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Abstract— Information management for critical care monitoring is still a very difficult task. Medical staff is 

often overwhelmed by the amount of data provided by the increased number of specific monitoring devices and 

instrumentation, and the lack of an effective automated system. Specifically, a basic task such as arrhythmia 

detection still produce an important amount of undesirable alarms, due in part to the mechanistic approach of 

current monitoring systems. In this work, multi-sensor and multi-source data fusion schemes to improve atrial 

and ventricular activity detection in critical care environments are presented. Applications of these schemes are 

quantitatively evaluated and compared with current methods, showing the potential advantages of data fusion 

techniques for event detection in noise corrupted signals. 

Index Terms—CCU monitoring, P-wave detection, Ventricular activity detection, Systemic arterial pressure, 

Optimal decentralized data fusion. 

I. INTRODUCTION 

 

Critical care monitoring has been the subject of many studies in order to increase its effectiveness, from the 

information management point of view. In this sense, it does not escape from the explosion of information sources and 

handling methodologies seen in other non-medical monitoring applications such as: strategic defense, satellite tracking, 

automatic supervision of industrial processes, petroleum pipeline transport surveillance, space flights, and so on. Proper 

integration of these sources and methodologies is a need in modern critical care monitoring.  

Coronary Care Units (CCUs), have been dedicated to the follow up of cardiac patients under recovery, either during 

ischaemic episodes or after myocardial infarction. Mainly, they are devoted to the prevention and control of fatal and of 

non-fatal arrhythmias, and to specific therapeutic follow-up. In order to pursue this task, many physiological 

observations are routinely acquired in a typical CCU, among them: several channels of ECG, blood pressure, blood 

chemestry, clinical observations, and even echo doppler data. These sensors and data are not easily combined by 

machines, mainly due to the mechanistic approach in which they are implemented, and the differences in data sources. 

The information "fusion", to produce a meaningful interpretation for the decision making process, is left to the 

experience of the attending cardiologist and nurses whose responsibility goes as far to collect, classify, organize and 

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders
 All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.
In most cases, these works may not be reposted without the explicit permission of the copyright holder.

H
A

L author m
anuscript    inserm

-00134401, version 1

HAL author manuscript
IEEE Trans Biomed Eng 1999;46(10):1186-90



interpret massive data, both redundant and complementary, in order to construct  an appropriate mental image of the 

pathophysiological state of the patient [1]. 

Attempts to reduce this information handling stress in time-critical environments have been undertaken by many 

researchers and groups. Automatic arrhythmia detection has been the subject of extensive work, due to the need of a fast 

response when life-threatening events occur. Nevertheless, most systems still produce undesirable alarms and are prone 

to confuse artifacts with rhythms, becoming quite ineffective in every day practice, and making human observation and 

monitoring mandatory. Currently, mostly ventricular arrhythmias are detected. Ischaemic episode trending requires 

special methodologies which are still under development [2] and atrial arrhythmias have proven to be a rather elusive 

problem due to the difficulties inherent to P-wave detection.  

This paper presents some ideas to enhance current methods of cardiac rhythm monitoring. The approach undertaken 

seeks to integrate, with the usual ECG signals, complementary data from haemodynamic processes or from other 

electrical signals such as the esophageal ECG (EECG). A data fusion paradigm [3] is proposed to handle the 

information integration approach. As such, the following aspects have been developed: i) Data fusion examples, 

combining multi-sensor and multi-source information ii) Presentation of explicit technical solutions and, iii) 

Quantitative performance measurements for the particular tasks chosen, by means of Receiver Operational 

Characteristics (ROC) curve analysis [4].  

In this work, data fusion techniques have been applied to the detection of fundamental cardiac events, namely the 

ventricular activity (VA) and the atrial activity (AA) –represented respectively by the QRS complex and the P-wave in 

the ECG. Evaluation of AA and VA detection schemes has been performed for an initial set of real and simulated 

signals, in order to present the advantages of the data fusion approach. With a proper detection of these two activities, a 

more accurate characterization of the cardiac rhythm can be achieved, particularly for differential diagnoses between 

ventricular and supra-ventricular tachycardia [5]. 

II. CLINICAL EXAMPLES OF DATA FUSION 

 

A. Association of ECG and haemodynamic signals 

Haemodynamic signals are analyzed usually in a punctual basis either during diagnostic procedures in the cath lab, or 

during continuous bedside monitoring. Although being of heterogeneous nature, both the ECG and haemodynamic 

signals, such as the Impedance Cardiograph or Blood Pressure, have information mutually correlated due to the 

physiological interrelation of the mechanical and electrical functions of the heart. In medical practice, this existing 

interconnection has been very rarely exploited for rhythm analysis purposes. 
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A simple example of this effect is shown in figure 1. The ECG signal by itself, even using three leads, would be 

interpreted by an automatic recognition system as showing ventricular couplets. Further analysis of the haemodynamic 

signal invalidates this hypothesis, suggesting that the second event can be interpreted as an artifact by simply observing 

the absence of a systolic peak in concordance with the second candidate QRS, since noise sources in the ECG and the 

haemodynamic signal are decorrelated. 

In critical situations where the ECG is missing (leads off), or degraded (patient movement or electrosurgery) classic 

detection systems behave like an erratic alarm generator. Joint analysis by means of additional sensors, such as the 

ventricular pressure signal, may allow the preservation of a window to monitor the cardiac rhythm, assuring patient 

monitoring. Nowadays, data fusion with electromechanic information still comprises several obstacles to its application 

in automatic supervision, mainly because they are obtained by invasive techniques. Nevertheless, these procedures are 

still widely used in current CCU units, awaiting newer non invasive ways to collect information from haemodynamic 

processes, such as automatic oscillometric blood pressure measurement. 

 

INSERT FIGURE 1 HERE 

 

Fig.1. Multi-source fusion (electrical and mechanical): 3 ECG leads (upper panel) and intra-ventricular pressure (lower panel). 

Analysis of ECG traces suggest the presence of two ventricular couplets. Analysis of pressure curves allows us to invalidate this 

hypothesis and to re-establish the more probable diagnosis of a unique ventricular extrasystole followed by an artifact. The presence 

of a premature ventricular contraction (PVC) in the ECG lead induced a ventricular pressure fall linked to the short coupling time 

(point 1) and an increase of pressure superior than the average (Point 2) due to the compensation rest following a PVC (the ventricle 

presents a lengthened filling time). 

 

B. ECG-EECG association  

The interest in this case is the differential diagnosis between supra-ventricular and ventricular arrhythmias, observing 

the heart's electrical function alone. In addition to the surface ECG, the EECG is used to obtain an enhanced atrial 

activity representation (A-wave) which directly correlates to the P-wave in the surface ECG. Some proposed methods of 

automatic arrhythmia recognition perform essentially the location and identification of the A-wave, allowing the 

analysis of the atrio-ventricular conduction and its dysfunction [6,7]. Enhancement of the atrial electrical activity in the 

EECG allows to distinguish supra-ventricular arrhythmias with aberrant conduction from arrhythmias of ventricular 

origin, such as those depicted figure 2. This task is still rather difficult to perform in current CCU applications, due to 

the possibility of wave superposition (i.e. P-wave immersed in the QRS or T-waves). Besides its application on supra-

ventricular arrhythmias, fusion of the surface ECG and the EECG allows the distinction between sinus tachycardia, 
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atrial flutter, tachysystole, atrial fibrillation, and also between tachycardia with intra-nodal reentries and those using a 

secondary path (beam of Kent)[8,9].  

INSERT FIGURE 2 HERE 

 

Fig. 2. Example of electrical sources printouts (a) ECG (upper panel); (b) Acquired esophageal ECG (EECG) (middle panel); and (c) 

filtered EECG (lower panel). Although the P-wave is not visible on the whole surface ECG printout, the atrial activation wave in the 

EECG (A-wave) is particularly predominant, notably after signal processing of the EECG. Analysis of the EECG allows us to refute 

the hypothesis of ventricular tachycardia that could have been diagnosed by the analysis of the ECG alone (a) and keep the more 

probable diagnosis of supraventricular tachycardia with bundle branch block. 

 

III. MULTISENSOR FUSION APPROACHES  

A general structure applicable to both VA and AA detection is presented in figure 3. It is based in a distributed 

detection scheme of n!2 pre-processors fed by a set of k!1different sensors (Sk,n). Each pre-processor is composed of: i) 

a nonlinear transformation to enhance the activity of interest, ii) a sensor association stage (SA) in order to minimize 

false alarms, and iii) a global fusion node of local decisions. Every pre-processor produces a local detection of the 

activity of interest (u1,…,un) which is merged by a general data fusion stage, to produce a final decision u by means of a 

fusion rule f(u1,…,un). 

Two realizations of this general structure have been implemented and evaluated: the first one is focused on VA 

detection based on ECG and pressure signals, and the second on AA detection from the ECG and the EECG. In each 

case, particular pre-processors have to be developed. They are described in the following sections. 

 

INSERT FIGURE 3 HERE 

 

Fig. 3. General detector structure based on a distributed detection scheme. 

 

A. Ventricular activity detection 

In this section, mono-source and multi-source VA detection methods are presented. In the case of mono-source 

detection, two pre-processors are used, each one fed by a different ECG lead (n=2, S1,1=ECG lead I, S1,2=ECG lead II). 

For the multi-source implementation, three pre-processors are used: two pre-processors are fed by different ECG leads, 

as previously, and the third by a SAP signal (n=3, S1,1=ECG lead I, S1,2=ECG lead II, S1,3=SAP). 
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The first level in each pre-processor acts as a pre-detector of ventricular activity. It is based on the use of the 

following methods: 

! QRS detector reported by Gritzali [10], 

! A matched filter, adapted to the systolic ejection slope of the haemodynamic signal, for the detection of the 

increase of ventricular pressure [11]. 

In low-noise situations, the same number (Nv) of ventricular events are estimated from the QRS and systolic ejection 

detectors, with a time delay between them. For a given patient showing a regular sinus rhythm, this physiological delay 

(!) between the electrical and mechanical myocardial activation can be considered as a random variable following a 

Normal law P"(!) with mean µEMD and variance #EMD, as suggested by Thoraval in [12]. Also, the association stage 

appears quite simple and consists to artificially re-synchronize the electrical and mechanical activities by introducing a 

delay of !=µEMD on the ECG channels, in order to assure the coherence of decisions taken on each pre-processor, before 

the fusion node. 

 

B. Atrial activity detection 

Two pre-processors are used in this implementation (n=2). Each one has two input signals: one providing mainly a 

good representation of VA, (S1,i=SV,i) and the second (S2,i=SA+V,i) being a good index of AA. Obviously, this second 

signal will also present ventricular information, which will be considered as impulsive noise for that channel. Pre-

processor 1 will acknowledge a decision when a P-wave is detected in the ECG (SA+V,1=SV,1=ECG), and Pre-processor 2 

will acknowledge a decision when an A-wave is detected in the EECG (SA+V,2=EECG; SV,2=ECG). 

 

INSERT FIGURE 4 HERE 

 

Fig. 4. Particular pre-processor implementation for AA detection. 

 

Actual preprocessor implementation for AA detection is done as follows  [13]: The first level is based on the method 

proposed by Thakor and Yi-Sheng [14] which cancels the ventricular activity by means of the QRS-T adaptive filter 

AF1. This adaptive filter is fed by VA detection impulses (i1), previously generated by mmodules D1 and Tsi. More 

precisely, AF1 is an impulse-response filter having as weights an inverted template of the QRS-T, adaptively calculated. 

Gritzali's QRS detection algorithm [10] was used for D1. 

The second level performs the sensor association and involves a second adaptive filter AF2 (i.e. optimal Wiener 

filtering). Module D2 consists of a low-pass filter (F1) tuned to the spectral band of the P-wave, and a square-law 

envelope transformation. The resulting signal (S2) is introduced in AF2, in which an index of the undesired ventricular 
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activity (S1) is used as reference. This level aims to eliminate remaining ventricular activity in S2, mainly due to the 

detection jitter, sharp morphological changes (such those produced by a PVC) or missed QRS detections, by taking into 

account the correlated information between S1 and S2.  

The third level proceeds to the detection of P-waves by means of a classical filter (F2) and thresholding, to obtain a 

local atrial activity detection (ui), used as input to the final data fusion stage. Design of filters F1 and F2 is based on the 

spectral analysis of several P-waves and QRS complex residuals, in order to separate at best the two spectral bands.  

 

IV. GENERAL DATA FUSION 

From a decisional point of view, each pre-processor has as objective to test the two following hypotheses: 

  
H0 : xi (t) = ni(t) + Ai (t)
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whereWi(t ! " ij ) is the jth wave W observed on sensor i, appearing at instant $ij, and ni(t) and Ai(t)  are stationary and 

impulsive noises respectively. Wi(t !" ij ) corresponds to, depending on the event to be detected, the P-wave (ECG) or 

A-wave (EECG) for AA detection, or the QRS complex (ECG) and the rising edge of the ventricular pressure wave in 

the case of VA. Each pre-processor should produce therefore an independent boolean output such that, under the 

hypothesis  

Ho: ui=-1 and under the hypothesis H1: ui=1. 

The fusion problem consists on producing a new statistical u=f(u1,...,un ) which represents a local decision association. 

The chosen function f is a sum of local decisions, weighted by the estimated performance of each pre-processor’s output 

(known as optimal fusion) determined by Chair and Varshney [15]. 
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where optimum weights ai are a function of the probability of false alarm PFAi  and miss PMi for sensor i, and the a 

priori probabilities of each hypothesis (P0=P(Ho);P1=P(H1)) 

a0 = log
P

1

P
0

ai = log
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     if ui = +1

ai = log
1 ! P
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i

     if ui = !1.

 

These weights represent the reliability of decision ui based on the operational characteristics of detector i. 
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For all performance measurements, sensor fusion was calculated for equivalent PFA on each local detector involved. 

Probabilities P0 and P1 are estimated from the annotations of the event of interest. 

 

V. RESULTS 

A. Detection of ventricular activity 

Before proceeding further, some important aspects deserve to be clarified. In spite of the fact that multi-sensor 

detection of the QRS complex is supposed to be a relatively well known problem nowadays, nevertheless, very few 

works have attempted to describe the mathematical laws which govern the optimal or the most suitable association 

scheme for accurate event detection. Regarding this point, several questions can be posed. Do the association have to be 

global as suggested by Gritzali? Or can it make use of local detections with a fusion of decisions, in a decentralized 

detection scheme?  

Results of multi-source fusion were obtained using the IMPROVE European database, corresponding to recordings 

collected during 24-hour ICU monitoring [12]. This database is constituted of multiple signals from different sources, 

including two ECG channels, systemic arterial pressure (SAP), pulmonary arterial pressure (PAP), central venous 

pressure (CVP), carbon dioxide concentration (C02), oxygen concentration (02), air flow (AWF) and the airway 

pressure (AWP). Patient record KUOOOO7 was used for testing. This particular recording was chosen because it 

presents many periods of high and low frequency noise and sensor failure, as well as different pathological rhythms. 

Several segments were selected from the record and concatenated together in order to artificially reconstruct a recording 

with 5738 cardiac cycles, containing intermixed noisy and clean periods. Also, annotations were made for each 

ventricular activity representation in the ECG and SAP channels.  

Figure 5 presents ROC curves obtained from each individual sensor (ECG1, ECG2 and SAP), from a centralized 

detection scheme based on the multidimensional length transformation proposed by Gritzali (GRIT2D), and from 

distributed detection with optimal data fusion of the three available sensors (OPT). Optimal data fusion was also 

calculated for ECG sensors alone showing the same curve of ECG lead 1 -due to the reduced performance of the local 

detector applied to ECG lead 2-, and providing higher performances than the centralized detection (GRIT2D). 

 

INSERT FIGURE 5 HERE 

 

Fig. 5. ROC curve of ventricular activity detection measured from record KUO007 of the IMPROVE European database. 
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Also, a previous study on 10 files of the MIT-BIH arrhythmia database [16], containing two ECG channels, has been 

undertaken in our laboratory. Applying Gritzali's algorithm for each individual sensor (ECG1 and ECG2), it emerged 

from this study that the decentralized approach with an optimal local fusion (OPT) presents superior performances than 

those shown by the centralized approach (GRIT2D). These results are consistent with those shown in figure 5.  

Finally, regarding the multi-source data fusion, results show that the gain in detection accuracy obtained by jointly 

considering both electrical and mechanical sources produced by the cardiovascular system is quite important when 

compared to the mono-sensor analysis of the ECG signal.  

 

B. Detection of atrial activity 

Validation of these methods was undertaken using real signals recorded in an ambulatory setting at the “Fundación 

Venezolana de Cardiología”. The selected record is composed of a single ECG lead and an esophageal ECG channel. 

The proposed structure was compared with three methods previously presented in the literature for AA detection: 

those by Gritzali [17], Thakor [14] (to which a supplementary detection stage was added), and Jenkins[6]. For the 

EECG, Jenkins proposed a simple scheme for A-wave detection based on filtering and thresholding. In this work, 

Gritzali's algorithm, included into the preceding detection scheme, was adapted to the case of the A-wave in the EECG 

signal.  

1) Sensor Association: Performance evaluation at the second level of each pre-processor (which consists to reduce the 

impulsive noise related to QRS suppression) was done in order to quantify the gain obtained in this stage. An estimation 

of the signal-to-noise ratio (SNR) at the output of each level is presented in this section for the case of pre-processor 2 

(combination of EECG and ECG signals). The SNR for beat b and sensor s, is defined as: 

SNRb

s
= 10 log10

ˆ E 
b
(P2 )

ˆ E b (QRS
2
)

! 

" 
# 

$ 

% 
&  

where Ê(P2) and Ê(QRS2) represent an estimate of the energy of the P-wave and QRS complex respectively. A boxplot 

is presented in figure 6 showing the increase in the SNR accomplished by the association stage, and clearly justifying its 

utilization. 

 

INSERT FIGURE 6 HERE 

 

Fig. 6. Boxplot of the SNR between the energies of the atrial and ventricular activities from a surface ECG, an EECG and the output 

of level 1 (Prep2, L1) and level 2 (Prep2, L2) for pre-processor 2. 
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2) Detection Performance: Figure 7 shows performance measurements for AA detection. From these results, the next 

points can be emphasized: i) The detector proposed by Gritzali [17] do not constitute a satisfactory solution; ii) Isolated 

analysis of a single EECG lead does not present a valid solution -this technique remains sensitive to frequent 

movements of the sensor, producing significant morphological changes of A and V waves, therefore minimizing the 

SNR ; iii) Performance measurement at the output of the first level of pre-processor 1 (i.e. the method proposed by 

Thakor [14]) are interesting, but are improved by the adaptive filter that associates ECG and EECG signals. A higher 

gain in performance, due to the association stage in level 2, is shown by the pre-processor 2 (see also figure 6). 

 

INSERT FIGURE 7 HERE 

 

Fig. 7. ROC curve of atrial activity detection measured from ECG and EECG signals. 

 

Overall detector performance is improved even more at the output of the global fusion stage, showing a high 

detection probability  (Pd> 0,8) even for very low values of false alarms (PFA< 10
-4

). These results also show how a 

local detector that does not present a priori interesting performance characteristics (i.e. output of pre-processor 1), can 

be exploited to enhance the probability of detection of the overall scheme, for a given probability of false alarm. It is 

also important to note the increased performance of pre-processor 1, compared to classical methods reported in the 

literature. 

3) Robustness Evaluation: Performance of the proposed detector in face of: i) atrio-ventricular dissociation, ii) 

retrograde P-waves, iii) Extrasystoles (morphological variations of the QRS complex), iv) Miss-detections of the QRS 

complex and v) jitter on the QRS detection stage, has been measured using simulated signals. It is important to notice 

that all of these parameters can notably affect detection performance.  

 

INSERT FIGURE 8 HERE 

 

Fig. 8. ROC curve of the sensibility of pre-processor 2 (EECG and ECG) to atrio-ventricular block; Pre-processor 2 is somewhat 

insensitive (i.e. given a fixed PFA, the probability of detection Pd does not fluctuate) to AV dissociation. 

 

Figure 8 presents ROC curves of pre-processor 2, calculated from simulated signals for different probabilities p of 

appearance of a dissociated AA. For the totality of the tests (not described here due to the limited space) the proposed 

solution always presents superior results than the other techniques, and exhibits on the other hand, to a fixed rate of 

false alarms, a lower relative deviation of detection probability. 
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VI. CONCLUSION 

Two schemes, based on a proposed general structure for multi-sensor event detection, were implemented and tested in 

this work: one for AA detection and another for VA detection. Three different preprocessor implementations have been 

used in the evaluated schemes, for sensor association and local detection, depending on the types of signals used as 

inputs, and the activity to be detected. The interest of this work was not to substitute the clinical use of the surface ECG, 

which still remains as far the more robust technique to characterize cardiac arrhythmias, but to simply show that 

automatic monitoring of the cardiovascular system can be vastly improved by combining the ECG with other signals. 

Results show clearly the improvement in performance and robustness obtained from both the sensor association stage 

and the final atrial and ventricular activity detection, when different types of cardiovascular signals are combined into a 

data fusion model, suggesting that the presented detection schemes can lead to a better automatic classification of 

cardiac arrhythmias. 

Regarding VA detection, the multi-source scheme showed a greater Pd for a given PFA than any other evaluated 

method. A fixed delay was used to associate asynchronous events detected from different sources. Also other 

association methods, such as adaptive estimation of time delays, are currently being evaluated. In the multi-sensor 

detection of AA, based on surface and esophageal ECG leads, the proposed detection structure provided an increased 

detection performance and robustness.  

Obviously, the amount of redundant and complementary information obtained from each local detector is crucial to 

the fusion process. In most cases, sensors observing different sources of the same activity of interest are more likely to 

offer complementary information and to produce increased detection performances. However, important gains in 

performance are also obtained from multi-sensor/mono-source detection schemes, by means of the decentralized 

optimal rule. 

It is important to notice that the implementation of the fusion rule used in this work depends on an on-line or batch 

estimation of the performance characteristics of each local detector (PFAi, PMi), and a-priori probabilities of the 

confronted hypothesis (P0, P1). Development in this sense is being carried out as part of our project in intelligent 

monitoring, concerning the adaptation of the proposed algorithms for real-time applications and real-time algorithm 

switching, based on the estimation of the acquisition environment state (clean, noisy, very noisy) [18].  

Although the proposed data fusion model has been only applied in this work to the UCC/ICU environment, its 

extension to other biomedical applications such as pacemaker control and intra-cardiac defibrillation is also possible. In 

the case of pacemaker control, an esophageal signal could acknowledge the correct use and placement of pacing 

electrodes, and the stability of the P-wave detected by the pacemaker [19]. In the case of intra-cardiac defibrillation, the 

H
A

L author m
anuscript    inserm

-00134401, version 1



jointed evaluation of electrical stimuli and its mechanical response could lead to optimize the quality and energy of the 

stimuli.  
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Fig.1. Multi-source fusion (electrical and mechanical): 3 ECG leads (upper panel) and intra-ventricular pressure (lower 

panel). Analysis of ECG traces suggest the presence of two ventricular couplets. Analysis of pressure curves allows us 

to invalidate this hypothesis and to re-establish the more probable diagnosis of a unique ventricular extrasystole 

followed by an artifact. The presence of a premature ventricular contraction (PVC) in the ECG lead induced a 

ventricular pressure fall linked to the short coupling time (point 1) and an increase of pressure superior than the 

average (Point 2) due to the compensation rest following a PVC (the ventricle presents a lengthened filling time). 
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Fig. 2. Example of electrical sources printouts (a) ECG (upper panel); (b) Acquired esophageal ECG 

(EECG) (middle panel); and (c) filtered EECG (lower panel). Although the P-wave is not visible on the 

whole surface ECG printout, the atrial activation wave in the EECG (A-wave) is particularly predominant, 

notably after signal processing of the EECG. Analysis of the EECG allows us to refute the hypothesis of 

ventricular tachycardia that could have been diagnosed by the analysis of the ECG alone (a) and keep the 

more probable diagnosis of supraventricular tachycardia with bundle branch block. 
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Fig. 3. General detector structure based on a distributed detection scheme. 
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Fig. 4. Particular pre-processor implementation for AA detection. 
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Fig. 5. ROC curve of ventricular activity detection measured from record KUO007 of the IMPROVE 

European database. 
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Fig. 6. Boxplot of the SNR between the energies of the atrial and ventricular activities from a surface 

ECG, an EECG and the output of level 1 (Prep2, L1) and level 2 (Prep2, L2) for pre-processor 2. 
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Fig. 7. ROC curve of atrial activity detection measured from ECG and EECG signals. 
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Fig. 8. ROC curve of the sensibility of pre-processor 2 (EECG and ECG) to atrio-ventricular block; 

Pre-processor 2 is somewhat insensitive (i.e. given a fixed PFA, the probability of detection Pd does not 

fluctuate) to AV dissociation. 
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