acid sequence space,
we use a score based on the a posteriori probability calculated using Baye’s theorem:
p(sequence;/classy;) X p(classy,)

{ = 1
p(c aggw/sequencel) p(gequencez) ( )

where “sequence;” is related to a sequence of length [ in the 20 amino acid description,
“word” to a series of [ letters in the structural alphabet space, classy; is a class of words.
p(sequence;) can be estimated according to an independence model of the [ consecutive
amino acids as [[; f;, where f; is the occurrence frequency of the observed amino acid ¢

in the database. We have preferred to learn a contingency matrix specific of each type of
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loop of length [ on a window size of 44+[+4. The enlargement of 4 residues both sides was
done to take into account some specificity of the flanking sequences. The probabilities
p;,;/1 of occurrence of each amino acid type ¢ in position j of a window of size 4 + [ + 4

are obtained as:

N/t
=il 2

where n; ;/; is number of occurrences of amino acid type ¢ at location j of the window,

among N; words obtained from the database. Thus, we have:

A4l44
p(sequence;) = H Dij/l (3)
j=1
Similarly, for each class k, we could estimate:
A4l44
p(sequence;/classy;) = H Dij/kl (4)
7=1
with
55 /k,l
Pij/kd = 7]\;21 (5)

where n; ;5 is the number of occurrences of amino acid 7 in position j of the window
for the different occurrences of the class k, and Ny ; is the number of occurrences of the
class k. Since Ni; may be small, we use a different estimation of p; ;/5; based on Dirichlet

functions:
AN g1+ M kg (6)
alN; + Ny

Pij/kl =

where the coefficient a conditions the estimation. Low values of « lead to estimation of
Pi,j/ky close to values obtained for class & by (5), while large values result in values close

to that obtained for the whole set of words obtained for length [ with (2).
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2.6 Criterion of acceptance of the prediction

The high variability of loops results in a possible large number of words describing loops
of same length. Thus, it is possible that words not learned in the learning set, called new
words, appear in the validation set. It is desirable to have some indicator of whether the
score associated with a given word from amino-acids sequence using (1) can be related to
some correct prediction. To accept or not the prediction associated with a score, we use

an acceptance criterion based on the difference between the two highest scores:

Ay_g = p(classy/sequence))rankr — plclassy 1/ sequence;)ranks (7)

We accept the prediction if A;_5 is larger than a given threshold T', i.e. when a large

difference between the first and the second highest scores is observed.

2.7 Quantification of the results

First we distinguish the correct prediction rate (RC'P) as the fraction of words learned
correctly predicted in the validation set. A correct prediction will be either to obtain the
best score for the class the word belongs to (corresponding to a correct prediction at the
first rank noted RC P(1)) , or to obtain the class within the 5 best scores (corresponding
to a correct prediction at the fifth tank, noted RC P(5)).

For a given length [, the validation set consists of N,; sequences tested. It can be
decomposed in two parts: sequences associated with classes occurring in the learning
set (“predictable classes”), denoted as N,;,, and those associated with “new” classes,
denoted as N np, (“not predictable classes”). In terms of criterion of acceptance of the
prediction (7), one can distinguish sequences (N, ,) for which the prediction is accepted

and sequences (N ,,) for which it is not.

We define:
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- the “sensitivity” associated with the threshold 7" as the fraction of number of predictable
sequences for which the prediction is accepted (Ny ;. Nsip), among the number of pre-
dictable sequences Ny .

- the “specificity” associated with the threshold 71" as the fraction of the number of unpre-
dictable sequences for which the prediction is not accepted (Nsna N Nsinp), among the

number of non predictable sequences Ny ...

3 Results

3.1 Loop distribution

Figure 1 shows, for different lengths, the number of words extracted from the database.
Overall, 8792 words were extracted (3750 for e, 5042 for 33). Other studies found a
mean loop number of 7.13 loop per protein in a comparable database (50% identity, 1411
proteins) [15,19]. Here we have a mean loop number of 7.05. Also the distribution of
the loops as a function of their length is similar (p < 0.001). We observe more (33 loops,
according to the observed presence of more (3-strands in known protein structures. For

length larger than 8, this is not observed.

3.2 Distribution of words

Figure 2 shows the distribution of the number of words and classes for different sizes.
Since we have chosen a ratio of 50% of the database as learning set, we find a number of
words similar in the learning and validation sets for the different length. 50% of the 8792
words appear in the learning set and 56.4% of the 5029 classes are learned in it. Only
30% of the classes correspond to short loop lengths (less tan 7) with more than 67% in

the learning set.
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The data-bank of words appears representative only for sizes less than 7 (“short” sizes):
the ratio classes/words remains low (38% for ar and 25% for 33). Since the complexity
of the conformational space increases exponentially with word size, the number of repeated
words decreases when the size increases. For lengths equal to or more than 7 and less
than or equal to 13 (“medium” sizes), the number of classes is close to the number of
words detected (i.e. a number of occurrence close to 1 for each class). Thus, for large
sizes, the database is not representative enough to obtain statistical significance of the
results. However, we have kept this data since we to check the existence of some specificity
inherent to the relationship SBB - amino-acid sequence.

Finally, considering the two types of loops aa and (33, we note that, despite the
number of (33 words is larger for short sizes, the number of classes identified is on the
same order than for aa (2564 versus 2465). This implies a reduced variability in the
alphabet space for loops 33 compared to aa and a better representativity of the learning
set. For instance, for a size of 3 and for 33, more than 90% of the overall number of

classes occur in the learning set.

3.3 Assessment of the effectiveness of the prediction

A preliminary step has been to optimize Dirichlet weight. The optimum (in terms of
correct prediction) was reached for a value of 0.1 for the a parameter. The results are
reported Table 2.

For this value, the self prediction score (learning set) is between 90% and 100% for
all sizes. For the validation set, we first focus on the prediction of classes occurring in
the learning set (occurrences of new classes of the validation set are not considered). For
short words (3 to 6), for which the number of occurrences of each word is more than 1.2,
the mean prediction rate based on the best rank score is of 28.4% (29.1% for aa, 27.8%

for 33). This was obtained for a mean number of words of 236 for each size. For medium
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sizes (7 to 13) the score is of 66.6% (67.6% for aa, 53.7% for §3), but with a number of
predicted words between 1 to 25. Considering the 5 best scores instead of only the first
one, the rates are of 50.4% for short sizes (52.8% for aa, 48.0% for 3/3), and of 72.2% for
medium sizes (83.9% for aa, 60.5% for 33). These results show that the procedure has a
relatively good ability to predict learned words.

Introducing occurrences of new classes, not represented in the learning set, the scores
of correct prediction at the first rank are much lower: 20.9% for short sizes, and fall down
to 3.7% for medium sizes. These results are simply due to the increasing complexity of

loops with length and thus an increasing number of new classes.

3.4 Validation of the acceptance criterion

Since for a real prediction test, one only knows the sequence of the loop and one does not
know a priori whether the SBB word describing it was learnt, we now analyse our results
using an acceptance criterion.

The objective is here twice: (i) the identification of predictable words (learnt) and (ii)
the optimization of the rate of correct prediction. For the first goal, we are interested in
discarding unpredictable words, i.e to obtain a good specificity. For the latter, we prioritize
the correctness of the prediction, even if this results in only a few words predicted (low
sensitivity).

Table 3 gives two examples of words and associated predictions in loops of type 33 for
a length of 5. For instance, the class 1 corresponding to word yeasa’a’ 7,4, is repeated
15 times in the learning set and observed 14 times in the validation set. It is correctly
predicted at the first rank in 10 upon 14 times (71.4%) and at the fifth ranks in all cases.
Using criteria of acceptance (T = 1.28), all sequences not correctly predicted at the first
rank are considered as unpredictable. Class 2 corresponds to a word y3v1a27.575, not

present in the learning set but observed 5 time in the validation set. It is always considered
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as unpredictable using the criterion of acceptance.

Global results are reported in Table 4. We have considered different thresholds for
aa loops and 33 loops, and the results are presented for two sets of thresholds. First,
we focus on short sizes. For the first thresholds (0.5 for aa, 0.64 for 53), we have a
mean sensitivity of 15.6% and a specificity of 92.9% for short words. Meaning, only a
few predictable words were extracted, but almost all non predictable words have been
discarded. Interestingly, among predictable words, the score of well predicted words is
for the first rank only of 57.1% (compared to 28.4%), and increases up to 66.9% for the
fifth best scores. For the second series (1.5 for ac, 1.28 for 53), the sensitivity is lowered,
but results in a better score of well predicted words (62.1%). The specificity is slightly
better (97.7%). For larger values of the threshold, the sensitivity decreases, and the set
of predictable words becomes not representative any longer. Hence, the weight of each
failure becomes larger.

For medium words, we always obtain both a good sensitivity (53%, 48.6%) and a good
specificity (91.4%, 93.8%) but due to the low number of occurrences of the words (hence

a poor learning) we only predict 24.1% and 28% of good predictions.

4 Discussion

4.1 How effective is the use of a structural alphabet ?

In homology modeling, the structure of the backbone of the flanking regions as well as the
sequence of the query region are assumed known. This study meets these requirements,
and we have focused on two particular types of loops (aa, 503).

We perform loop conformation prediction in a structural alphabet space by accepting
the equivalence between this space and the three dimensional space. By using a limited

number of “characters” to reproduce at best the 3D space, we avoid part of the difficulty

10
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inherent to using full three dimensional space, that usually leads to preliminary defini-
tion of classes of conformations. Using a discrete space is, in general, more easy than
considering a continuous space, and it offers the perspective of better understanding the
continuity from one conformation to another by analysing the changes in the characters.
In the present study, we do not tackle the problem of going back from alphabet space to
three dimensional space. We focus exclusively on our ability to predict words.

Concerning the representativity of the alphabet space, it is conditioned by the limited
number of characters (SBBs) used to describe protein conformations. Here, only 10 dif-
ferent characters are combined to summarize loop conformations. However, we observe,
for various lengths, a number of words detected very similar to number of loops reported
in other studies using a three dimensional criterion [15, 19].

Finally, one main interest of using a structural alphabet is that it allows a large simpli-
fication of the combinatorial of the search, but we still not are able to reach a satisfactory
representativity for each class when size increases. For short words, the number of classes
remains low, for medium words, this number increases much, and the number of occur-
rences per class is close to 1. Thus, the goal of preserving conformational complexity

seems to be reached.

4.2 Efficiency of the prediction procedure

In terms of prediction, we use the relationship between the structural alphabet space and
the amino acid space. Different studies have shown that there exists some amino-acid
sequence specificity for certain types of loops [16, 17, 19]. One major interest of the
approach described herein, is to combine both the specificity of the sequence inherent
to each type of loop and the specificity inherent to each class of words. Using only
words, we should be confronted with the problem of the representativity of the dataset.

Using Dirichlet functions, we can reach an equilibrium between the weak representativity

11
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of words while preserving an information depending on each type of loop. A classical
Bayesian procedure could not be directly applied due to a lack of representativity of
certain words. Interestingly, we can study the sequence specificity associated with each
word, by observing the effect of the weight used in the Dirichlet function. Here, our best
results are obtained for a weight value of 0.1, which is low, and suggest that the sequence
specificity of each word is important, even for long sizes, as already suggested by Efimov
et al. and Martin et al. [4, 13].

How efficient can one expect the loop conformation prediction 7 Our scores are difficult
to compare with the results of other approaches, usually in terms of RMS deviations
between the predicted conformation - i.e. one prototype of a cluster of conformations -,
and the target. Using a discrete space, an adapted metrics is rather in terms of change
of characters. Here, “successful prediction” consists, from the amino acid sequence, in
predicting the exact word in the structural alphabet space. For small sizes (up to 7) the
mean prediction of words belonging to known classes, and using the only the best score,
is close to 30%. This score increases up to more than 50% if one considers the 5 best
scores. Note that the value of 5 seems particularly small facing the average number of
classes (118 for short loops). Lessel et al. [24] evaluated the quality of their prediction
based on knowledge-base method by calculating the rms deviation to their target loops
on the best 20 proposal target loops. A prediction was marked as successful, if at least
one of the first three proposal had an rms deviation to the target below 1A. Their best
results are for short fragments with percentage of correct predictions of 30%, comparable
to our first rank results.

Finally, we have also introduced the concept of “predictability” of a given sequence, to
face the problem of unknown words. Such concept seems important since the existence of
a large enough database to reach representativity for each class is far from being reached.

Using such a criterion, we are able to reject as much as 93% of unknown small words.

12
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But we accept that only 16% of known words are predicted, which is weak, among which
57% are scored at the first rank, and 67% are within the 5 best ranks. Hence, for such
cases, the procedure will only propose 5 different conformations among which the correct
word is present. Rufino et al. [25] made an attempt to quantify the predictability of the
loops using a score based, per class, on the frequency of the amino-acids at each location.
Their results showed a sensitivity larger than ours. For short words, they obtained as
mush as to 75% of predictable loops accepted for prediction, with a correct prediction
rate of 57%. However, their specificity was only close to 50% and decreased when the
correct prediction of known classes increased. We do not observe herein such a fact: the

specificity of our procedure is always more than 90%.

5 Conclusions and perspectives

In the present study, we have investigated how plausible could be the use of a structural al-
phabet deduced from a Hidden Markov Model to perform conformational search for loops.
Our results are still incomplete since the whole study is performed within the alphabet
space, and since the conversion from such alphabet space back to the three dimensional
space has not been considered. However, before considering such a step, we need first
to assess whether the simplification introduced by the use of such alphabet reaches both
the goal of describing loop conformational complexity and the goal of encompassing some
specificity between amino-acid sequence and loop conformation.

To these regards, present results are encouraging. First, the distribution of loops
observed in the structural alphabet space is comparable to that of other studies. Second,
the prediction rates of the words describing loop conformations in the structural alphabet
space, as well as the fact that we are able to reject the prediction for most sequences

associated with words not learned, suggest strongly that our procedure is able to capture

13
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the specificity of the sequences.

Interestingly, it is possible to extend this work towards different ways. Considering the
Bayesian criterion used, results presented here were obtained by using the same sets of
parameters whatever the lengths. It could be of interest to fit the Dirichlet weight and
the predictability threshold for each loop type. In particular, the Dirichlet weight could
be dependent on the number of occurrences and the length of each word. The rank used
for correct prediction could be a function of the criterion of acceptance of the prediction.
Moreover, we have not investigated the influence of the size of the amino-acid sequence
window in the prediction rate.

Also, using a detailed structural alphabet to ensure a good description of the confor-
mational complexity of the 3D structures leads to the problem of a weak representativity
for classes when word size increases. We have studied the effectiveness of the procedure
considering no fuzziness of the words. A further direction to improve the prediction accu-
racy could be to consider a “fuzzier space”, by accepting some equivalence between some
of our characters defining the alphabet. One could search for the best equivalences either
starting from analysing the sequence signatures associated with each SBB or starting from
geometric proximity of their conformations.

Finally, if is also possible to extend the methodology to establish a direct relation-
ship between amino-acid sequence and structural alphabet sequence without considering
classes of conformation learned. The combination of such a “class independent” approach

with the methodology described here could lead to significant improvements.
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7 Captions

Table 1: Description of the 12 sort Structural Building Blocks (SBBs).

dl, d2, d3, d4: Mean and standard deviation of the four-distance values (see methods)
for the average conformation (in A)

rmsdw: similarity index within each SBBs, as estimated from the average root-mean-
square deviation obtained on a sample of its associated segments.

%: the proportion of corresponding four-residue segments.

a, coil, B: distribution of SBBs segments on the usual secondary structures. A four-
residue segment is classified in one secondary structure when its third central residue
carbon, is assigned to it.

Table 2: Prediction achieved for the learning and validation sets.

RCP(1): rate of correct prediction using best ranked class. (new classes not considered)
RCP(5): rate of correct prediction using the 5 best ranked classes. (new classes not
considered)

RCP(1)*: equivalent to RCP(1), but new classes considered (systematic bad prediction).

Table 3: Examples of words and associated predictions using the acceptance
criteria.

OLS: occurrence of class in the learning set

OVS: occurrence of class in the validation set

Criterion of acceptance: T = 1.28, (refer to methods), {1 if the sequence is considered as
predictable, 0 else}.

Table 4: Effect of the acceptance criterion
Sensitivity, specificity, T: refer to methods.

T1: T = 0.5 for aa; T = 0.64 for 33.

T2: T = 1.5 for aa; T = 1.28 for 43.

Figure 1: Distribution of aa and (3 loops according to loop size.

Figure 2: Distribution of words and classes for aa and 3/ loops according to
loop size.

17



