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Abstract 

This paper presents research regarding the monitoring of the brain and the adequacy of anesthesia 

during surgery. Particular variables are derived from EEG and ECG signals and are correlated to 

anesthetic gas (sevoflurane) concentration, in pediatric anesthesia. The methods used for parameter 

extraction are based on change detection theory and time-frequency representation. Preliminary 

results show that the expired anesthetic gas concentration modulates both the heart rate variability 

and the duration of the burst suppression. Monitors of the central nervous system and autonomic 

nervous system activities can be expected based on these variables.  

 

I Introduction 

 

During general anesthesia direct testing of the central nervous system (CNS) by means of 

physical examination still remains difficult. Hence, the occurrence of a CNS injury may not be 

detected during surgery, resulting in irreversible brain damage. Under these conditions, the 

monitoring of the cerebral function appears highly desirable.  

 

The electroencephalogram is currently the most popular monitor of neurological function 

during general anesthesia. Various physiological perturbations, the administration of specific drugs 

and the depth of anesthesia may alter the structure of the EEG (Drader et al., 1997). The first 

marker is generally a change in frequency distribution with suppression of both alpha and beta 
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frequency bands and the predominance of slower frequency components (Mahla, 1997). During 

severe cortical deterioration, burst suppression appears progressing to an isoelectric pattern (Prior, 

1996). Similar patterns occur with many different classes of anesthetic agents (Mahla, 1997) and 

with induced hypothermia during cardiac surgery.  

 

In the operating room, EEG might then be included in the monitoring for brain damage as 

well as for the assessment of the depth of anesthesia which, in clinical practice, is estimated from 

indirect and non specific signs including haemodynamic, respiratory, muscle and autonomic signs 

(Langford, 1996). Many attempts have been made to determine an accurate monitor for the 

adequacy and the depth of anesthesia based on variables extracted from EEG recording. The main 

parameters presently used are derived from the amplitude of the EEG and from its power spectrum 

(Bloom, 1997). Recently monitors based on the bispectrum of the EEG (Rampil, 1998) (Gajraj et 

al., 1998) or on the quantitative analysis of middle latency auditory evoked potentials (MLAEP) 

have been introduced (Huowg et al., 1999). The techniques based on temporal and spectral 

representation appear insufficient, those based on MLAEP and bispectrum analysis need further 

validation (Todd, 1998) (Gajraj et al., 1998) (Hall and Lockwood, 1998). None of these monitors 

provide information of high specificity and they have to be interpreted in relation to the context and 

the nature of the surgical operation.  

 

 The ECG signal is routinely monitored during general anesthesia. Normal sinus rhythm 

results from the influence of cardiac autonomic nervous system on the electrophysiology of the 

sino-atrial node. Beat to beat variability of the heart rate (HR) is caused by a fluctuating balance of 

sympathetic to parasympathetic tone and reflects the influence of autonomic nervous system on 

cardiac functioning.  
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Power spectrum analysis has been shown to be of significance in the evaluation of HR 

variability and in providing an estimation of sympathetic/parasympathetic balance (Akselrod et al., 

1981) (Malliani et al., 1991). The high frequency (HF) spectral components correspond to 

parasympathetic vagal activity mediated by the respiratory center (respiratory arrhythmia). The 

lower frequency (mid frequencies = MF and low frequencies = LF) are influenced by both 

sympathetic and parasympathetic activity. General anesthesia has been shown to depress HR 

variability (Ireland et al., 1996 ; Galletly et al., 1998 ; Kato et al., 1992 ; Kawamoto et al., 1994 ; 

Mazerolles et al., 1996) and to inhibit HR response to changes in blood pressure (Schubert et al., 

1997). Moreover a dose related decrease in the cardiac autonomic nervous system activity in both 

vagal and sympathetic nerves activity has been found after isoflurane. Donchin et al., (1985) have 

shown that the amplitude of respiratory sinus arrhythmia decreases in the course of isoflurane-

nitrous oxide anesthesia and that all the components of power spectral analysis of the HR variability 

increase in the recovery period. The effect of general anesthesia with inhalation anesthetic has been 

further investigated by Galletly (et al., 1998) who found that total power and powers in the three 

frequency bands decreased under general anesthesia and that the depression was significantly 

greater in MF components without any difference between halothane and isoflurane. These results 

are confirmed by Deutschman et al., (1994) who have found that in adult patients, propofol, an IV 

anesthetic, reduces high frequency variability to a lesser degree than low frequency variability and 

that the power spectral profile evolves with the level of anesthesia. Such significant variations of 

HR power spectrum parameters were also reported by Schubert (et al., 1997) during general 

anesthesia for abdominal surgery with a combination of thiopental sodium, fentanyl, isoflurane or 

enflurane and nitrous oxide and after pentobarbital in dogs (Kawamoto et al., 1994). 

 

The final aim of this work is to monitor the brain activity and the adequacy of the anesthesia 

during surgery. To do so, both EEG and ECG signals, recorded in children, in the operating room 

have been studied. The EEG analysis focuses on the spatio-temporal distribution and evolution of 
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burst suppression patterns, their characterization (in time domain, frequency domain and time-

frequency domain), in relation to their origin (pharmacological, physiological, pathological), and 

their correlation with the RR intervals, derived from the ECG. Other studies for CNS monitoring 

using the EEG, both in operating room and intensive care units, are being conducted in the 

framework of the European Project IBIS (Ibis, 1997).  

 

A preliminary database, presented in the next section, was recorded and analyzed during 

minor surgical operations in which a single rather than a combination of anesthetic agents was 

appropriate clinically and where the risk of cerebral injuries was very low. Therefore the changes in 

the ECG and EEG signals will only be correlated to the concentration of the anesthetic gas used 

here (sevolurane). As mentioned in the previous paragraph, abrupt modifications appear in the EEG 

and ECG signals during general anesthesia. The determination of the time of their occurrence is the 

first step toward a quantitative study of anesthesia. This is the objective of section III where two 

specific algorithms, based upon rupture detection theory (Basseville and Nikiforov, 1993), are 

described. Results of segmentation are discussed in section IV and promising perspectives are 

mentioned.  

 

II Data base 

 

Ten ASA physical status I or II1 children (2-5 years old) who required elective surgery were 

studied after the protocol had been approved by the Human Studies Committee and informed 

parental consent had been obtained. All children were premedicated 30 min. before induction of 

anesthesia with 0.3 mg/kg rectal midazolam and were NPO (nil per os) for 4 hr. preoperatively. An 

inhaled induction of anesthesia was started with sevoflurane (8%) in oxygen, without nitrous oxide, 

through an open circuit without soda lime absorber. Children were breathing spontaneously during 

                                                 
1 Classification of patient status provided by the American Society of Anesthesiologists. I : A normal healthy patient, 
II : A patient with mild systemic disease.  
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induction until endotracheal intubation. After placement of an intravenous line, the trachea was 

intubated and the lungs were ventilated, to maintain normocarbia at the same frequency (30 

cycles/min) for all children. Inspired concentration of sevoflurane was maintained, at 8% until a 

steady state was obtained, then inspired concentration of the anesthetics gas was decreased every 

minute about 1%. When clinical depth of anesthesia appeared inadequate, decrease in sevoflurane 

concentration was stopped and a rapid increase was performed in order to obtain an appropriate 

depth of anesthesia for starting the surgical procedure. Anesthetic gas concentration and carbon 

dioxide concentration were measured from gas samples continuously aspirated from an elbow 

connector added to the endotracheal tube. ECG, EEG, capnograms as well as inspired and expired 

gas concentrations (sevoflurane) were recorded simultaneously and continuously. The EEG signals 

were recorded by means of bi-frontal electrodes. 

 

Since pediatric anesthesia has not attracted particular attention during recent years, a unique 

indicator of consciousness from HR signals is not clearly established. Evidence for early expression 

of possible awareness was experimentally retrieved from the HR signal. Figure 1 shows a typical 

sequence of the expired gas concentration, the RR interval, its rapid fluctuation (spontaneous heart 

rate variability SHRV) and its slow trend (absolute values of heart Rate AVHR). Just before the 

awareness (anesthetic concentration is close to zero), we observed a decrease in the HR frequency 

and a progressive variability in rate. At the onset of awareness, HR frequency increases abruptly 

and the variability becomes more important. This typical evolution was observed on 9 of the ten 

patients, the 10th having slightly different behavior (Figure 2).  

 

 

Figure 1  
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Figure 2 

 

In patient 10, HR variability is always present suggesting that the autonomic nervous system 

is not completely depressed even though the patient has been correctly anesthetized. Despite this 

last remark, It could be noticed that just before and after the onset of awareness a similar global 

behavior is observed (decrease in cardiac frequency, the evidence of variability and rapid increase 

in cardiac frequency). 

 

The behavior of the EEG signal (left channel) for patient n°1 and patient n°10 are reported 

respectively in Figure 3 and Figure 4.  

 

 

Figure 3  

 

Figure 4 

 

Even for comparable gas concentration, the characteristics / components of the EEG varied 

from one patient to another. Figure 3, shows the EEG dynamics for the patient n°10 where a "spike-

like" activity appeared and a long-term stationary signal is only observed at an expired sevoflurane 

concentration around 3%. For patient n°1, the anesthetic agent induced only a burst suppression 

activity. As for patient 10, a long-term stationary signal is recovered for an expired gas 

concentration close to 4% (Figure 4). 

 

III Change detection in a signal 
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From a formal point of view, this problem belongs to the so-called rupture detection which 

consists of confronting the two following composite hypotheses:  
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where θ. is a family of models. From a practical point of view, we have to choose between the two 

previous hypotheses Ho and H1, to localize the time instant of change r and, if necessary, to estimate 

the models θo, θ’o and θ1 before and after the rupture. Since the models θo, θ’o and θ1 are generally 

unknown, the choice between the two hypotheses is done using the generalized likelihood ratio. 

 

III.1 Detection of bursts and suppressions in the EEG signal 

 

A typical situation observed during an anesthesia is reported in Figure 5. The goal is to detect 

the abrupt changes occurring within the signal that alternate between silent periods (the 

suppressions) and important neuronal discharges (the bursts). 

 

Figure 5  

 

The examination of this previous situation suggests testing the two following hypotheses: 

 

( )
( )

( )nrn

ror

nono

,...,xx Pxx
,...,xxPxxH

,...,xxPxxH

1r

101o1

0o

law  thefollow ,...,         
 law  thefollow ,...,  :  

 law  thefollow ,...,  :  

−−  

 

H
A

L author m
anuscript    inserm

-00134400, version 1



The problem is then equivalent to detecting an abrupt change, occurring at the time instant r, in the 

variance of the samples xo,…, xn. If the samples xo,…, xn are mutually independent under Ho and H1 

and if the observation vector X=[xo,…,xn] follows a centered gaussian law, it is simple to show that 

the instantaneous likelihood ratio can be written as: 
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which, before the change (under Ho hypothesis), has the following mean value: 
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while, after the change (under H1 hypothesis), the mean value of Ln becomes : 
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In such a case, we can estimate the time instant r by using the so-called Page-Hinkley algorithm or 

the cumulative sum applied to the likelihood ratio Ln. This last algorithm presents moreover some 

interesting theoretical properties such as the control of the mean time between false alarm in 

function of the decision threshold λ. It is sometimes preferable to compute the quantity: 
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to guarantee that, before the change, the mean value ( ) 0~ =no LE and after the change, it is : 
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In practice, nothing warrants the samples are mutually independent. We can, in such situation, pre-

whiten the EEG observation by means of an autoregressive (AR) filter estimated on line. The 

previous algorithm could then be applied on the innovation en of the AR model which fulfil the 

required proprieties. Finally, this algorithm requires the knowledge of the variances σ2
o and σ2

1 (θo 

and θ1 respectively in the general case). These quantities can be computed from a maximum 

likelihood estimation and are calculated on two distinct windows: the first one, large and growing 

for σ2
o (θo resp.), the second one, short and sliding for σ2

1(θ1 resp.). The whole algorithm is 

summarized in the following picture: 

 

Figure 6 

 

IV Rupture detection in RR interval 

 

The examination of the RR interval during anesthesia clearly shows (Figure 1 and Figure 2) 

two types of events: i) a slope change within the slow trend AVHR of the RR interval and ii) a 

spectral rupture into the rapid trend SVHR of the RR interval. This last remark explains why HR 

signal is low pass filtered (a comb filter) to build the AVHR trend, while the SHRV is deduced 

from:  
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Since abrupt changes in the AVHR and SHRV may provide an indicator of awareness in depth 

anesthesia, rupture detection algorithms as described in the last section, can be considered for their 

estimation. The whole processing scheme is depicted Figure 7. Data are first filtered in order to 

eliminate low frequency drift and high frequency components, merged with the signal, due mainly 

to the patient's movements in the initial and final phases of the anaesthesia. The ECG signal is then 

processed by the length transformation proposed by Gritzali (1988) and an optimal threshold is 

computed to detect the QRS occurrence in order to construct the HR variability sequence.  

 

Figure 7  

IV.1 Change within AVHR 

 

The analysis of the AVHR trend suggests the modeling of the observations as a linear slope 

embedded in a centered white Gaussian noise, with variance σ2 (figure 1 and figure 2). In this 

context, the set of parameter θ is then (a, b, σ2) and (1) becomes:  
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In this context and after straightforward calculation, Lk corrected by its mean under Ho is equivalent 

to : 
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where ei(k) (for i=0, 1) is the innovation of model θι . (a, b, σ2) are estimated by maximizing the 

likelihood, let :  
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0σ̂ are estimated recursively on a large and growing window while , , are computed 

on a short sliding window as described above. The cusum test is then used to compute the following 

quantities: 
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a change is decided if S(k)-m(k)>λ and the rupture time r is estimated by mintr = . The threshold λ is 

selected in order to guarantee a certain mean time between false alarm while δ is a positive drift 

corresponding to the minimum jump to detect. 

 

V Preliminary results  

 

In this section preliminary results obtained on EEG burst suppression detection using the 

method described above and the analysis of the SVHR variability are reported. The detection of the 

changes in the AVHR has been reported in (Gauvrit et al., 1998) and will not be illustrated here.  
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Figure 8a depicts an example of the segmentation procedure applied to the EEG signal. The 

burst suppression patterns continue and are well detected in the first minute or so after the expired 

sevoflurane concentration starts to decrease (Figure 8c), the burst duration increasing while the 

suppression duration decreases (Figure 8b). Similar behavior has been observed in the other patients 

but at different individual expired anesthetic concentration levels. Burst activity appears for expired 

gas concentration between 3.5% and 5.5% for patient n°10, while for patient n°1 such activity 

occurs between 3% and 4.5%.  

 

Figure 8  

 

The study of the SVHR curves has been conducted by means of a time-frequency analysis. 

Figure 9 shows the time-frequency evolution of the SVHR component when the anesthetic agent 

concentration decreases. We observe in the first part of the time frequency plan (before time 400s) a 

unique frequency component at 0.5 Hz. It is induced by the artificial respirator and not by the 

autonomic nervous system which is strongly depressed. When anesthetic agent concentration 

decreases (after 400s), the autonomic activities appear and sympathetic and parasympathetic 

influences are highlighted by the time frequency representation. Figure 10 is the analogue of the 

Figure 9 but for patient n°10. With the artificial respirator contribution, low frequency components 

are observed underlining the fact that the autonomic nervous system is not total depressed. After 

300 s and as in the previous example, effects of sympathetic and parasympathetic tonus can be 

retrieved from the time frequency plan.  

 

 

Figure 9  

 

Figure 10  
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 These two examples point out the difficulty of assessing adequacy and depth of anesthesia 

when they are evaluated based on indirect indicators or minimum alveolar concentration (MAC). 

An indicator based on the rate of depression of the autonomic nervous system could be used to 

evaluate the adequacy of anesthesia. Rupture detection framework, as previously described, can 

then be applied to detect a change in the SVHR signal using a time frequency representation, rather 

than the raw data; studies are presently being conducted in this direction.  

 

VI Conclusion 

 

One focus of this work was to show how rupture detection could be adapted to the 

monitoring of anesthesia. This approach has already shown its value in the biomedical field for 

SEEG segmentation in epilepsy (Wendling et al., 1997) and for multi-hypothesis classification in 

EMG (Khalil and Duchêne, 1999).  

 

Two different strategies can be adopted. The first one, which has been reported here, 

consists of transforming the original data into a new sequence such that, if a change occurs, it 

appears clearly on the new sequence by a jump into its mean value. The second one consists of 

transforming the signal and applying the previous framework on the new domain.  

 

Our research is still in progress, so only preliminary results are shown here. However, its 

feasibility was investigated in several patients and satisfactory results were shown. Further 

developments are directed towards increasing the information that could be extracted from our 

protocol analysis. It is motivated by the fact that the ECG and the EEG signals are not fully 

exploited for assessing the depth and adequacy of anesthesia especially in the pediatric context. It is 

also motivated by the following : 
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1. Anaesthetic concentrations are currently used by clinicians as an indicator of depth of 

anesthesia. Standard concentration values such as MAC (minimum alveolar concentration) are 

established as a function of the patient's age. They give a pseudo gold standard to measure the 

powerfulness of each anaesthetic gas. They also give a reference value to quantify the depth of 

anesthesia. However, they are not specific or necessarily equally appropriate in every patient.  

 

2. Regulation of the heart rate by autonomic nervous system is now well established. 

Pharmacological effects of volatile anesthetics agent on the ANS and its regulation would allow 

a better understanding of the relationships between gas, ANS and the effects on the central 

nervous system during pharmacological sleep. 

 

3. If robust markers and robust relationships (reproducible for a given population), between gas 

concentration (GC) and the depth of anaesthesia (DA), could be defined from heart rate 

variability or EEG analysis, the influence of others drugs, such as morphine used for analgesia, 

would be better identified and their usefulness, particularly during classical anesthesia, might 

then be quantifiable taking into account the previous relation GC-DA, pain and drug. 
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Legends  

 

Figure 1: Behavior of the HR and anesthetic agent concentration up to awareness (patient n°1). 

Figure 2: Behavior of the HR and anesthetic agent concentration up to awareness (patient n°10). 

Figure 3: EEG behavior and anesthetic gas concentration for patient n°10 (time in sec).  

Figure 4: EEG behavior and anesthetic gas concentration for patient n°1.(time in sec).  

Figure 5: EEG signal showing burst suppression patterns. 

Figure 6: Description of the Burst Suppression Algorithm.  

Figure 7: Extaction of the HR variability curves.   

Figure 8: Burst Suppression activity for the patient n°1.  

Figure 9:SVHR variability, up to awareness, of the patient n° 1.  

Figure 10: SVHR variability, up to awareness, for the patient n°10 
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