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ABSTRACT  

 

 

This paper presents a three dimensional edge operator aimed at the detection of 

anatomical structures in medical imaging. It uses the spatial moments of gray level surface 

and operates in three dimensions with any window size. It allows to estimate the location and 

the contrast surface as well as the surface orientation. The computation of the discrete 

version is reported. Bias and errors due to the spatial sampling and noise are analysed both 

at a theoretical and experimental level. The moment-based operator is compared with other 

well known edge operators on simple shaped primitives for which the analytical solution is 

known. The 3D rendering of real data is then provided by merging the operator in a ray 

tracing framework. 

 

 

KEY WORDS : Surface detection, 3D moment-based operator, 3D medical  

                       imaging, ray tracing. 
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I. INTRODUCTION 

 

 

Advanced imaging systems enable the users in medicine, biology, and other areas to 

acquire a true 3D information in the form of densely sampled contiguous volume elements 

(voxels). Understanding volume data necessitates effective tools to display, manipulate, 

enhance and analyse the underlying structures while preserving their full dimensionality [1]. A 

number of segmentation techniques have been reported in the 2D case which operate either by 

discontinuity detection or by region formation. The first approach consists mainly of edge 

detection procedures while the second is characterized by region growing, labelling techniques 

and texture analysis. In computer vision as well as  in medical imaging, the first approach far 

outnumbers the second and is increasingly used. 

 

Edge detection techniques have been investigated in depth in the literature. Sobel's, 

Prewitt's operators and their alternate versions [2], moment-based operator [3], facet model 

approach [4], Canny's method [5], Laplacian-of-Gaussian (LOG) [6], and difference of 

recursive filtering(DRF) [7] are among the most well known solutions. Some of the 2D 

approaches have been  generalized by several authors. The 3D surface operators proposed by 

Zucker & al.[8] and Morgenthaler & al.[9] belong to facet model approaches and make use of 

polynomial surface fitting. The 3D extension of LOG proposed by Bomans et al. [10] looks 

only for the surface location. In 3D medical imaging, the standard techniques are the gray-scale 

gradient and the magnitude thresholding methods [11,12,13]. These simple techniques have led 

to attractive results in the display of 3D objects. 

 

However, quantitative characterisation of anatomic structures remains one of the major 

issue in medicine. Automated and partly automated measurements require functionally correct, 

accurate and computationally efficient segmentation procedures. The present work was mainly 

motivated by this need for an accurate 3D edge operator with higher performance [13] [14]. 
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The moment properties have been largely used as a tool to describe the object shape and feature 

informations, and to classify image regions. Various moment forms have been reported such as 

spatial moments, gray-scale and Legendre moments [15] for detection purpose. A 3D moment-

based edge operator is proposed and discussed in this paper. Initially designed for the 

estimation of surface normal [13] it can be seen as a 3D generalization of the 2D edge operator, 

reported by Lyvers & al. [16], emphasizing additionnal capabilities to compute the position and 

the contrast of a surface with subvoxel precision. 

 

In Section II, the basic features of the moment set are given. The section III presents the 

mask computation problem for an efficient implementation. The error due to the voxel 

sampling effect and its correction, the performance of the operator on noisy data are discussed 

Section IV. Finally, some results are provided on simulated and real data and compared to other 

detection schemes (Section V). 

 

 

 

II. BASICS  

 

 

Let f(x,y,z) be a 3D continuous gray-level image containing an object, and W  be a 

spherical window with radius R close to a surface point. The choice of a spherical window 

allows to have a full symmetry. W contains a segment of the surface which can be theoretically 

considered as a plane if W is small. This plane divides the window W into two regions, the 

background region with an intensity value a and the object region with an intensity value a+b. 

The normal to the plane can be specified by a unit vector defined as a function of (α,β) (Figure 

1). The distance from the window center to the plane is denoted by h. Five parameters define 

the ideal surface within a spherical window : (a, b, h, α, β). These parameters are derived 

below from the spatial moment set computed in a spherical neighboring window. 
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Recall that the moments of order (p+q+r) of a continuous function f(x,y,z) are defined by 

: 

 

 

Mpqr =    x py qz rf(x,y,z)dxdydz
  (1) 

 

 

and a closed moment set of order n is invariant with respect to the geometric operations, 

rotation, translation and scaling, and consists of original moments of order n and lower. In 

order to simplify the problem statement, two rotations around the window center are applied to 

the window W  to align the normal vector to the z-axis. The combined rotation matrix is given 

by : 

 

 

 

Mr(α,β) = 
cos α cos β -sin α cos α sin β

sin α cos β cos α sin α sin β

-sin β 0 cos β  (2) 

 

 

and the rotated moments can be written as follows : 

 

 
M '

pqr =    x cosα cosβ +y sinα cosβ -z sinβ
p

-x sinα +y cosα q

                     x cosα sinβ +y sinα sinβ +z cosβ
r
f(x,y,z)dxdydz   (3) 

 

 

From the above equations, we can obtain the rotated moment set up to the second order : 
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M
'
000 = M000  (4a) 

 

M
'
100 = M100cosα cosβ + M010sinα cosβ - M001sinβ (4b) 

 

M
'
010 = -M100sinα + M010cosα  (4c) 

 

M
'
001 = M100cosα sinβ+ M010sinα sinβ + M001cosβ  (4d) 

 
M

'
110 = -M200cosα sinα cosβ+ M110cosβ cos2α - sin

2
α +           

                 M101sinα sinβ - M011cosα sinβ + M020sinα cosα cosβ  (4e) 

 
M

'
101 = M200cos2α  sin β cosβ + 2M110sinα cosα sinβ cosβ + M101cosα cos2β - sin

2
β

+M020sin
2
α sinβ cosβ + M011sinα cos2β - sin

2
β  - M002sinβ cosβ  (4f) 

 
M011

'
 = -M200 sinα cosα sinβ + M110 cos2α - sin

2
α  sinβ + M020 cosα sinα sinβ

- M101 sinα cosβ + M011 cosα cosβ     (4g) 

 
M200

'
 = M200 cos2α cos2β + 2M110 cosα sinα cos2β - 2M101 cosα cosβ sinβ

+M020 sin
2
α cos2β - 2M011 sinα cosβ sinβ + M002 sin

2
β   (4h) 

 

M020
'

 = M200 sin
2
α - 2M110 sinα cosα + M020 cos2α  (4i) 

 
M002

'
 = M200 cos2α sin

2
β + 2M110 sinα cosα sin

2
β + 2M101 cosα sinβ cosβ 

+ M020 sin
2
α sin

2
β + 2M011 sinα sinβ cosβ + M002 cos2β   (4j) 

 

 

 

II.1 Surface Orientation 

 

 

The surface orientation can be derived from surface geometric information such as its 
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depth derivatives. However the derivative operator is very sensitive to noise and depends on 

the surface detection step. It is of interest to estimate the surface orientation independently and 

directly on the gray-scale image. The integrative nature of the moment based operator can 

increase the accuracy in case of digital image (see section IV). 

 

Due to the symmetry of the rotated window W about z-axis, we have M '
100  = 0 and 

M '
010  = 0 and by solving the equations : 

 

 

M100 cosα cosβ + M010 sinα cosβ - M001 sinβ  = 0   (5a) 

 

-M100 sinα + M010 cosα  = 0  (5b) 

 

we can obtain : 

 

tan α = M010
M100                    

tan β = M2
100  + M2

010
M001   (6a, 6b) 

 

Obviously, (α, β) can uniquely determine the direction of the normal vector. From Figure 

1, we have : 

 

tan α = 
ny
nx

 ,    tan β = 
nx2 + ny2

nz  (6c, 6d) 

Where (nx,ny,nz) are the components of the normal vector N  . 

 

Comparing the above equations, we can compute the normal to the surface presented by 

the three first-order moments : 

 

N = k M100 ,  M010 ,  M001   (7) 
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Note that if k=- 1/M000, N   is a vector from the centroid of the spherical window W to its 

center, and if the gray-value in the object region is higher than that in the background, the 

vector coincides with the outer normal to the surface [13]. What  we are interested in is merely 

the direction of N , i.e. the sign of the factor k, so we can set k = -1. 

 

 

 

II.2 Surface Location and Strength 

 

 

Based on Figure 1b, some moments (in 4a, 4d, 4j) can be obtained by integration in the 

corresponding regions : 

 

 
M000

'  = 4
3

π R 3 a  + 2
3

π R 3 b  - π R 2 h b + 1
3

π h3 b
  (8a) 

 
M001

'  = 1
4

π R 4 b  - 1
2

π R 2 h2b + 1
4

π h4 b
 (8b) 

 
M002

'  = 4
15

π R 5 a  + 2
15

π R 5b  - 1
3

π R 2h3 b + 1
5

π h5 b
  (8c) 

 

 

Some substitutions in equations (8) allow to find the surface translation h related to the 

window center and the surface strength (or contrast) b as follows : 

 

h = 5M002
'  - R 2M000

'

4M001
'

                            
b = 4

π
 M001

'  

R 2 - h2 2
  

(9a, 9b)
 

 

From the equations (4d) and (4j), we can describe the rotated moments by the unrotated 

moment set : 

 

H
A

L author m
anuscript    inserm

-00133014, version 1



 

- 9 - 

 

M001
'   = M100

2  + M010
2  + M001

2  = Mb  (10a) 

 

M002
'  = 1

Mb
2

M200  M100
2  + 2 M110  M100  M010  + M020  M010

2  + 2 M101  M100  M001

 + M002  M001
2  + 2 M011  M010  M001

 (10b) 

 

 

So, the surface translation h and the surface strength b can be obtained according to the 

moment set computed in a spherical window : 

 

 

h = 1
4Mb

3
5M200  - R 2M000 M100

2  + 5M020  - R 2M000 M010
2  + 5M002  - R 2M000 M001

2  
+ 10 M001  M010  M011  + M001  M100  M101  + M010  M100  M110

 (11) 

 

 
b = 4

π
 Mb 
R 2 - h2 2

  (12) 

 

 

The parameter h gives the translating distance of a surface point xs,ys,zs   to the 

window's center io, jo,ko . Considering the conversion between the spherical coordinate system 

and the Cartesian coordinate system, the surface point is defined by : 

 

 
xs = io + h cosα sinβ = io + h M100

Mb  (13a) 

 
ys = jo + h sinα sinβ = jo + h M010

Mb   (13b) 
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zs = ko + h cosβ      = ko + h M001
Mb   (13c) 

 

 

The last terms in these equations determine the edge location with a subvoxel accuracy. 

 

Equation (12) shows that the surface strength b is proportional to Mb. If h is set to zero, 

the computation of b can be simplified. In practice, Mb is used as a confidence measure of the 

edge (detecting the presence of a surface element) which is in fact the magnitude of the vector 

defined by the three first order moments and defining the surface normal, and then the 

computation can be refined by using the complete formulas. 

 

 

 

III. COMPUTATION OF THE DISCRETE MOMENT SET 

 

 

A 3D digital image f(x,y,z) is represented by a matrix of voxels, each voxel is a small 

cubic region of f(x,y,z), and has a gray-value equal to the average value of all points throughout 

this region : 

 

d i, j,k  =  
k - 1

2

k + 1
2

 
j - 1

2

j + 1
2

 
i - 1

2

i + 1
2

f x,y,z  dxdydz
  (14) 

 

 

So within each voxel, Vijk , the gray-value is a constant, d(i,j,k). On the other hand, the 

computation is carried out within a spherical window, each voxel belonging to the cube 

bounding the spherical window W has different contributions to the moments due to the cube-

aperture sampling. To take into account these contributions, a weighting function, Cpqr i, j,k , is 

used to carry out the discrete integrations: 
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∑∑∑=

k j i
pqrpqr kjidkjiCM ),,(),,(  (15) 

 

 

and Cpqr i,j,k   can be defined as follows : 

 

Let Aijk   be the volume part of the voxel Vijk   within the spherical window (Figure 2), so 

: 

 

∑∑∑=
k j i

ijkAW  (16) 

 

 

and hence the moment can be written : 

 

 

∫∫∫∑∑∑=
ijkA

rqp

k j i
pqr dxdydzzyxkjidM ),,(  (17) 

 

and  

 

 

Cpqr i, j,k)  =    
Aijk

x py qz rdx dy dz    
   (18) 

 

 

The weighting functions Cpqr i, j,k  (or masks) can be found by means of an 

approximation of the integrals. We adopt here a finite element approach. Each voxel in a nxnxn 

cubic window is subdivided into mxmxm subvoxels within a spherical window of radius of R, 

so the subvoxel size is Δx = 2R/n
m  and has a volume of Δx 3 = 2R

nm
3
. Then in each region Aijk , 
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the integrals can be computed at a subvoxel level : 

 

 
∑∑∑∫∫∫ ΔΔΔΔ==

' ' '

)'()'()'(),,(
k j i

rqp

A

rqp
pqr vzkyjxidxdydzzyxkjiC

ijk

 (19a) 

 

 

where Δx  =  Δy  =  Δz,    ΔV  =  Δx 3
, and (i',j',k') denotes the subvoxel position within 

the window, so the masks can be written : 

 

 

∑∑∑
++

⎟
⎠
⎞

⎜
⎝
⎛=

' ' '

)()'()'(2),,(
k j i

rqp
rqp

pqr kji
nm

RkjiC  (19b) 

 

 

and one needs only to compute the coefficients : 

 

 
∑∑∑=

' ' '

)()'()'(),,(
k j i

rqp
pqr kjikjiW , with ijkAkji ∈)',','(  (20) 

 

(i',j',k') are integers on a different scale from (i,j,k). 

 

These masks are easily implemented and their precision only depends on the sub-

sampling, m.  

Figure 3 provides a mask set computed with m=200, n=3, R=1 and Figure 4 the mask set 

corresponding to  m=200, n=5, R=1. The complete mask set can be defined from these masks 

through the rotations : 
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C010  = C100 ⋅  MRZ 90°  ,    C001  = C100 ⋅  MRY -90°
C101  = C110 ⋅  MRY -90°  ,   C011  = C110 ⋅  MRX 90°  
C020  = C2100 ⋅  MRZ 90°  ,   C002  = C200 ⋅  MRY -90°  

 

 

where the rotations around the x,y,z axes are :  

 

 

MRX α  = 
1 0 0
0 cosα sinα
0 -sinα cosα

,   MRY τ  = 
cosτ 0 -sinτ

0 1 0
sinτ 0 cosτ

,   MRZ ε  = 
cosε sinε 0
-sinε cosε 0

0 0 1

 

 

 

Once the masks are computed for a given window size, they can be stored and used as a 

look-up table in the surface estimation process. 

 

 

 

IV. ANALYSIS OF BIAS AND ERRORS OF THE OPERATOR 

 

 

The proposed approach consists to fit an ideal edge by using the spatial moments in a 

continuous and noise-free domain. However, in real images, the noise, the spatial sampling and 

the gray-value quantization have direct and indirect effects on the estimation of the five 

parameters of the surface and generate bias and errors. 

 

The ramp edge problem was discussed by many authors of edge detection methods. This 

is a real problem in computer vision due to the inhomogeneity of light distribution in the scene. 

In medicine, the imaging modalities often provide step-wise contrasts between anatomical 

structures although the partial volume effect due to the sampling leads to edge smoothing. This 
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section focusses on the step-like transition but the study can also be extended to the ramp case. 

 

 

 

 

IV.1 Spatial sampling effects 

 

 

To illustrate the spatial sampling effects on the operator, we have used a synthetic image 

consisting of a 7x7x7 matrix with a plane separating the image volume into the object region 

and the background. The orientation of the plane is defined by the angles α, β and its equation 

when passing through the origin of the local coordinate system (e.g. the center of the voxel 

V444 ), is given by : 

 

 

P x,y,z  :              x cosα sinβ + y sinα sinβ + z cosβ = 0  (21) 

 

 

A subvoxel description  (1/20) is then achieved with respect to : 

 

 
P(x,y,z) > 0,   background   
P(x,y,z) ≤ 0,  object region  (22) 

 

 

and each voxel is assigned the average value of all subvoxels values (a or a+b) within it. 

 

Most of the edge detection approaches use the edge geometry information to define the 

edge orientation. The edge orientation is not important in 2D case, but it has a determining 

importance in the 3D case where normal vector to the surface is not only used for 3D object 
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shading and rendering, but also for object manipulation and recognition. 

 

The test has been performed with a = 50, b = 100, h = 0  and for different plane 

orientations. The differences between the estimated parameters ( h,  b,  α,  β ) and the true 

values related to the central voxel are plotted (Figure 5) versus the angles (α, β). Τhe 

calculation has been conducted over [0,355°] and [5°,175°] for α and β  respectively, with  dα 

= dβ = 5°. Note that there is a symmetry about α = 45° and β = 45°. 

 

 

 

IV.2 Noise Analysis 

 

 

In the noisy case,we assume that independent, identically distributed  Gaussian noise is 

added to the voxel gray values. 

The noisy surface can be modeled as : 

 

 

f i,j,k  = f i,j,k  + n i,j,k   (23) 

 

 

pqrpqrpqrpqr NMkjifkjiCM ~),,(~),,(~ +== ∑∑∑   (24) 

 

 

Therefore, the random moment can be viewed as  a random part added to  a deterministic 

one.  Npqr is simply the weighted sum of independent, zero mean and gaussian random 

variables such that : 

- the mean of the resulting density is zero, 

- its  variance is  : 
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∑∑∑σ=σ ),,(~ 222 kjiC pqrpqr  (25) 

 

where σ2  is the variance of the noise . 

 

Although, the moments Mpqr are gaussian random variables, the rotated moments Mpqr
'

 are 

not, with exception of M000
'

. Then, noise analysis is quite complex, and the probability density 

of some surface parameters are impossible to determine. 

 

It can be shown that the moment weightings cause M100 ,  M010 ,  M001  to be independent 

of each other. 

 

 

IV.2.1 Effect of noise on edge orientation 

 

 

a)                
α = tan -1 M010

M100
 

 

α  is simply the quotient of two independent, gaussian random variables, with the added 

transformation of arctangent. 

 

The density function for α  [16] [17] is : 

 

fα (α ) = exp 
- μx

2 +μy
2

2σ2
 1
2π

  + Aα
σ 2π

.     exp Aα
2

2 σ2
 . 1

2
 + erf  Aα

 σ  
(26)

 

 

where  

 

Aα = μx cos α +μy sin α  
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erf(x) = 1
2π

exp - y
2

2
 dy 

0

x

 

 

μx = M100 ,  μy = M010  

 

 

 σ : the standard deviation of the numerator and the denominator. 

 

Using the transformation,  

 

μx cos α +μy sin α = μcos α -ϕ

μ2 = μx
2 +μy

2   and  ϕ =tan-1 μy
μx  

 

fα  can be written : 

 

 

fα(α )=exp 
-μ2

2σ2
 

1
2π

 +
μ.cos α -ϕ  

σ 2π
.exp 

μ2.cos2 α -ϕ
2 σ2

. 1
2

 +erf  
μ.cos α -ϕ

 σ
  

 

 (27) 

 

It can be seen that this density function is symmetrical about  
ϕ = tan-1 μy

μx   (the  mean 

value of α  is ϕ ). 

 

 

 

b)                
β = tan -1 M 2

100 + M 2
010

M001
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In the β case, the arctangent transformation is applied to the quotient of two independent 

random variables, with a gaussian denominator and non gaussian numerator. 

 

After a fair amount of mathematical manipulations [18], the density function in an 

integral form is given by : 

 

fβ β  = sin β exp - 
 μx

2 + μy
2+ μz

2

2 σ2
 .

μzcos β
σ 2π

 + σ
2

2π
 2ν2 +μ  exp ν2

μ
 1 - Φ ν

μ
  dα  

0

2π

 (28) 

 

where : 

 

A1 = sin β exp - 
 μx

2 + μy
2+ μz

2

2 σ2
 
 

 

μ= 1
2σ2

    ,   ν = -μ A2cos α  -ϕ  + A3
 

 

A2 =sin β μx
2 +μy

2 +μz
2    ,    tan ϕ  = 

μy
μx  

 

A 3 = μz cos β    ,     Φ x  = 2
π

 e- t 2

0

x

dt   
 

 

It is quite difficult to develop more than this (a full development is available in [19]). 

 

 

IV.2.2 Effect of noise on the edge contrast and translation 

 

 

The same study can be done to evaluate the effect of noise on the contrast and the 
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translation. These two parameters are given as a quotient obtained by combining ten random 

variables and their density functions are impossible to find analytically.  

Instead, empirical noise analysis was done. The data consisted of zero mean gaussian 

random noise added to the plane used in the deterministic case. The standard deviation of the 

noise samples was determined by the signal-to-noise ratio as : 

 

SNR = 20 log10
σs
σn   (29) 

 

where σs and σn are the standard deviations of the signal and the additive noise 

respectively. Figures 6 and 7 illustrate the error of the spatial moment operator when compared 

to the exact solution. For each SNR, 100 different noise sequences were added to the sample 

surface. The estimated values closely matched the analytical ones as soon as the signal-to-noise 

ratio is higher than 20dB. 

 

 

 

V. RESULTS AND DISCUSSION 

 

 

Several experiments have been conducted on simulated and real 3D data. They include 

the comparison between analytical and estimated surface normal of simple geometrical shapes 

in presence of noise and the comparison of the moment-based operator with other surface 

detection procedures. Surface tracking and ray tracing techniques [1] [20] have been used to 

carry out the calculations and the 3D rendering. 

 

 

 

V.1 The moment operator compared with other detectors 
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This comparative study [19] has been performed in 3D with the Prewitt (or gray level 

gradient) and Sobel's operator, the Zucker and Hummel's operator, the Canny/Deriche's 

detector [21][22] and the gradient of gaussian. The two first operators have been generalized to 

the 3D space by using the separability property in the frequency domain. The coefficients of 

the masks can be computed by Taylor's development of the partial derivatives. The two others 

are obtained in 3D by means of spatial separability. A truncation has been performed to deal 

with the implementation constraints of the ray tracing technique. The control coefficient γ of 

the Canny's operator and the standard deviation σ of the gaussian have been set according to 

the corresponding window size (ws). They have been varied, but only the best suited values 

will be shown here. Notice that only the moment-based method allows to estimate directly the 

surface location within a voxel. Other methods [23] make use of local interpolation to provide a 

surface with subvoxel precision. 

The size of the data base was 90x90x90. The object consists of a sphere intersected by a 

plane (the plane equation is : 2x + 3/2y + z = R, where R is the sphere radius). This volume has 

been sampled at a subvoxel resolution equal to 1/10. Each surface voxel of the object is defined 

by its gray level, the theoretical values of the surface normals. The contrast has been set to 200. 

The differences in position, contrast and normal orientation have been quantified by means of 

the root mean square (RMS) and the maximum error (ME). The evaluation has been achieved 

on the sphere and the plane before considering the truncated sphere. This choice allows to 

clearly identify the deviations introduced at the intersection between the two primitive shapes. 

The simulated data base used by Tiede & al [24] has also been implemented, but 

additionnal geometrical elements (cone, pyramid) were not necessary at this stage. 

Table I depicts the results obtained in a noise free situation for the normal estimation. The 

RMS shows clearly the better behavior of the moment operator and the good performance of 

the Canny's and the gradient of gaussian methods (they are in fact very close together). No 

significant differences appear when the surface discontinuities (truncated sphere) are 

introduced but the degradation is very high (Image 1). The deviations shown on noisy data 

(additive white gaussian noise) confirm these observations (Table II). The three above 
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mentioned operators work well up to a signal to noise ratio equal to 10 dB. A qualitative 

representation is displayed in Image 1 which allows to have a full view of the object and to 

emphasize the performance of the moment based method in noise free conditions. 

The contrast estimation is directly available from the moment operator. It can be 

computed for the others by calculating the edge strength through different norms (L�, L1, L2). 

The latter leads to a better approximation and is used here. All the methods provide relatively 

significant differences and a better contrast estimation with a larger window size (Table III). 

The results of the moment-based approach depend on the subvoxel sampling. It does not show 

any improvement for the surface contrast computation. 

 

 

 

V.2 Moment-based detection and ray tracing technique 

 

 

The previous operators have been implemented within a ray tracing framework. The 

simplest way to search for an intersection between the rays and an object remains the 

thresholding technique. However, a better determination of the surface location could lead to 

significant improvements for quantitative image study. The results are reported in Table IV, 

where only the gray level gradient and the moment operator are compared with the analytical 

solution (the other operators exhibit a same behavior). It can be seen that a high precision is 

obtained. The RMS error is less than 0.4 and 0.2 for  spherical and planar surfaces respectively. 

Image 2a (moment) and Image 2b (gradient) display the resulting 3D rendering by means 

of ray tracing. The histogram of surface location errors shows different modes due to the spatial 

sampling effect related to the plane orientation. These images confirm the better performance 

of the moment approach. Its application to real data leads to enhance small details and 

structures. The first example (Image 3) depicts an isotropic data base (resolution 128x128x136, 

8 bits) corresponding to an excised heart provided by the Mayo Clinic. The rendering gives a 

better view of the vessels lying on the muscle surface as well as an improved detection of the 
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thin structures at the upper part of the heart when compared to the gradient application (Image 

3a). The second example is shown Image 4. The test has been performed on MRI data with a 

resolution 256x256x109, 8-bits voxels. In this example, the cortex has been previously 

segmented by making use of classical region growing technique. It is rendered with a moment 

based surface normal estimation. The window is linearly interpolated by a factor of 2 to 

provide a clear view of the small details of the gyri which are enhanced by means of the 

moment based operator. The integrative feature of the moment operator increases the 

robustness to noise. 

 

These results show the benefits that  can be expected by using the moment-based 

operator. The efficient and accurate detection of surfaces is required to produce high fidelity 

renderings of anatomical structures. Even if ideal processing is not feasible, since the 

acquisition device may loose some medically relevant information, it must preserve as much as 

possible the features of interest. Usual inspection by means of 3D display is not the ultimate 

goal and a number of works emphasize the need to increase the efficacy of quantification.  

Of course a compromise has to be found between display quality, resolution, accuracy 

and processing speed according to the medical applications [25]. The method described in this 

paper could bring some improvements in these areas. Low and high resolution (e.g. low and 

high fidelity) images based on the moment-based approach can be combined to speed up the 

overall process (observer view point selection, rough and fine grain detection). 

The influences of spatial sampling, noise, window size and primitive surface properties 

have been considered. Up to now, it has been assumed that the voxel were cubic. In medical 

practice, due to the limitations of image modalities, the spatial resolution in the axial direction 

may be lower than within the cross sections. In order to recover an isotropic description, a 

preprocessing, i.e. interpolation is carried out. It has been shown that this interpolation can also 

be performed "on the fly" when using a ray tracing scheme to render the data [26]. The non 

cubic voxel case can be directly handled within the moment based method. The corresponding 

masks result from integration over the spherical region sampled onto a rectangular grid. Today, 

however, many efforts are devoted to a direct isotropic 3D reconstruction of the organs in X-
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Ray and ultrasound devices. Single Photon Emission Tomography (SPET) and Magnetic 

Resonance Imaging (MRI) already have the capability to provide uniformly sampled volumes. 

 

 

 

VI CONCLUSION 

 

 

The need of efficient and accurate edge operators has been emphasized for a long time in 

medical imaging. The three-dimensional moment-based approach provides a subvoxel 

precision for the surface location and can improve the surface normal estimation. Its integrative 

nature allows to obtain a good behavior on noisy data. The tests performed on simulated and 

real data show that a better rendering can be achieved in 3D. It enhances small morphological 

surface changes and offers a suitable way to carry out  qualitative and quantitative tissue 

studies. 
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CAPTIONS 

 
 
Figure 1 

The ideal surface in a spherical window and the parameters set (a, b, h, 

α, β) before (a) and after (b) rotation. 

 
Figure 2 

2D and 3D illustrations of the discrete computation of the masks with a 

3x3x3 window. 
 
Figure 3 

Moment masks in an unit sphere (R=1) centered in a 3x3x3 neighboring 

window (n=3), computed by  resampling each voxel  into 2003 subvoxels 

(m=200). 
 
Figure 4 

Moment masks with R = 1, m = 200, n = 5. C010, C001 can be obtained 

by symmetry from C100. C101, C011 from  C110  and C020, C002 from C200. 
 
 
Figure 5 

Errors on the surface parameters when the operator is applied to the 

simulated plane (window size (ws) equal to 5). 
 
Figure 6 

Error plotting for the geometric moment operator applied to the 

simulated plane with SNR = 10 dB, ws=5. 
 
Figure 7 

RMS of the operator errors on the plane surface parameters versus the 

SNR. 
 
 
Table I 
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Comparison of the surface normal estimation with the analytical normal 

computed from different operators. Maximum error (ME) and RMS (in 

degrees) are given for a window size equal to 5. 
 
Table II 

Surface orientation error (degrees) in the presence of additive gaussian 

noise (window size = 5) (Half sphere model). 
 
Table III 

Surface contrast error for different operators and window sizes (Half 

sphere model). 
 
Table IV 

Comparison of surface location estimation with the analytical solution 

(window size = 5) using ray tracing technique. 
 
 

Image 1 

Deviations between analytical and estimated surface normals. The 

larger differences appear at the intersection of the primitive objects. 
 
Image 2 

Surface normal and position errors using the moment-based operator (a) 

and the gray level gradient (b) implemented on the ray tracing technique. 

Upper left       :  Rendering from the analytical model. 

Below left       : Surface display with the estimated normals. 

Upper middle  : Deviations of the surface normals. 

Below middle : Histogram of the deviation. 

Upper right     : Errors on the surface position. 

Below right     : Histogram of the position errors. 
 
Image 3 

3D heart rendering with the gray level gradient  (a) and the moment-

based operator (b). 
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Image 4 

3D cortex rendering and a zoom window with the gray level gradient 

(a) and the moment-based operator (b). H
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Operators ws=5 Sphere  
 

Plane Truncated sphere  

  Max 
 

RMS Max RMS Max RMS 

Moments  0.912 0.420 0.612 0.411 39.349 6.108 
Prewitt 3D 7.331 4.719 3.436 3.194 37.139 7.690 
Sobel 3D  9.185 5.735 4.848 4.472 40.219 7.550 
Zucker 5.596 3.543 2.723 2.521 37.179 7.065 

Canny γ = 1.6 1.804 0.635 0.839 0.678 40.306 5.672 
Gradient of 
a gaussian 

σ = 1.0 1.416 0.485 0.545 0.404 39.608 5.638 
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Sphere 
 

 
Plane 

 

 
Truncated sphere 

 
 

SNR 
 

 
Operators 

ws=5  
 

 
Max 

 

 
RMS 

 

 
Max 

 

 
RMS 

 

 
Max 

 

 
RMS 

 

 Moments 
 

34.307 10.303 23.941 8.804 52.529 11.012 

 Canny 
γ=1.6 

39.596 11.812 29.498 10.419 54.864 11.992 

0 dB Gaussian 
σ=1 

39.008 11.654 28.136 10.169 54.112 11.786 

 Zucker 
 

24.321 9.127 19.925 7.659 48.331 10.386 

 Prewitt 
 

25.744 9.834 22.981 8.218 53.748 10.968 

 Moments 
 

10.206 3.228 7.053 2.740 39.076 6.751 

 Canny 
γ=1.6 

12.588 3.727 9.440 3.282 40.806 6.563 

10 dB Gaussian 
σ=1 

11.884 3.655 9.049 3.155 40.792 6.499 

 Zucker 
 

10.196 4.425 7.700 3.408 38.371 7.463 

 Prewitt 
 

11.969 5.451 9.023 3.995 38.560 8.089 

 Moments 
 

3.179 1.024 2.668 0.978 38.607 6.175 

 Canny 
γ=1.6 

4.628 1.286 3.359 1.197 39.968 5.750 

20 dB Gaussian 
σ=1 

4.224 1.202 3.049 1.025 39.329 5.711 

 Zucker 
 

7.023 3.635 4.170 2.645 36.736 7.106 

 Prewitt 
 

8.791 4.797 4.948 3.289 37.530 7.731 

 Moments 
 

1.368 0.499 1.096 0.467 39.299 6.111 

 Canny 
γ=1.6 

2.113 0.713 1.450 0.744 40.253 5.675 

30 dB  Gaussian 
σ=1 

1.814 0.579 1.180 0.488 39.571 5.639 

 Zucker 
 

5.966 3.556 3.014 2.532 37.079 7.068 

 Prewitt 
 

7.741 4.727 3.741 3.208 37.253 7.694 
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- Table III - 

 
Operators Sphere  

 
Plane Truncated sphere 

  Max 
 

RMS Max RMS Max RMS 

 
Moments   ws=3 
                ws=5  

 

 
39.97 
16.14 

 
26.74 
10.89 

 
34.25 
11.77 

 
27.07 
10.26 

 
67.60 
36.87 

 
27.48 
11.84 

 
Zucker        ws=3 
                 ws=5 

  

 
23.09 
14.62 

 
6.68 
5.90 

 
20.64 
13.63 

 
10.63 
8.39 

 
83.71 
64.84 

 
11.37 
10.98 

 
Canny       ws=3 
  γ=1.6      ws=5  

 

 
16.96 
14.24 

 
8.18 
4.32 

 
12.49 
10.93 

 
9.54 
5.29 

 
77.22 
71.94 

 
10.57 
8.02 

 
Gradient of gaussian 

ws=3 
  σ=1.                   ws=5  

 

 
19.31 
12.04 

 
6.18 
6.36 

 
15.79 
9.91 

 
8.32 
6.61 

 
79.89 
67.86 

 
9.53 
8.57 

 
 
 
 
 

- Table IV - 
 

 
Operators     

ws=5 

 
Sphere  

 

 
Plane 

 
Truncated sphere  

  Max 
 

RMS Max RMS Max RMS 

 
Moments  

 
0.849 

 

 
0.365 

 

 
0.310 

 

 
0.187 

 

 
1.172 

 

 
0.291 

 
 

Gray level gradient 
  

 
2.858 

 
0.881 

 
0.500 

 
0.307 

 
2.858 

 
0.694 

 
 
 

H
A

L author m
anuscript    inserm

-00133014, version 1



 

- 37 - 

 

 
 

- Image 1 - 
 

 
 

 

 
 

- Image 2 a - 
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- Image 2 b - 
 

 
 
 

 
 

 
 
 

(a)                                                                   (b) 
 

- Image 3 - 
 

 

H
A

L author m
anuscript    inserm

-00133014, version 1



 

- 39 - 

 
 
 
 

a) 
 
 
 
 
 
 
 
 

b) 
 
 
 
 
 

- Image 4 - 
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