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Abstract. Predicting protein structure from amino acid sequence
is one of the main challenges of Genomics. Various computational
methods have been developed during the last decade to reach this
goal. However, the problem of structure prediction remains diffi-
cult. Before facing this complex problem, our goal is to focus on the
accurate analysis of protein structures at a local level. In our study,
we present an approach called "Hybrid Protein Model” (HPM)
which uses a training procedure similar to the one of the Self-
Organizing Maps. It allows the compression of a non-redundant
protein structure databank into a library of overlapping 3D struc-
tural fragments. The ”Hybrid Protein Model” carries out a mul-
tiple alignment of structural fragments. We present in this study
an improvement of this strategy by introducing gaps in the lo-
cal structures, and a sensitivity study of the training according to
the control parameters. The library obtained is composed of a fi-
nite number of structural classes, each class including fragments
sharing similar local structures. These classes are representative
of the structural motifs found in the protein structures from the
databank. Thus, this library constitutes an efficient tool for de-
termining structural similarities between proteins and especially
for predicting the local protein structure from the amino acid se-
quence.
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INTRODUCTION

During the last decade, the number of completely sequenced genomes and
potential protein sequences has greatly increased. On the other hand, the
number of available 3D structures has increased but to a lesser extent. At the
present time, more than 20.000 protein structures are available in the Protein
Databank [2]. However, this databank does not represent all protein folds [12]
and the different folds are not equally represented in this databank. Hence,
computational methods are interested in defining 3D structural models from
the sole knowledge of sequence. There are mainly three categories : (i)
comparative modelling when a protein with a known 3D structure shares a
good sequence identity with the studied sequence [1], (ii) threading which
permits to characterize the best compatibility between the target sequence
and a 3D protein structure extracted from a non-redundant databank [23]
and finally (iii) ab initio and new fold methods which mimic the protein
folding using physico-chemical and statistical parameters [3].

An important way to describe and predict local structures is through the
secondary structures which consist in a local structural alphabet [6] defined
by three states : a-helix, -sheet and coil (defined as not-a and not-8). The
prediction rate of this 3-state alphabet is now -with the use of neural networks
and sequence alignment- close to 80 % [17].

More complete and accurate structural alphabets have been defined. Two
different approaches have been used with (i) a high number of local prototypes
to insure an excellent approximation of protein 3D structures [22, 20], or (ii) a
more limited number of local prototypes that implies a less accurate 3D local
approximation but which in return could be used in a prediction approach
[19, 11, 4, 5].

Thus, we have defined a structural alphabet. It is derived from the di-
hedral angles describing the protein backbone and is obtained from an un-
supervised classifier. The 16 Protein Blocks (PBs), basis element of this
structural alphabet, allow a correct 3D structure approximation (rmsd<0.42
A) [7]. Local prediction has been estimated by a Bayesian approach and has
shown that sequence information strongly induces the local fold, but stays
coarse (prediction rate of 40.7% with one PB, 75.8% with the four most prob-
able PBs). Furthermore, we have shown that the most common series of 5
consecutive PBs share a good relationship between sequence and structure
[10].

From the description of the 3D structures in terms of PBs, we have elab-
orated a novel clustering method called ”Hybrid Protein Model” (HPM) [8],
for compressing the whole 3D fragments of a non-redundant protein structure
databank. This method enables the construction of a library of overlapping
structural prototypes able to approximate the global protein structure by a
local approach [9].

The HPM is represented by a ring of neurons, and each neuron is char-
acterized by successions of PB distributions. The training is similar to that
of Kohonen networks [21, 14], i.e. a competitive learning (also referred to as
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a WTA - ”Winner Takes All” - method). The specificity of the HPM is that
the information associated to the different neurons is overlapping. Thus,
the modification of the PB distributions associated to the winning neuron
influences the neurons located in its neighborhood.

The library obtained is composed of a finite number of structural classes
(corresponding to the neurons), each class including fragments with similar
local structures. These classes are representative of the structural motifs of
the protein structures from the databank.

In the present study, we first present a sensitivity analysis of the HPM
training according to the control parameters. Then, we describe an improve-
ment of the HPM through the introduction of gaps into the 3D protein struc-
tural fragments. Moreover, a ”training in depth” strategy enables to extract
the preferential transitions within the HPM.

The HPM result is equivalent to a ”structural profile” obtained by the
multiple local alignment of the structural fragments (i.e. PB series) and by
defining the PBs frequencies along the HPM. The introduction of gaps enables
to improve the structure informativity similarly to conventional sequence
alignment methods. It allows firstly, to take the length variability of the
regular secondary structures (a-helix and 3-sheet) into account and secondly,
to describe the heterogeneity of some local structures.

MATERIAL AND METHODS
Protein Blocks

16 Protein Blocks (labeled from PBa to PBp) had been defined using an
unsupervised classifier close to Self-Organizing Map [14] and Hidden Markov
Model [18], which takes the preferential transitions existing between the PBs
into account. These PBs allow a good structural approximation of complete
protein 3D structures [7]. Figure 1 shows the backbones of the 16 PBs (visu-
alization with the VMD software [13]). The protein blocks PBa to PBf are
associated with the S-strand. The regular central 8-strand is represented by
the PBd. The blocks prior correspond to the N-caps, the following to the
C-caps. In the same way for the blocks associated with the a-helix, the block
PBm corresponds to the regular central part of a right a-helix. The PBs
from k£ to ! and those from n to p characterize essentially the N- and C-caps
respectively. Finally, the PBs from ¢ to j are mainly found in coils.

Local Structure Databank

The databank used in our study is composed of 675 non-redundant protein
structures (less than 30% of sequence identity, R - factor < 0.2, a root mean
square deviation, rmsd > 10 A) taken from the PDB-RPDB site [16].

For each protein, we have stored the series of dihedral angles and the
primary sequence. Each protein backbone was transformed into a signal
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Figure 1: Backbone of the 16 Protein Blocks (PBs). PBa to PBp from left to right
and from top to bottom.

corresponding to the succession of the dihedral angles (¢;,1;). Then, we
have encoded the protein structures of the databank into series of PBs. Each
protein structure was split into overlapping fragments, each defined by 5
amino acids described by 8 angular values V (¢,,_2, ¢n_1, ¥n_1, ®n, Un,
¢n+1; ¢n+17 ¢n+2)-

The attribution of a protein fragment to a PB is based on a maximal
similarity criterion. The metric used is an Euclidean distance called root
mean square deviation on angular values, computed from the dihedral angles
[20].

For this study, every 3D protein structure was cut into overlapping strings
of L PBs (L fixed to 7) corresponding to local 3D structure fragments. The
whole fragments constitute the ”local structure databank”. It contains 139
503 structural fragments.

”Hybrid Protein Model” (HPM)

In another previous paper [8], we have developed a novel training approach
called "Hybrid Protein Model” (HPM). Its goal is to compact the protein
structures encoded into PBs into clusters of contiguous 3D structure frag-
ments. The HPM is composed of N sites. Each site is defined by a law of
probability corresponding to the distribution of the 16 PBs. Hence, the HPM
can be represented by a matrix of dimension N x 16. A structural class (or
neuron) represents a cluster of fragments with similar local structure, and is
defined by L successive probability distributions f;(b,), with b, denoting one
of the 16 PBs (n=1, 2, ..., 16). Two successive structural classes are over-
lapping since they have (L-1) sites in common. The last site is in continuity



1duosnuew Joyine vH

=7
(%]
@D
=
=
o
©
=
w
w
(o2}
w
©
<
@D
-
0.
o
=
—

with the first one. Thus, the HPM is closed and forms a ring of neurons.

2 1 N N-1

Ring of neurons
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1) Identification phase
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Figure 2: Training of the HPM : 1) For each structural fragment of L successive
PBs, taken randomly from the databank, we search for the most similar pattern
present in the HPM. Consequently, a log odds score is computed along the HPM.
The identification phase consists in selecting the structural class the most similar
to the local structure presented, i.e. the one associated to the maximum score (or
winning neuron). 2) The enrichment phase consists in slightly modifying the PBs
distributions of the structural class corresponding to the site Sy,qz, to increase the
likeness between the optimal neuron and the fragment presented.

Figure 2 shows the two steps of the HPM training: (i) an identification
phase, and, (ii) an enrichment phase. In the identification phase, a fragment
of L PBs represented by the string F = b_,, ..., bg, --., by, (With L = 2w+1,
and w = 3 in our study), is taken randomly from the local structure databank.
It constitutes the input signal. The fragment is presented to the Hybrid
Protein Model and an adequacy score is computed to find the best fit between
the fragment and a structural class of the HPM. The adequacy score S; at
each site ¢ of the HPM is computed (1) :

= f’L-‘rk bk):| (1)

Z_l Tr(bk

where k denotes the position of the protein block by in the fragment
F of length L. The index k=0 indicates the middle of the fragment. The
frequency fr(by) corresponds to the reference frequency of the PB by, observed
in the databank. This score corresponds to the probability of observing the
fragment in a given site ¢ of the HPM according to its structural adequacy
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with the prototype representing the neuron i. It is a log odds score, i.e., the
logarithm of the ratio of likelihood between two hypotheses : the first one
is that the fragment F is defined by a randomly-ordered series of PBs, and
the second one that it is built according to the PB distributions of the HPM.
The neuron the most similar to the local structure presented is determined
by searching for the position iy, the index for which S; is maximal, i.e. i =
argmax[S;]. The training lies on a ”competitive learning”, i.e. the best
neuron is "enriched” by the fragment PB content. Thus, in the enrichment
phase, the submatrix around the optimal position (from ig — w to ig + w)
is slightly modified to learn this fragment, i.e. to increase the similarity
between the winning neuron and the local structure. So, the frequency of the
PBs observed in the structural fragment are increased, while the others are
decreased. Hence, in position ig + k, the frequency value of the PB b, i.e.
fio+x(b), is changed as follows (2), (3) :
if b = b}, (i.e., the PB at position k in the local structure), then

fiorn () + o)

fi0+k(b) A 1 +Oé(t) (2)
if b # b, (i.e., the others PBs at position k), then
. fio+k(b)
flo+k(b) <~ 1+ Oé(t) (3)

The learning coefficient «(t), is initially fixed at a value ag and decreases
in a regular way (4).

alt) = 1+(1T0t/:r (4)

where t denotes the number of fragments already presented to the HPM,
T the total number of fragments in the training databank, and K a parameter
that controls the speed of the a decrease. During a cycle, all the fragments
of the training databank are randomly presented to the HPM. The training
is progressive since several cycles are carried out until the stabilization of
the PBs distribution laws. This enrichment phase allows one to improve the
specificity of the different neurons. Then, the process starts again, another
fragment is presented for training, and so on, until the presentation of all the
fragments of the structural databank.

In Kohonen network, a procedure of diffusion is applied in the neigh-
borhood of the winning neuron: the weights of the neurons are modified
according to their relative distance to the winning neuron. On the contrary,
no diffusion is performed in our training. In the Hybrid Protein Model, the
principle of overlapping around the winner is used and allows a progressive
diffusion by continuity.
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Library of Overlapping Local Structural Prototypes

The HPM is composed of a series of N PB distributions (i.e. a ring of neu-
rons) for which an adequacy score can be computed to cluster the fragments
structurally similar. Every succession of L consecutive PB distributions char-
acterizes a local structural cluster. So it is possible to build a local prototype
from each fragment cluster. At every HPM site, we define the average 3D
prototype by superimposing the protein backbones of the fragments of L PBs.
The final prototype chosen as a representative corresponds to the fragment
whose similarity with this local fold is maximal. We assess the structural
variability by computing the rmsd.

A Shannon entropy can be calculated to quantify the PBs diversity along
the HPM (5).

Zfz )dnlf(5)] (5)

where ¢ denotes the position of the site and f; the corresponding PB
distribution, b indexes a given PB. The transformation of the entropy into
N, (6) allows us to assess the PB diversity in terms of ”equivalent number
of PBs”: N, varies between 1 (i.e., only one PB is present) and 16 (i.e.,
every PB occurs at the same frequency). A low N, value indicates a cluster
of fragments structurally homogeneous according to our structural alphabet.

Ny = exp[H;) (6)

Another index used to quantify the structural informativity in a given site
is the Kullback-Leibler asymmetric divergence measure or relative entropy
(noted KLd, [15]). It is defined by equation (7).

KLd(f;,fr) = Zf, ( (:))> (7)

Tt quantifies the contrast for a given site between the PB frequencies ob-
served in this site £;: {fi(b) }s=1,...,16 and a reference probabilistic distribution
fr: {fr(b)}, i.e. the probability of each PB type in the databank. For a given
HPM, we can assess the global PB informativity by the average KLd(f;,fr)
for the whole sites (8).

N
1

KLdgye = ~ Zl KLd(f;, fr) (8)

This quantity is used to assess the improvement of the training according
to the control parameters variations.
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Sensitivity Study Relative to the Control Parameters

The training is dependent on the HPM size (V), and on the learning param-
eters ag and K.

(i) Optimal HPM size : in a previous paper [9], we have proposed a
strategy for obtaining an optimal Hybrid Protein Model, i.e. for determining
the HPM size N for a given L value of the fragment length (and a fortiori
for a given 3D structure databank). Two properties have been analyzed :
(a) the quality of the continuity (or sequentiality) between the consecutive
HPM sites, and (b) the redundancy within the HPM. The first property
of continuity specifies that when a fragment F, extracted from a given 3D
protein structure in position p of the sequence, is located in position ig in the
HPM, the fragment F’ shifted by one residue in the sequence (into position
p+ 1) must be in general located in position (ig + 1) in the HPM. Indeed,
HPM should maintain the protein backbone continuity to a maximum. This
assumes that the HPM size is high.

In the opposite, the second property of redundancy specifies that any frag-
ment must be clustered in only one site. The redundancy is highly frequent
when several fragments present adequacy scores in different HPM regions
close to the maximal score, i.e. the fragments can be indiscriminately clas-
sified in these different regions. Consequently, a low redundancy assumes a
low N-value.

On this basis, we have defined two procedures. The first one, called ”baby
learning”, enables to insure a high continuity in the training of consecutive
overlapping fragments. The principle consists in learning longer fragments
and progressively reducing their size (L value). This procedure favors the con-
tinuity during the training. Parallel to this first procedure, we have assessed
the redundancy by defining a confusion matrix according to the proximity
of the scores along the HPM. From this information, we deleted some HPM
redundant regions during the training.

In the present study, we have chosen a simplified strategy based on the
concept of "free space occupation”, which consists in starting with a long
HPM (i.e. an important number of neurons) and in estimating the number
of neurons not selected by the training, i.e. the number of structural classes
remained empty. This assumes that the redundancy of the protein structure
fragments is high, hence a limited HPM size is needed. We have assessed this
size according to the training parameters.

(if) Optimal values of the control parameters : we have carried out a study
of the training parameters g and K. From the different trainings, we have
analyzed the variations of the following quantities: the average N.,-value for
the N sites (Neq.ave), the maximal N,q-value (Neg.maz, the minimal value
of 1 is often found in the HPMs), and the average relative entropy for the N
sites (K Ldgye)-
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Improvements for Obtaining a More Accurate Structural Library

The first improvement insures a maximal sequentiality between the consec-
utive Hybrid Protein Model positions in the training of the 3D local protein
structures. We have replaced the strategy of ”baby learning” by a simpler
procedure of forcing. The principle is as follows : a fragment is presented
to the HPM, and its optimal location (i) is determined (corresponding
t0 Smaz). The fragment in position (p - 1) previously examined is located
in the HPM site . The selected neuron or site (iop;) is modified as follows (9):

iopt =i+ 1, if Si’+1 > ’YSmaa: (9)
opt = tmag Otherwise.

With this rule, we compare the score S; 1 obtained when the sequential-
ity is maintained, with the maximal score S,,4, reduced by the factor v (y
< 1). According to the parameter v, the continuity forcing is less or more
efficient. As we previously said, a high continuity between the consecutive
HPM positions requires an important number N of neurons.

Consequently, for an Hybrid Protein Model of reduced size (N < 50), an
elevated forcing in the training leads to an increase of the N,-value, i.e. a
fuzzy structural library. We have assessed the training sensitivity according
to the variation of the parameter ~.

The goal of the second improvement is to derive as much structural in-
formation as possible from the structure protein databank. It consists in
introducing possible gaps in the structural fragments, i.e. in the PBs strings
analyzed. This strategy is similar to the one used in multiple sequence align-
ment methods.

We can assume that the determinism observed in the architecture of a
protein backbone is disturbed in a short region. So, we introduce only one
possible gap of length g (0 < g < L-1) in the string of L PBs, its location
is a fortiori inside the chain of characters. For example, the string fklmmno
may be transformed into fklm- - -mno where a gap of length 3 is introduced
between two protein blocks specific of the a-helix (m).

The adequacy score with gap is expressed as (10), (11), (12), (13):

(i) if the gap is introduced in position -j before the central PB located in
position ¢:

k=—j k+w
- firn—g(br) firk(br)
S, ; = maz, Z In [ Fr(be) ] + k:Zj_H In [7fR(bk) ] (10)

(ii) if the gap is introduced in position +j after the central PB located in
position 1:
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k=+j k+w
fz'—i—k(bk)] [fz'+k+ (bk)]
St. = max In |[===2| + In | =222 11
! ! k:z—w fr(br) k:+zj+1 fr(br) ()
(iii) the adequacy score with gap is :
Sf = MaX;j=1,w—1 {S,:J,S:—]} (12)

This formulate specifies that the introduction of a gap of length g implies a
shift before or after the central position ¢, within the structural information (L
PB distributions) associated with the neuron i. Implicitly, the neuron carries
out an extension of its structural information into a larger neighborhood of
neurons. This score calculation assumes that a gap has no cost whatever its
length. To not favor the introduction of gaps, we penalize the score S7.

The final rule becomes :

iopt = argmaz; {S;, .57 } (13)

In every site, we compare the score S; without gap to the maximal score
S? with gap reduced by the coefficient § (6 < 1). The optimal location index
iopt corresponds to the maximal score with or without gap.

”Training in Depth”

The remaining part of the paper is devoted to carry out a ”training in depth”.
This strategy aims at introducing in the training only the most frequent frag-
ments, i.e. those having a high adequacy score (i.e. S; > So where Sy is a
threshold of selection). Then, the process is reiterated by reducing the Sp-
value, hence favoring the introduction of fragments less frequent. This ap-
proach allows us to first extract a sub-library of structural prototypes more
accurate, and progressively to enrich it by the others prototypes weakly rep-
resented.

Description of the Hybrid Protein Model

RESULTS

Figure 3 gives the final result of the training. The parameters have been
chosen after the sensitivity study (that is detailed in the following section).
Hence, the optimal training parameters values chosen are : the HPM size
N =120, the initial learning coefficient a(=0.20, its decrease K=0.5, the con-
tinuity forcing coefficient v=0.6, the penalty coefficient for introducing gaps
6=0.25 and the selection threshold value So=5.

Thus, the HPM, which represents the library of structural motifs, is com-
posed of 120 overlapping structural classes, i.e. 120 neurons. Each class in-
cludes fragments sharing similar local structures encoded into PBs (fragments
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Figure 3: a) The final Hybrid Protein Model b) Distribution of the fragments c)

Entropy-derived diversity index (Neq) for quantifying the specificity along the HPM
d) Average rmsd (A) (from top to bottom).

of 7 successive PBs). The HPM can be defined as a probabilistic protein. It
is equivalent to a ”structural profile” resulting from the local alignment of
the structural fragments. Here, we realized a multiple alignment of structural
fragments with gaps.

Figure 3a shows the structural information of the N=120 neurons, i.e.
the matrix of PBs distributions. The analysis of the HPM enables to locate
regions of regular secondary structure and preferential transitions between
them. We distinguish the presence of three a-helices of various size (from 4
to 9 PBs) associated with series of PB m. The first one is located from the site
21 of the HPM to the site 29, the second one from 41 to 45, and the last one
from 67 to 70. There are also seven types of -strand (from 3 to 7 PBs long)
associated with series of PB d and located in the HPM sites [7;13], [35;37],
[58;61] (fuzzy region, break induced by PB c¢), [80;82], [94;100] (break induced
by PB c), [107;109] and [116;117] (fuzzy region). Preferential transitions
between these regular structural regions are observed. Some regions of the
HPM are more fuzzy and correspond to coil regions. The gray level indicates
the PB frequency in the distribution.

Figure 3b indicates the number of fragments located in the different HPM
structural classes. Globally, the distribution of the fragments is uniform
(826.8 fragments per site in average) except for the regular secondary struc-
ture regions. The larger a-helix region (sites [21;29]) contains a high number
of structural fragments, essentially located at the site 24 (13790 fragments).
The lowest numbers of fragments are associated to coil regions, with a mini-
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mum value of 86 fragments for the site 16. The analysis of the log odds score
distribution shows that the fragments are well classified. These scores, which
enabled during the training to assign a fragment to a neuron, are relatively
high (with a maximum equal to 21.9).

Figure 3c gives the variation of the ”equivalent number of PBs” (Ne,).
This entropy-derived diversity index allows us to characterize the specificity
of each HPM site. In average, the N, value is 2.19 PBs per site. 90% of
the sites have a N4 value lower than 4 PBs. Some sites are really specific,
like for example regions of a-helix and S-strand. 70 sites (i.e. 58.3%) have a
N, value lower than 2 PBs. The N, values are higher for coil regions. This
index allows us to extract the fuzzy regions such as the sites 46-51, 90-94 and
110-120. The maximum value is equal to 6.6 and is obtained for the site 114.
These results show that the HPM sites are well determined.

Figure 3d shows that the structural approximation of the structural frag-
ments by the prototypes is very satisfactory. Each structural class includes
fragments with similar local structures. These clusters are homogeneous.
The rmsd value for each site is comprised between 0.25 Aand 1.48 A, with
an average value equal to 0.95 A. The lowest value is obtained for the site 26
(a-helix region). The maximal rmsd value is associated to the site 52 (coil).

Figure 4 shows four structural prototypes associated to the neurons 14,
32, 64 and 104. They correspond to a 3-strand with its C-cap, a turn between
an a-helix and a (-strand, a transition between a [-strand and an a-helix,
and a fS-hairpin respectively.

Shne Vel

Figure 4: Average prototypes associated to the neurons 14, 32, 64 and 104 respec-
tively (from left to right).

Sensitivity Study Relative to the Control Parameters

(i) Learning coefficients o and K

Table I gives the results of the sensitivity study according to the variations
of the parameters ap and K. We point out : (i) a decrease of the average
equivalent number of PBs (Ngq.ave) and of its maximal value (N,,.max)
when the learning coefficient ag increases. This may be explained by the
fact that a strong training in certain regions insures a best location of the
fragments highly frequent. The contrast between the structural information
of the neurons (i.e. PB distributions) and the structural information with-
out learning (i.e. the fr(b) distribution) measured by the quantity K Ldgye
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Qg K Ng.ave Nggmax KLdg,.e Seq.

0.005 1 3.23 9.00 1.61 58.1
0.5 3.16 11.41 1.62 57.1

0.025 1 3.00 12.48 1.62 56.7
0.5 291 12.32 1.62 56.6

0.05 1 2.98 12.28 1.61 55.8

0.5 297 10.98 1.66 58.3
0.10 0.5 2.89 10.32 1.67 57.6

TABLE 1: SENSITIVITY OF THE HPM ACCORDING TO THE DIFFERENT LEARNING
COEFFICIENTS

increases weakly. The quantity ”sequentiality” (Seq.) which quantifies the
proportion of consecutive fragments located in consecutive neurons, is stable
(around 57%). The change of the parameter K from 1 to 0.5 leading to a
lower decrease of the learning coefficient ay does not permit a significant im-
provement of the training. From this study, we have chosen a higher learning
coefficient ag = 0.20 and a K-value of 1.

(ii) Forcing factor

By reducing the factor v, we have obtained an increase of the continuity
: around 57%, 74% and 99% for the respective y-values of 0.8, 0.6 and 0.4.
The others quantities N.g.ave and N.4.max are not largely modified.

(iii) Gap cutoff (9)

Gap Ngg.ave Nggmax KLdge Seq.

cutoff (4)
1.0 1.98 5.35 1.83 67.7
0.9 1.98 6.89 1.87 73.7
0.8 2.07 6.22 1.82 739
0.7 2.13 5.63 177 74.6
0.6 2.09 6.57 1.81 75.3
0.5 2.18 6.52 1.74 759

TABLE 2: INTRODUCTION OF GAPS IN THE STRUCTURAL FRAGMENTS (y=0.60)

Table II shows the same quantities N4.ave, Nq.max, K Ldy,. and se-
quentiality (Seq.) according to the gap cutoff § values. The forcing value
is fixed to 0.60. Whatever the d-value, the specificity measured by N.4.ave
or Ngq.max is significantly lower (respectively around 2.1 and 6.3) relative to
those previously obtained (see Table I, around 3.0 and 11.3). Moreover the
structure informativity increases. In Table II, the reduction of the gap cutoff
(8) implies a decrease of the proportion of fragments with gap (the adequacy
score without gap S; is generally lower than the score Sy with gap), hence a
loss of site specificity (K Ld,y.). In the opposite, the quantity Seq. measuring
the degree of fragment sequentiality is more elevated. Those findings indicate
that when the introduction of gap in the structural fragments is favored, the
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sequentiality is diminished.

”Training in Depth”

So  Neg- Neg. KLdgwe Seq. gap selected

ave max (%) frag. (%)

0 2.63 7.9 1.65 683 7.5 99.9
5 219 6.6 1.86 69.9 25.0 94.2
10 1.26 4.1 2.32 72.8 40.2 44.5
15 1.09 2.0 242 82.2 484 18.2

TABLE 3: EFFECT OF THE FRAGMENT SELECTION (y=0.80 AND §=0.75)

In this last study, the parameters § (gap cutoff) and ~ (forcing factor)
are fixed to 0.75 and 0.80 respectively. Table III shows the variations of the
quantities according to the value of the adequacy score cutoff. Unsurprisingly,
a high Sp-value (e.g. 15) by comparison with a reference value (So = 0)
induces a strong fragment selection (e.g. 18.2%), a higher site specificity
(Neg-ave = 1.09 instead of 2.63) and a higher site informativity (K Ldgye =
2.42 instead of 1.65). Furthermore, we point out an increase of sequentiality
explained by the fact that the selected fragments have a larger field for the
training, thus facilitating the sequentiality and a fortiori the introduction of
gaps (from 7.5% to 48.4% for So = 0 and 15 respectively).

R
.'.'.""II.".'.".".'

PBs
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Figure 5: Hybrid Protein Model obtained after a ”training in depth” procedure for
S0=0.10 and most frequent transitions observed along the HPM.
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Figure 5a illustrates the effect of the ”training in depth” procedure. It
shows the HPM obtained for Sy = 10. We have also drawn the most frequent
transitions observed in the selected fragments (see Figure 5b). The structural
prototypes of Figure 3 correspond to some of the highly frequent fragments
present in this graph.

The preferential transitions are observed in the HPM regular secondary
structure regions. They correspond to series of PB m or d. Different kinds
of preferential transitions between these regular structural regions are also
observed. As illustration, the PB series fkl (HPM sites [37;40]) enables the
transition between a S-strand and an a-helix, the PB series nopa (HPM sites
[29;33]) characterizes a transition between an a-helix and a f-strand, and the
series ehia (HPM sites [102;105]) a transition between two (-strands.

DISCUSSION AND CONCLUSION

The Hybrid Protein Model (HPM) presented in this paper uses the concept of
self-organization as the conventional Self-Organizing Maps (SOM), but has
the particularity of not using the concept of information diffusion. In our
method, the input signal influences the winning neuron and its neighborhood
thanks to the overlapping of the information, i.e. the consecutive neurons in
the ring share a common structural information. This information sharing
allows a continuity between the neurons along the ring.

The advantages of the HPM, specially for strings of characters (in partic-
ular for encoded 3D protein structures) are as follows :

(i) HPM allows one to carry out an unsupervised clustering with depen-
dent structural classes, i.e. they share a common information. The conven-
tional clustering methods such as k-means or SOM which tend to determine
independent clusters are not well suited because the structural fragments are
conditioned by their sequentiality.

(ii) The HPM is a tool composed of a set of PB distributions, allowing
the calculation of an adequacy score between an observed fragment of the
protein backbone and a list of structural prototypes. It is equivalent to
a ”profile method” used to characterize the amino acid variability along a
multiple alignment of protein families.

(iii) The HPM carries out by a fast and efficient processing the compres-
sion of a local protein structure databank into 120 structural prototypes of
7 PBs. Consequently, the search of structural similarity between 3D protein
structures becomes an easier task.

(iv) The introduction of gaps into the structural fragments leads to the
realization of a multiple structural alignment with gaps. It allows firstly,
to take the variability in length of the regular secondary structures into ac-
count and secondly, to describe the heterogeneity of some local structures.
Consequently, the specificity of the HPM sites is improved.

(v) The ”training in depth” procedure highlights the preferential transi-
tions within the HPM.
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The limitations of the HPM are :

(i) The determination of the optimal number of neurons has been tackled
by different strategies, ”baby learning” or ”free space occupation”. However,
it is difficult to characterize an optimal size. The HPM size must represents
a good compromise between representativeness of the structural motifs and
low redundancy. The representativeness denotes that any fragment of the
databank (i.e. an observed chain of L, PBs) should find a structural prototype
close to it among the N prototypes of the HPM. However, we must ensure
a low redundancy to limit the number of fragments that can be clustered in
different HPM structural classes.

(ii) The HPM is limited to a ring of neurons to keep the sequentiality
property between consecutive fragments within proteins. However, the pos-
sible structural inputs or outputs of a given secondary structure (a-helix or
B-strand) are not unique. This implies a necessary redundancy in the HPM
for describing these types of structures. A more complex network (instead of
a ring) must be built to take the multiplicity of the structural pathways in
the protein architectures into account.

This exploratory investigation (sensitivity study and improvements) and
the analysis of the HPM performances, enable us to conclude that the Hybrid
Protein Model constitutes a useful tool for compressing 3D protein structures
into a library of overlapping structural prototypes. Further works will demon-
strate the interest of such approach in the search of structural similarity and
in structure prediction from protein sequence.

Protein local structural information is contained to an extent in local
amino acid sequences. The perspectives of our work are (i) firstly to analyze,
from the library of local structural prototypes, the relation between amino
acid sequence and local structure, i.e. to characterize for each structural
prototype the amino acid propensities and informativity, and (ii) secondly,
to use the results of the local structure - sequence analysis in protein 3D
structure prediction. Our aim is to propose local structural candidates for a
given sequence window and then to reconstruct the global 3D structure from
the predicted structural candidates. A first strategy developed uses statistical
scores to assess the local compatibility between a sequence window and the
structural prototypes of the library. Then, by using a dynamic programming
approach, the extraction of the best local structural candidates was carried
out. This first approach must now be improved.
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