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Abstract

Using an unsupervised cluster analyser, we have identified a local structural alphabet
composed of 16 folding patterns of five consecutive C, (”protein blocks”). The dependence
that exists between successive blocks is explicitly taken into account. A Bayesian approach
based on the relation protein block-amino acid propensity is used for prediction and leads
to a success rate close to 35%. Sharing sequence windows associated with certain blocks
into "sequence families” improves the prediction accuracy by 6%. This prediction accuracy
exceeds 75% when keeping the first four predicted protein blocks at each site of the protein.

In addition, two different strategies are proposed: the first one defines the number
of protein blocks in each site needed for respecting a user-fixed prediction accuracy and
alternatively, the second one defines the different protein sites to be predicted with a user-
fixed number of blocks and a chosen accuracy. This last strategy applied to the ubiquitin
conjugating enzyme (a/f protein) shows that 91% of the sites may be predicted with
a prediction accuracy larger than 77% considering only 3 blocks per site. The predic-
tion strategies proposed improve our knowledge about sequence-structure dependence

and should be very useful in ab initio protein modelling.
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Introduction

The protein sequence contains the whole information of the protein 3D structure. Pro-
teins can not fold into unlimited number of structural motifs [1, 2]. Yet our lack of
understanding of the physicochemical and kinetic factors involve in folding prevent us
from advancing from knowledge of the primary sequence to reliable predictions of the
biologically-active 3D structure. The first level of the protein structure is the secondary
structure characterised in terms of a-helix, (-strand and unrepetitive coil. Thousand
different predictions algorithms have been developed, statistical methods like the pioneer
GOR [3, 4] or neural networks like the well-known PHD [5] and the more recent work of
Chandonia and Karplus [6, 7]. The accuracy of these works were strongly increased with
the addition of the multiple sequences alignment in the neural networks [8], probabilistic
approach [9], or computational informative encoding [10]. The increase in the entries in
the biological databases may permit an increase in the prediction rate [11].

Concerning the 3D structure, the ab initio protein folding algorithms, using only ener-
getic or physicochemical parameters, were limited to small proteins [12, 13, 14]. Numerous
studies describe the ab initio modelling of a 3D structure from the sole knowledge of its
primary structure. However due to actual weakness of the prediction rate, this determi-
nation is still an open field.

The results obtained in the recent CASP III meeting are the best witnesses of such
tentative [15]. The compatibility of the sequence versus known structures is an alternative
approach to find the best approximation of the protein fold [16, 17]. Most of the methods
for finding the folding state of a protein are mainly based on the use of the 3D structure of
homologous proteins combined with simplified spatial restraints, statistical analysis and
physico-chemical constraints [18, 19].

Recently, the use of fragment library [20] more detailed than 3-states and based on the
most frequent local structural motifs (in terms of polypeptide backbone) encountered in
the ensemble of 3D structure protein database, had led to improved results [21, 22] within
a knowledge-based ab initio method [23].

Clearly, the main difficulty to overcome resides along the pathway going from the sec-
ondary structure prediction to the tertiary structure prediction. In this spirit, the study of
the local conformations of proteins had a long history principally based on the study of the
classical repetitive structures. We can notice interesting works such as those based on the
geometrical and sequential characterisation of a-helices [24] or discrimination between the
different types of B-turns [25]. Most algorithms which described global conformations of
the proteins used this simple structural alphabet [26, 27, 28]. Recently, with the constant

augmentation of the Protein Data Bank, automatic researches designed to determinate
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families of specific coils have been carried out [29, 30, 31].

Among the different works concerning the definition of a structural alphabet (the con-
sensus structural patterns will be labelled Protein Blocks or PBs), two main types of
libraries of PBs can be distinguished : those composed of a high number (around 100) of
protein blocks for describing protein structures or those characterized by a limited number
of fold prototypes (4 to 13).

In the first type, the use of small blocks (fragments of six amino acids) for rebuilding a
protein structure had begun with the work of Unger et al. [32] using the rmsd (root mean
square deviation) as criterion. The authors have identified about 100 building blocks
which could replace about 76% of all hexamers with an error of less than 1 A. Schuch-
hardt et al. [33] similarly obtained a library of 100 structural motifs by an unsupervised
learning algorithm from the series of dihedral angles. These libraries are adequate for
approximating a 3D protein structure, however they are not easily usable for prediction.

In the second type of approaches, Rooman et al. define recurrent folding motifs by
a clustering algorithm using the rmsd on distances between selected backbone atoms
[34]. They described 16 motifs (embedded by groups of 4) of different lengths (from 4 to
7 residues). This small alphabet is directly related to the the four classes of secondary
structure (a-helix, #-strand, turn and coil), and permits distinction between 3-bulges and
(-strands. Fetrow et al. developed an autoassociative artificial neural network (autoANN)
to define 6 clusters corresponding to supersecondary structures encompassing the classical
secondary structures [35].

Bystroff and Baker have generated a high number of similar short folds of different
lengths and then grouped them into 13 clusters for a prediction approach [20]. A recent
approach performed by Camproux et al. [36] takes account of the succession of the folds
in the training by Hidden Markov Model (HMM) [37] and has allowed the definition of
a library of 12 blocks of 4 C,. This approach as expected allows the assessing of the
transition frequencies between the blocks.

In this paper, the aims consist (i) in building a set of structural blocks able to ap-
proximate at best the different structural patterns observed along the protein backbones,
and (ii) in predicting the local 3D-structure of the backbone in terms of PBs from the
knowledge of the sequence. Identification of the different structural blocks is performed by
an unsupervised cluster analyser taking account the sequential dependence of the blocks,
this point is also considered in HMM [37].

After this phase of training performed on a given non-redundant protein database, we
can tackle the problem of the prediction of these structural blocks from the knowledge of

the protein sequence. From a given library of PBs, amino acid preferences for different
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positions along the fragment can be extracted for each fold pattern. So using Bayes
theorem, these probabilities may be further used to predict the structural motifs able to
be adopted by a given protein chain. Bayesian probabilistic approach is largely applied
in this type of study, for instance predicting solvent accessibility [38], secondary structure
[9] or characterization of biological pathways from sequences to functions [39].

In this study, we have worked in different aspects to improve the PB prediction :

(i) 1 protein block - n sequences: Associating one protein block with one class of
sequences is a restrictive point of view. A same fold pattern (or PB) may be associated
with different types of sequences, So, we have built a procedure for splitting the set of
sequences (or "windows”) encompassing a given PB into a fixed number of subsets showing
(called "sequence families”) at best different amino acid distributions in each window site.

(ii) 1 sequence - n protein blocks: It is the inverse concept. Similar sequences are not
always associated with the same fold [40], but with different "possible” folds. So we can
devise a "fuzzy model” in which we have a certain probability for finding the true PB (this
one that approximate at best the local structure of the backbone) among the proposed
PBs. Concerning the existence of this "fuzzy model”, we ought to check that the true PB
is present among the solutions of the r first ranks (i.e. having the best prediction scores)
provided by the Bayesian approach.

We will show the interest of an entropy-based index to discriminate different zones of
the protein with high probabilities of prediction. With the scoring schema and the index
control, two main directions have been explored. The first one called "global strategy”
consists of locally determining the optimal number of protein blocks to be selected after
fixing the prediction rate

for the whole protein sites. So, the number of selected solutions per position may
be variable. In contrast, the second direction called "local strategy” scans the protein
sequence with a fixed number of solutions (i.e. a constant number of protein blocks
per position) and determines the regions able to be predicted with this given number
and with a fixed prediction accuracy. In this way, the prediction only concerns these
protein regions. Consequently, two prediction strategies are available; they both provide

information complementary and enough for a former use in ab initio modelling.

Materials and Methods

Protein database

342 proteins are selected in a database of non-homologous protein structures (less than

25% of sequence similarity) [41, 42]. For each protein, we have stored the series of dihedral



yduosnuew Joyine vH

=
0
1]
=
2
o
o
[
w
N
[ee]
N
=
<
1]
=
@,
o
=
[N

angles and the primary sequences. Each protein backbone is transformed into a signal
corresponding to the series of the dihedral angles (¢;,¥;). So the database is composed of
342 signals. For the analysis, the proteins are splitting up in fragments of 5 consecutive
residues to define the protein blocks. We have shared the set of proteins into two subsets,
one of 228 proteins used for the training stage (i.e. the step allowing the definition of
the protein blocks and the relationships between the protein blocks and the amino acid
composition), the other one of 114 proteins for the stage of prediction accuracy assessing.

The proteins are classified according to the nomenclature based on the criteria of Michie
and co-workers [27] which allows to share the protein set into four classes all a, all 3, a/3
and unclassified. The secondary structures are defined by a consensus assignment based

on three algorithms [43].

Coding of 5-residue chains

A conventional approach for describing the backbone of a protein consists in converting
the peptide coordinates into a series of backbone dihedral angles ¢, 1) and w. In the study,
we will neglect the variation of the w angle whose values vary around 0° or 180° [44]. We
have limited the analysis to fragments of 5 residue length since it is sufficient to describe
more than an short helix o (4 residues [24]) and a minimal § structure (3 residues [43]).
A set of 5 consecutive peptides is an acceptable structural pattern to compute locations
of hydrogen bonds between them. The link between the two successive carbons (Cay,,
Cayq1) located at the nth and (n+1)th positions in the protein sequence is defined by the
dihedral angles ¥, of C'av,, and ¢,,41 of Cav, 1. A series of M peptides is defined by a signal
of 2(M-1) values. So a fragment of 5 residues (M=5) centred at the alpha-carbon Ca,,
is displayed by a vector of 8 dihedral angles: V(t,_2, ¢n_1, Vn_1, Gny Uy Prt1, Vrt1s Prtz)
associated with the consecutive carbons C'a,,_o9, Ca,—1,Cay, Cavyypq, Cayyg, respectively
[33]. The fragments used are overlapped. Hence, a protein of length L is described by -4
fragments. This leads to a database of 86 628 dihedral vectors corresponding to the 342

protein signals.

Training by an unsupervised cluster analyser

The goal is to define a structural alphabet for coding the local 3D structure of protein
backbones. This alphabet is composed of ”Proteins Blocks” (PBs) which represent aver-
age patterns of the backbone fragments extracted from the database. Each one is defined

by a vector of 2(M-1) values of dihedral angles like the fragments of the database.
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Principle of the unsupervised cluster analyser

The method uses the principle of the self-organized learning of the Kohonen network
(or Self-Organized Maps often noted SOM [45, 46]), i.e. by reading a certain number of
times (called "cycles”), the totality of the vector database in order to define the ”weights”
of the neurons. In the terminology of the SOMs, the neurons and the weights correspond
to a class of objects (in our study, protein blocks) and the associated information (herein,
the average dihedral vectors) respectively. We have defined two steps in the training
procedure. The first one consists of learning the protein blocks, by only considering the
local protein structure (i.e. series of 5 carbons «), and the second one, by introducing
constraints on the transitions between the protein blocks to favour a Markovian process
of order 1, as the Hidden Markov Models (HMM [37]) to use the natural sequence of the
protein structure. Our approach does not set any hypothesis of a prior: distributions of
the data (herein, the dihedral vectors).

Dissimilarity measure

The choice of the measure of dissimilarity between the M-residues fragments is essential
for defining PBs strictly different in the training phase. In our study the vector associated
with a fragment (called "dihedral vectors”) is a series of dihedral angles. So the chosen
dissimilarity measure between two vectors V; and V, of dihedral angles is defined as
the Euclidean distance among the M-1 links, the rmsda (root mean square deviations on

angular values [33]):

T‘deCL(VhVQ) — \l 321 B W%(VI) - ¢2(;E3\>J]2j1[;bz+1(\/—1> — ¢i+1(V2)]2

where {¢:(V1),¥it1(V1)}(resp. ¢i(V2),¥iy1(V2)) denotes the series of the (2M-1) di-
hedral angles for Vy(resp. V3). The angle differences are computed modulo 360°.

So in the training, this distance is used for assessing the dissimilarity of any fragment
of the database with the different PBs.

Description of the training approach

Each protein block P By considered as a neuron is initially defined by a vector W (k)
of 8 dihedral angles (k denoting a given PB), either defined by a series of 4 dihedral angle
pairs drawn in a Ramachandran diagram or randomly drawn in the database of vectors.
Initially the number B of PBs is arbitrarily fixed. We assume that, at the beginning of

the training, no transitions exist between these structural blocks.

a. First Training. In the first step of the training described in Figure 1, we consec-
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utively read the dihedral vectors from a signal (representing a given protein). For every
dihedral vector V(m) (m denotes the mth vector in the signal). The sequence of the
dihedral vectors observed along the proteins is kept. We search for, among the B possible
PBs, this one, P By, whose vector W (k) is the closest one according to the dissimilarity
measure previously defined (minimal rmsda). Then the vector W (k) of this closest PB is

changed into:
W(k) + (V(m) — W(k)).v(c)

where v(c) is a coefficient (initially taken low, 15 =0.02) decreasing during the training.

v(c) is a function of ¢ denoting the number of vectors read during the training:

v(c) =wo/(1l + 7.¢)

where 7 is arbitrarily fixed to 1/N (i.e. the number of dihedral vectors, here N =
56442) so that v(c) is reduced of half after one entire database reading. This procedure
is conventionally used for the training of a Kohonen network.

The training is iterative: a certain number C of cycles of readings of the vector database
is needed for defining the optimal vectors W associated with PBs. At each cycle, the

proteins are randomly drawn for the treatment.

B. Refinement of the training. After C' cycles of reading, we have obtained a first
training of the protein blocks. They are used to encode the protein structures of the
training set into series of PBs. Then, we compute the transition matrix between PBs by
counting the occurrences of the pairs of PBs observed consecutively in the series and then
transforming it in frequencies.

We have carried out again C' cycles of database reading, but now we forced the tran-
sitions between protein blocks during the readings of the consecutive vectors in a protein
(see Figure 1). This step consists of looking for the n blocks structurally close to a con-
cerned vector V(m) among the whole set of PBs, and selecting in this subgroup this
one having the highest transition frequency with the previous block defined for the vec-
tor V(m-1). So we forced the transitions between PBs when the structural similarity is

observed. The number n of elements in each subgroup is a user-defined parameter.

~. Determination of the optimal number of PBs by a shrinking procedure. We also have
introduced a shrinking procedure to define an optimal number of PBs (or neurons). We
start with a number B of PBs, then after each cycle, we test the "structural similarity”

and the "transition similarity” between two PBs and we delete one PB between two PBs
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considered as similar. The procedure is stopped when no deletion can be performed.
The method allows to obtain an optimal number of PBs structurally dissimilar. The
"structural similarity” between two PBs is defined by : PB; and P B, are structurally
similar when the rmsda(W;,W3) between the corresponding dihedral vectors Wy and W,
is less than an user-fixed threshold ry. The "transition similarity” between two blocks
PB; and P B; is obtained when the transitions probabilities of PB; and P B, to the other
blocks are close. When the two criteria are verified, the least observed PB is deleted.

So, at the end of the process, each PB is represented by an average dihedral vector.

Propensities of amino acids to be located in a given PB

After the training, the whole proteins of training set are encoded according to the struc-
tural alphabet (i.e. the B blocks finally found) by using the minimal rmsda as a criterion.
So each PB is associated with a set of sequence windows. It allows to compute one oc-
currence matrix of amino acid residues per PB. From the central position of a given PB,
we examine the amino acid composition of the positions varying from -w to +w. The
number of occurrences nfj of a given amino acid (indexed by i = 1,2,...,20) located in a
given position j (j varying in the range [-w,+w]) in the window is computed. We deduce
the probability P(a; in j / PBy) by the ratio nfj / Ni where N}, denotes the number of
P By, observed in the training set. P(a; in j / PBy) is the conditional probability of the
amino acid a; located at position j in a window encompassed PBj. In our study, the

length w has been fixed to 7, i.e. a sequence window of 15 residues.

Analysis of the occurrence matrix associated to PBs

We can analyse the relationships between a protein block PBj and the amino acids
present in the associated sequence windows :

(i) by assessing globally the specificity of each window location, i.e. to see which
positions in each PB are the most informative in terms of amino acid distribution ,and ,

(ii) by determining which amino acids in certain location in the window are specific to
this block.

To deal with the first point, we have used the relative entropy or Kullback-Leibler

asymmetric divergence measure [49]:

- Pi
K(p,q)=3_piln (;)

This quantifies the contrast between the observed amino acid frequencies p: {p; }i=1,..20

and a reference probabilistic distribution q{¢;}. We have applied this expression for as-



yduosnuew Joyine vH

=
0
1]
=
2
o
o
[
w
N
[ee]
N
=
<
1]
=
@,
o
=
[N

sessing the divergence Ki(p;,q) of observed amino acid distribution p; in a given position
j of the window relative to the one observed in the database taken as reference distribu-
tion q for PBy. The divergence profile, denoted by KLd profile, displaying the divergence
measure function of the position j (value varying between -w and +w) allows to detect
the "informative” locations for a given protein block.

The relative entropy K(p,q) (value non negative) multiplied by 2N (N is the number of
observations) follows a chi-square of 19 degrees of freedom (since we analyze the amino acid
distributions). So for defining the informative locations for a PB type, we can threshold
the KLd profile, the lower limit being x%,/2N, x4 denoted the chi-square value obtained
for a given type I error a and 19 degrees of freedom.

Concerning the second point, we have normalized the amino acid occurrences of each
position into a Z-score = (nfj — nib) /\/n_zb where n;, is the expected number of the ith
amino acid (n; = Ny.f; where Ny and f; denote respectively the number of P By, and the ob-
served frequency of the amino acid i in the database). The positive Z-scores (respectively
negative) correspond to over-represented amino acids (respectively under-represented) in
the block P By, a threshold value of 4.4 had been chosen, i.e. a probability p less than
1072,

Prediction by an Bayesian probabilistic approach

Principle

For every site s of a protein, i.e. the central position of the PB and the sequence
window, we would calculate for a given amino acid chain Xg, the probability of observing
a given protein block PBy, P(PBy/Xs).

From the information given by the conditional probabilities previously defined, it is
possible to compute this probability by using the Bayes’ theorem. It accomplishes the

inversion for the sequence Xg and the structure PBy:

P(Xs/PBy).P(PB)
P (Xs)

P (PBy/Xs) =

where P(PBy) is the probability of observing the block PBj in the database, and
P(Xs) is the prior probability of observing the chain Xg of residues without structural
information, i.e. the product of the frequencies of the amino acids assessed from the
database. A similar approach was described by Thompson and Goldstein [9] for the
secondary structure prediction.

The term P(Xs/PBy) is the conditional probability of observing the given chain Xg

(a_w,-.sa4q) of amino acid residues in the window given the particular type of protein



yduosnuew Joyine vH

=
0
1]
=
2
o
o
[
w
N
[ee]
N
=
<
1]
=
@,
o
=
[N

block PBj. It can be computed as the product of the probabilities of observing each
amino acid of the chain in the positions of the window. This leads to the equation:
J=+tw
P(XS/PBk> = H P(CL]/PB]C)
j=—w
To define the optimal protein block PB* for a given amino acid fragment Xg around a

site s in a protein, we use the ratio Ry (or its logarithm) defined by,

p _ P(PBi/Xs) _ P(Xs/PBy)
T TP(PBy) P(Xs)

From the Bayes’ theorem, we compute Ry defined by the ratio P(Xs/PBy)/P(Xs)
which is easily computed from the occurrence matrices. By this ratio, we compare the
probability of observing a given protein block P Bj, given the sequence Xg with the prior
probability of observing P By, given no sequence information. So, when In(Ry) is positive,
the knowledge of the sequence Xg favours the occurrence of the block P By, and conversely
when it is negative.

The rule for defining among the B possible blocks the optimal structural block PB*
for Xs consists of selecting the protein block P By for which the ratio Ry is maximum.

Consequently, for every sequence window, we define an ordered list of B protein blocks
according to the computed ratios, the optimal protein block corresponding to the first
rank.

So we can assess the prediction by the percentage Q(1) of correct predictions at the

first rank, and Q(r) when the true block is among the r first solutions.

Improvement of prediction

Bayesian approach implies the use of one occurrence matrix by PB, however, sequences
significantly different may be associated with the same fold. So, we introduce the concept
of "sequence family”. Relative to the fuzzy model, this notion is related to the first concept
1 fold - n sequences, n denoting the possible number of sequence families associated with
a given block. To define the sequence families, a procedure similar to the protein block
learning is used. For each P By, the corresponding set of sequences is arbitrarily divided
into f groups. In the first step, an occurrence matrix is computed for each of the f
families, called PB. with [ varying from 1 to f. In the second step, for each sequence
Xs the conditional probability P(Xs/PB.) is computed for the f different occurrence
matrices. So f probability scores are calculated. Each sequence is then reallocated to the
corresponding subgroup with the maximum probability. At the end of the first step the

f matrices are computed again. Once all the sequences have been tested, the procedure



yduosnuew Joyine vH

=
0
1]
=
2
o
o
[
w
N
[ee]
N
=
<
1]
=
@,
o
=
[N

restarts from step one. The training is stopped when the reallocation weakly modified
the matrices between two consecutive cycles.
The optimal number f of sequence families for each PB (we check a number varying

from 2 to 6) is determined on the basis the increase of prediction rate Q(1).

Optimising protein block prediction

Our purpose is to predict the local 3D structure of the protein backbone encoded
in protein blocks. We introduce the second concept 1 sequence - n folds of the fuzzy
model in which a given sequence has a probability distribution to be associated with the
different blocks. The true PB may be in the most probable PB (i.e. at the first rank) but
not always, it may be among the first selected blocks. Consequently, we want to define
the optimal number of protein blocks to be selected in each site of a protein, i.e. the
rank r of the ordered PB list given by the Bayesian approach, in order to ensure a given
percentage Q(r) of correct predictions. In the following section, we describe two strategies
of prediction based on the Shannon entropy function.

A large homogeneity of the scores Ry at a given site would show poor sequence speci-
ficity of the chain Xg and would lead to a prediction weakly accurate at the first rank.
Conversely, a high score at the first rank would be associated to a good prediction. So in
this case, it is necessary to keep r first protein blocks (according to the scores Ry) in order
to obtain a certain level of correct predictions, i.e. the probability of observing the true
block among the r selected PBs. To quantify the "uncertainty” with regard to the pre-
diction, we have calculated an entropy over the scores Ry transformed into probabilities
Sk =Ry | >; Ry, with [ for all the PBs. The expression of the entropy is

H = _ZSkln(Sk)

where k is an index over types of protein blocks.

We transform H into N, = exp [H] (called equivalent number of protein blocks). This
quantity varies between 1 (i.e. when an unique block is predicted) and B (when the B
blocks are equiprobable).

We have extracted the sites whose entropy vary within a given range, and we have built
the corresponding distribution of the rank of the true PBs found in the ordered PB lists
given by the Bayesian approach in every site. From this distribution (associated with a
given N, interval), we determine the optimal rank r corresponding to a fixed Q(r). This
step has been done extensively for all ranks of solutions possible, i.e. for 1 to B per site.

Two different prediction strategies are defined from the distributions previously defined:

(i) @ global approach to define the number r of blocks to be selected among the possible

protein blocks for each position s of a protein sequence, the prediction accuracy ), being

10
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a user-fixed parameter. In this case, the number of selected number of selected PBs is
variable along the protein.

(ii) a local approach to search for the positions along the sequence for which we can
find again the true block with a given prediction accuracy ); by taking the r first protein
blocks defined by the Bayesian approach. r and (); are fixed by the user. In this approach,

the prediction is limited to certain regions of the protein sequence.

Results

In a first section, we describe the different protein blocks obtained by the unsupervised
cluster analysis. The following characteristics are calculated : the dihedral vectors, the
rmsda and rmsd (the conventional root mean square deviations computed from the C,
coordinates), the occurrence frequencies in the secondary structures (a-helix, 3-strand
and coil) and transition frequencies between consecutive blocks.

In a second section, we assess the prediction accuracy of the Bayesian strategy with or
without the presence of several sequence families per block. Also, we discuss the possible
effect of the protein size or the protein type on the prediction accuracy.

In a third section, we detail the results of the two prediction strategies applied to a
protein, the ubiquitin conjugating enzyme (code name PDB : 2aak). This protein is taken

as an example since its 3D structure shows both a-helices and 3-sheets.

Description of protein blocks

In our study, we have selected an alphabet of 16 PBs which gives a good angular approx-
imation with an average rmsda of 30°. The least represented PB is associated with 1% of
the database. This choice of the number of PBs is explained in section Discussion.
Figure 2 shows fragments superimpositions (MOLSCRIPT software[50])for the 16 PBs
(denoted by the letters a, b,...,p) obtained by the unsupervised cluster analysis. The
PBs are ordered on the basis of their transitions and their locations frequencies in the

secondary structures. These information are given in Table 1.

Within variability

The quality of the PBs is assessed through a variability measure. Using the dihedral
vector Vy, representative of each P By, the corresponding C'« coordinates of blocks named
Ca* are constructed. The rmsds of the set of the C'a series belonging to P B; with the
average C'a” is computed. Globally, the mean approximation of 21° of the local backbone

structure is convenient. The PBs show a good average local rmsd, as seen in Table I, less
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than 0.74 /OX, except for PBj. It must be noted that the PBs specific of the secondary
structure, PBm, central a-helix and PBd, protein block for 3-sheet, are not the only well

approximated PBs. Several other PBs have their average rmsds close to 0.5 ]O\, as PBp
(0.46 A).

Structural difference between blocks

The computed rmsds between the average locations of C'a* are distributed from 0.21 to
2.07 A. PBs m and n (0.21 A), f and h (0.23 A), n and o (0.24 A), ¢ and d (0.25 A)
are the closest ones. However, these small values do not reflect the diversity of the block
shape.

The rmsda between the pairwise protein blocks varies between 19.2° and 47.8°. The
closest PBs are PBs m and n (19.2°), f and h (19.5°) and ¢ and d (19.8°). The observation
of the differences of the angular values for these three pairs show that 5 to 6 angles are very
close (less than 10°) and only 1 to 3 angles entirely different (more than 100°). It gives
to these PBs their structural specificity. So, the rmsda more sensitive to the difference
between BPs is a more appropriate measure to quantify dissimilarity between blocks than
the rmsd.

Reproduction of the structure

Each angle of the protein structure, due to the use of a sliding window, is associated with
4 PBs with exceptions of N- and C-terminal. The resulting angle is defined as average
of the angles of the 4 PBs. This procedure leads to a good approximation. Only 3 %
of the angles are badly approximated (more than 90° of difference with the reality), and
more than 50% of the protein angles is approximated with less than 21°. Moreover, we
have checked that the attribution of the Portein Blocks is partically insensitive to the
variation in the temperature factors of the bond lengths and valence angles. So 16 PBs
is a convenient number to approximate all the protein structures.

Other works have described alphabets from various lengths [34, 35, 20]. To study
the coding quality on motifs (i.e. series of PBs) of different lengths, we have extracted
the motifs connecting two consecutive repetitive secondary structures PBm and/or PBd.
Motifs ranging from 1 to 6 block length are examined. For instance, mm(zyz)dd is a
motif zyz connecting two PBm and two PBd.

Among them the most representative motifs for each length are mm(cc)dd (30 obser-

o o

vations, rmsd 0.70 A), dd(fkl)mm (414 obs., rmsd 1.26 A), dd(fbdc)dd (121 obs., rmsd
1.43 A), mm(nopac)dd (215 obs., rmsd 0.76 A), dd(fkopac)dd (64 obs., rmsd 1.05 A)

For short motifs of one or two blocks length, the occurrences are low (less than 40

12



yduosnuew Joyine vH

=
0
1]
=
2
o
o
[
w
N
[ee]
N
=
<
1]
=
@,
o
=
[N

observations). While for larger motifs, the global number of PBs’ combinations grows up.
For instance, for a length of 4 (i.e. 5 and 6), an average of 20 different motifs are computed
(i.e. 22 and 30). The number and type of motifs are strongly different and inhomogeneous,
depending exclusively of the types of the secondary structures located at extremities. In
the case of length 3 delimited by the motif connecting dd and mm extremities, the motif
fkl represents 98% of the motif, and, connecting mm and mm extremities, nop represents
82% with only 24 occurrences in the database. In all the other cases and whatever the
lengths there are no motifs which represents more than 75% of the structure examined.
As a result, the structural approximation of the 3D structure by means of protein

blocks stay correct with an important number of PBs.

Transition between PBs

A large diversity of transition is observed. Table I gives the output frequencies (i.e.
mi; /(1 — 7)) , mi and 7;; denoting the transition frequencies of the ith PB toward the ith
and jth protein block respectively).

The three main transitions for the non-repetitive PBs correspond to at least 76% of the
possible transitions (apart PBj). For instance, the transitions towards PBd (62.2%), PBf
(24.4%) and PBe (5.6%) represent 92.2% of all the transitions from PBe. In the same
way, more than half of the possible transitions does not appear with a frequency less than
1.0%. The number of transitions, which have a frequency more than 5%, is generally 3
and reaches 5 at most.

Figure 3 shows the coding of the protein 2aak in terms of PBs and the variation of
the rmsds associated with each PB along the protein structure. The succession of PBs d
and m are easily pointed out. Various repeated motifs are observed such 4 chains (¢fkl)
located in the coils leading to the o — helix, 4 (dfk), 2 (ehia), 2 (beed) between (-strands
and 2 (opacd) located in the coils. Small rmsd values less than 0.46 A(average rmsd) are
not only associated with repetitive PBs.

It must be noted than the PBj is the only PB badly designed. All the rmsds are less
than 0.74 A, apart it (1.03 A) This due to its low occurrence frequencies (0.96%) and its

absence of high transition frequencies (less than 17%).

Relationship with secondary structures: the repetitive PBs

The PBs can be characterised by their secondary structure composition. We note that
they do not correspond exactly to classical secondary structures (as noted in the last
column of Table I). The PBm is a central a-helix (¢p = —47° and ¢ = —57°). The PBd
is structurally an ”ideal” protein block for -sheet (¢ = 135% and ¢ = —139° ).

13
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So, the PBs labelled from a to ¢ and d to f are grouped around d due to high propen-
sities to go in or out it. The third C,, of this block show a propensity to be located in the
(3 sheets. The PBs labelled (k, ) and (n, o, p) are the local structures concerning the «
helix N-cap or C-cap respectively; they show propensity to be located in « helix. The last
group composed of PBs labelled from ¢ to j mainly concerns the coils with a frequency
more than 81.5% for the third C,.

The average number of repeats (anr), i.e. the size of series composed by the same
block, is estimated by the quantity 1/(1-m;) where m;; is the transition frequency of the
ith block toward itself. It afford us a confirmation of the repetitive 3D structures :

(i) PBm (i.e. m;;=85.2%) with an anr of 6.74 blocks corresponds exactly to the regular
a-helices. In the same way, 78.1% of the third C, for the learning database present in
a-helices belongs to this block and 86.7% of the third C,, of this block is found in a-helices.

(ii) PBd (i.e. m;;=63.5%) specifies 3 sheets with an average size of 2.74 blocks.

(iii) PBe and PBe have an anr higher than 1.1 since they corresponds to distorted 3
state C- or N-cap.

The labels of Table I help one to make a relationship with conventional 3-states alpha-
bet with only three states (a-helix, 3-strand and coil). For instance, PBb goes to PBf, a
labelled "N-cap 3”7 to a labelled "C-cap (7 directly with 13.7% rate. In the same way,
PBm, the labelled "« type” goes to PBb, a labelled "N-cap 3”7 directly with 9.2% rate.
The flexibility of the alphabet is higher than the label given shows it.

Dependency between protein blocks and sequences

The relationship of PBs with the amino acid sequence can be assessed by the occurrence
matrices (i.e. the observed amino acid distribution in a given location of the sequence

window associated with a PB).

Example

Figure 4 shows the 3D structures of four PBs (PBp, PBb, PBd and PBm) by su-
perposition of backbone fragments extracted from the database with XmMol [51], the
associated occurrence matrices, the Kullback-Leibler asymmetric divergence profiles (i.e.
KLd profiles).

The blocks PBm, PBp and PBd have the lowest rmsd values (0.431&, 0.46A and 0.48
A respectively) as shown by the backbone superposition. The PBb is slightly more vari-
able (rmsd=0.51 A) mainly due to extremities of the fragments.

The propensities of amino acid to be located in a given position in the window are

accurately represented by the Z-scores (see Methods section). The dark rectangles (re-
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spectively white) indicate the over-represented amino acids, i.e. 7 > 4.4 (respectively
under-represented, i.e. Z < - 4.4), the threshold corresponds to a type I error p less than
107°. Grey zones correspond to intermediate Z-score.

The analysis of the KLd profile (i.e. the dissimilarity between the observed amino acid
distribution observed in a given position and that in the database) enables us to define
the informative locations for a given block. The four KLd profiles are representative of
the obtained profiles. They have been ordered according to the decrease of their KLd
maxima.

The PBp is characterized at its central position, with an over-representation of Gly and
Asn. As important is the number of under-representations like aromatic and hydrophobic
residues. The KLd profile is a sharp peak at the central particular position (KLd = 0.55).
The PBb’s KLd profile is a bell curve five times smaller than the previous one (KLd
maximum = 0.08). Reversibly, we notice that the number of informative positions is
increased in the range [-2:4-2] and not only at the central position. The sequence specificity
is faint due to a lower KL.d magnitude nevertheless we observe opposite representations
of Pro and Gly along the window.

For the block d corresponding to a regular  strand, the dissimilarity profile is different
from the previous one: a maximum (KLd = 0.06) for the central C, and symmetric
decreases from this position. We observe strong differences of the Z-scores between inside
and outside the structural block [-2:42]. The over-representations concern mainly certain
hydrophobic residues Ile and Val and slightly Phe, Tyr, Trp and Thr within the block,
and under-representations mainly the polar residues (Lys , Arg, Asp, Gln and Asn) and
outside the block for Gly and Pro [25].

PBm like PBd has specific KLd profile. Mainly the central positions contribute to the
sequence specificity of PBm, a regular a-helix, and correspond to the five C, (positions
-2 to 42, KLd maximum = 0.05) of the block. We observe an over-representation of
aliphatic amino acids Leu, Met, Ala and polar residues Gln, Glu, Arg, Asp and Lys. The
under-representation of well-known a-helix breakers Pro and Gly is strong, as well for His
and Asn on all the positions of the window [48, 47, 24].

The only other characteristic pattern (not shown) is a bimodal profile for certain PBs,
PBe¢ (positions -2 and +2), PBe (positions -1 and +1), PBI (positions -2 and 0), PBk
(positions -1 and +1) and PBp (positions 0 and +2). Those informative positions are

essentially breaks of the repetitive structures.

PBs Z-scores

Table II gives for each PB and each position in the window [-4;44] the amino acid
which have a Z-score computed >4.4 (noted +) or <-4.4 (noted -). A large number of
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amino acids per position have significant Z-scores. To focus on the largest specificity, a
rate of 4.4 had been chosen as in Figure 4. It could be noted than outside this window
only one position over all the PBs is associated with a KLd value larger than 10% of their
KLd maxima. The more informative positions have been defined using a threshold of 300
/ 2Nk, Ni denoted the observed number of P By (see section Propensities).

The main transitions between the PBs (see Table I for the transition rate) are found
again in the amino acid compositions. For instance, the sequence specificity [Gly, Asn]
is observed for PB n, o, p and « in positions (+2), (+1), (0) and (-1). In the same way,
PBe and PByg in position +2, go to PBh (at the position 4+1) and PBi (at the position
0). However differences can be noticed like for the PBd which goes towards PBf with a
rate of 51.9%, its position +1 has over-representation slightly different compared to PBf
in position 0, for instance Val and Ile are over-represented in PBd at the position+1 and
under-represented in PBf at the position 0. In fact, the propensities of the amino acids
to be located in certain positions are not always conditioned by the transitions between
PBs. For instance, the under-representation of Pro in position +1 of PBb is followed by
PBe¢ with a rate transition of 17.9% an over-representation of Pro in this latter block is
observed, in position 0.

The over- and under-expressions are mainly concentrated in the central window [-2;+2].
Figure 4 shows an illustration of the real importance of each position.

We note that the repetitive structures show classical over- and under-expressions:
[AEL]* / [GPST]™ for PBm and [IV]*/[ADEGN]~ for PBd [25, 47, 24]. The over-

expression of Gly is often accompanied by an Asn’s over-expression in the coils.

Sequence families

The set of sequence windows encompassing a given protein block allows the computing of
occurrence matrix used in the Bayesian approach. On the basis of the concept of 1 block
- n sequence, we have tried to split the sequence window set into subsets called ”sequence
families” showing differences of amino acid propensities. Some PBs have been divided in
sequence families, mainly the most frequent (the integer between parentheses indicates
the number of families): m (6), d (3), ¢ (2), f (2) and b (2). The split PBs give families
with an effective close to the other PBs (less than 5% of the database). We ought to
control that the sequence families do not created a new fold pattern, i.e. they are always
associate to one PB.

The average dihedral vectors associated with these new sequence families could be
computed. We not they do not provide significant differences with the initial dihedral

vectors associated with a given PB. The angular differences do not exceed 5° As a result,
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sequence families do not create new type of 3D structures, and occurrence matrices can
be used for the PB prediction.

Figure 5 concerns the splitting PBb. The KLd profile of the original occurrence matrix
is given with those of the two families (PBb/ and PB02).

The original KLd profile was low (values less than 0.1), PBb’s family 7 and 2 reach to
0.3; the information providing from each family is more sequence specific. By thresholding
theses profiles at a level of 0.08, we observe that PBb! have the most sequence specific
positions in the range [-3;+2], and for positions (-7) and (+4), and the second in [-2;+2].
The KLd profiles are different, the modes are in positions (+1) and (0) respectively.

Comparing the associated occurrence matrices assesses the amino acid composition
differences : PBb1 relative to PBb2 shows an over-representations of Ala in position (-7),
Asn (-2), Pro (-1), His and Asp (0), Pro (+1) and Phe (46), and under-representations
of Lys (-2), Gly (+1) and Cys (44). It must be noticed that the main characteristics of
the PBb’s occurrence matrices are conserved in the both families, as the over-expression
of Pro in position (42). We point out that the differences shown correspond to different
reallocations of amino acids. For instance, Ala is over-represented in position (-7) in

PBb2, though its frequency in PBb1 is same as in the whole database.

Bayesian prediction of local structure

Protein block prediction

The prediction is carried out using the occurrence matrices with the Bayes’ theorem.
Here, the under- and over-representations given in Table II play the major role because
they determine the quantity Ry for each PB. Ry is the product of frequencies of the
amino acid observed at each position of the sequence window. Whereas, the "true PB” is
geometrically defined by the dihedral vector, the "predicted PB” is simply defined by the
rule of the highest Ry (or In Ry), this only depends on the sequence window centred in a
given site of the protein sequence. So the accuracy prediction is assessed by comparing the
proportion of sites where the predicted and the true PBs are identical. This calculation is
performed with the 1/3 of the database not used in the training step. The prediction rate
is initially of 30.0% by using the sequence windows of 5 amino acids, i.e. the structural
window of 5 C,. The use of flanking sequences (a total window of 15 residues, i.e. a
symmetrical elongation of 5 amino acids encompassing the structural window) allows a
prediction rate of 34.4% (i.e. an gain of 4.4%). The gain is observed for all the PBs and
is not specific of the repetitive secondary structure. For example, PBb increases from

11.0% to 13.5%, PBe from 33.0% to 43.2%, PBi from 32.9% to 42.2%, PBp from 26.9%
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to 33.5%,

Prediction with family sequences

The prediction is then applied with the sequence families. Figure 6 shows the relationship
between the initial prediction rate (1) (X-axis) and the difference Q(1)* - Q(1) between
the initial prediction rate and new prediction rate when using the sequence families (Y-
axis). The main result is: the gain is positive for more than 95% of the proteins and
does not depend on the size of the proteins (i.e. the gain follows a Gaussian distribution,
figure not shown), The average prediction rate increases to 40.7%. We notice that the
prediction rate between the sets of proteins used in the learning and in the validation step
only differs of 0.5%.

In addition, more 51.4% of the proteins had a prediction rate more than 40% instead
of 20.5% in the first prediction. By using the protein classification rules of Michie et al.
[27], we note that a 9.1% gain for the protein all-a (from 37.3% to 46.4%), the all-# had
a lower gain (i.e. 3%, from 30.2% to 33.2%), the mixed a-# had a 4.9% gain (35.7% -
40.6%), and the unclassified a 4.8% gain (33.9% - 38.7%).

Four proteins have an high prediction rate : serine proteinase inhibitor (PDB code :
Leselh, initial prediction rate : 47.9%, with sequence families : 64.6%), electron transfer
(5rxnh, 56.4%), 59.0%), translational regulator protein (1regX, 59.8%, 63.5%), lipoprotein
apolipoprotein*E3 (1lpe, 60.4%, 74.4%). Three first ones are all-a and the last one all-3.

The homogeneity of the prediction was another important point observed in the cutting
out of the sequence families. When splitting the most frequent PBs, it is possible to
obtained a better global prediction rate, but with regards to other PBs their rate will
drop significantly. For instance, the addition of one supplementary family to PBm or PBd
allows a global gain of more than 1%, but in parallel the prediction rate of PBb drops
under 25.0%. So, after introducing sequence families, we found a range of prediction rates
more reduced: initially from 13.1% (PBb) to 60.3% (PBa), and, then from 27.0% (PBb)
to 53.2% (PBa).

Moreover, the gain is not correlated with the PB frequency in the database. Certain
PBs of low occurrence frequency such as PBa (3.9% of the database), PBj (1.0%) and
PBo (2.6%) are highly predicted with rates of 53.2%, 47.3% and 45.7% respectively.

The most frequent PBs which correspond to the cores of the secondary structures have

a prediction rate of 50.6% for PBm (a-helix)and 34.6% for PBd (3-strand).
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Prediction example

Table 111 gives the PB predictions of the 18 first sequence windows (15-residues window
encompassing the protein block of 5 C,) of the protein 2aak, ubiquitin conjugating en-
zyme. A regular a-helix of 10 PBm followed by a coil of 7 PBs leading to a [-sheet (see
figure 3) is studied. This example includes the concept of sequence families previously
described. Fach line of the table corresponding to a sequence window. For instance, the
5th window centred on the motif MRDFK is assigned to PBm. The first three solutions
(obtained after ordering the predictions scores Ry) given by the Bayesian approach are
PBm, PBf and PBb, the respective scores are 22.13, 1.25 and 0.40. So the first score
indicates that the probability of observing the PBm is 22.13 higher than the probability
of observing this block without sequence information. For this position, the prediction is
correct. The two first solutions can be explained by taking into account the proportions
of amino acids to be located in certain positions of protein blocks (see Table II). The
elevated scores of the first solutions are justified by the presence of amino acids Leu, Met,
Arg, Lys, Arg and Leu respectively in position (-3), (-2), (-1), (+2), (+3) and (+4). In
the same way, the block BPf is classified at the second rank because of a Asp as central
position. By considering the first ranks, 10 protein blocks are correctly predicted among
the 18 first blocks. For the whole protein, the prediction rate Q(1)* is 40.8%. Without
taking into account sequence families, it was 30.4%, hence an appreciable gain. Usually,
the prediction accuracy is only assessed from the solutions of the first rank. But by ob-
serving the solutions given by the three first ranks in Table III, we found again 17 of
the 18 true PBs. The only misprediction corresponds to an end of a-helix which has a
unusual amino acid composition in the central window [-4;+4], i.e. KRLQQDPPA. So
rather than only considering the first ranks, an interesting approach consists of examining
the accuracy Q(r) for a given rank r. The index Neq quantifies the dispersion of the scores.
In the first part of the a-helix, it varies in the range [2.06;3.78] and it is correlated to an
optimal prediction. Reversibly, so the probability of finding the true BP decreases at the
end of the helix, while the Neqg increases (more than 4.82), this reflects the presence of less
informative sites. Moreover intermediate Neq values are observed for the 7 last residues,
the optimal rank is mainly 2. Consequently, a strategy based on a multiple choice of PBs

in each site should be informative.

19



yduosnuew Joyine vH

=
0
1]
=
2
o
o
[
w
N
[ee]
N
=
<
1]
=
@,
o
=
[N

Prediction strategies

Multiple choices per site

In the database, we observe a positive relationship between the highest score (Ry) and
the prediction rate (Q(1)*). We have established that the true PB is often among the
first selected PBs, i.e. the highest scores.

The number of selected ranks will be defined by the Neg index that reflects the disper-
sion of the 16 scores. Globally the prediction rate Q(4) for the 4 first solutions, i.e. the 4
PBs with the highest Ry, was 71.4% with the initial Bayesian approach, and then by using
the family sequences, it increases to 75.8%. The prediction rates Q(4)* vary according
to the PB type from 57.2% (PByg) to 82.8% (PBm). The repetitive PBd and PBm have
prediction rates more than 80% with this strategy. Therefore, prediction strategies based
on a multiple choice per site should be able to improve the accuracy.

The analysis of the prediction results allows one to point out that the true PB is
generally present among the predicted PBs showing the highest scores. So two prediction
strategies can be elaborated :

(i) a "global strategy” : to define the number r; of blocks to be kept in every sites of
a protein in order to obtain an user-fixed prediction rate (),, i.e. the true protein blocks
is found again among the r; selected PBs with a probability @),.

(ii) a "local strategy” : to characterize a set of sites for which the user-fixed prediction
rate (); is obtained for a fixed number r of PBs.

In the first strategy, the entire protein is predicted in terms of protein blocks, but the
combination of selected blocks is variable along the protein. In the second strategy, the
protein is restricted to certain sites whose the prediction should be correct with a given
probability by taking r PBs.

Global strategy

With the use of the learning database, we have established a relationship between the
probability of finding the true PB among the r selected solutions and the diversity of
score values assessed by Neq (from an entropy assessed from scores normalized into prob-
abilities).

First, we have selected the blocks for which the Neq values vary in a given range. Then
the distribution of the rank of the true PB in the solutions has been calculated. So, for a
given prediction rate (), we have determined from those distributions how many solutions
must be selected for every Neg range (figures not shown). For instance, for a Neq value in

the range [1.0;6.32], we selected the 3 first PBs given by the Bayesian approach in order
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to obtain a 70% prediction rate.

Figures 7 show the results of this strategy for the studied protein 2aak. The Neq profile
(Figure 7a) gives the variation of the index (values between 1.06 et 9.79). Figure 7b gives
the rank of the true PB in every site of the protein. We note that the true PB is found
again in the 3 first solutions for most of the sites (77.8%). Certain restricted zones of the
protein need a higher number of selected PBs, such as the two coils separating the 3 first
(3-sheets (positions 22 to 46), and the large coil (positions 82 to 90) containing a small
a-helix.

The profile of Figure 7c indicates the number of blocks to be selected with an average
prediction rate @, of 75%, the two dot series below this graph correspond to the sites
where the PB is correctly predicted at the first rank and when the true PB is found again
in the selected blocks. The maximal number of PBs is 4. The prediction rate is initially
40.7% with only the first rank; for Q,=75%, we keep 1 to 4 PBs for 8, 17, 37 and 72 sites
respectively. The repetitive structures and the blocks close to them (cf. Figure 3) are
correctly delimited. On the other hand, the coils are more difficult to be defined. The
comparison between the two series of points shows that the zones with some true PBs
found at the first rank can be spread easier than the zones without true PBs at the first
rank.

This strategy leads to an excess of selected blocks in each position. However, it selects

in every site a number of blocks so that a given prediction accuracy is ensured.

Local strategy

The second strategy consists of defining limited zones in the protein where the prediction
is guaranteed by a number r of selected blocks with a rate ;. Figure 8 shows the
evolution of the prediction rate computed function of the Neq index and for different
values of r (r varies from 1 to 5). For building these curves, we selected in the whole
proteins of the learning database the sites where the Neq index is less than a given value,
so the corresponding proportions of sites is assessed. We then computed the proportion
of sites in which the true PBs are found again among the first solution (r=1), the two
first solutions (r=2) and so on. So for example, we limit our prediction to 70% of protein
sites thus Neg value must be less than 4.8 (see Figure 8). If we only selected one (i.e.
2, 3 and 4) rank(s), we should obtain an average prediction rate of 46.8% (respectively
63.4% 73.1% and 79.6%). We could note too for a given prediction rate, for instance 80%,
that we will have a Neg index of 1.28 and 5.5% of the population for the first rank (i.e.
1.66 and 11.5% for the second rank, 2.61 and 26.9% for the third, 4.64 and 66.3% for the
fourth).
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Figure 7d indicates for the protein 2aak, the zones for the prediction rate Q; of 75% and
by taking the 3 first solutions. The corresponding Negq is less than 5.11. As 62 sites had be
selected, the dot series indicates the 49 positions where a true PB had been found again
in the selected positions. So, the observed prediction rate is 79% for 46.3% of the protein
positions. By comparison with the first approach, it is clear that take 3 possibilities is
sometimes an excess. In the same manner, with r=4 and @;=75% (data not shown) 72
sites (52% of the protein) are concerned.

Figure 7e shows the same strategy with ;=70% and r=3 ranks. By taking a Neq
maximal of 6.32, 122 sites (91% of the proteins) were selected and 95 sites give the true
PBs among the three proposed blocks, which corresponds to an observed prediction rate
of 77.9%.

So, this strategy allows one to locate the sites of high predictability, however a critical
research must be made in the choice of the number r of ranks to be selected. For exam-
ple, for a prediction accuracy (;=70%, the proportion of selected sites in protein rises
dramatically with the change of selection, 2 into 3 blocks. This produces a site increases
of 49%. In a further application of this strategies, in the field of ab initio modelling, the
choice of the number selected blocks per site raises certain problems such as: increasing
the rank r leads to a larger covering of the protein, but also to a higher combinatory

between blocks for building a molecular model from protein sequence.

Discussion

In our study, we have defined a structural alphabet, which allows the local approxima-
tion of the 3D protein structure. We have used this library of fragments (PBs) in a new
Bayesian probabilistic prediction approach. We have then developed two types of strate-
gies, consisting not only in looking for the most probable block for every protein sequence
position, but also in searching for the optimal blocks to be conserved per site with a given

prediction accuracy.

Structural alphabet

The first important parameter involved in this study is the length of the PB. Clearly
depending on the authors, the length maybe variable or fixed. A constant size is a simple
approach to perform the prediction step. Long segments must need much more blocks
to have the same structural description. Different studies have been carried out using
various segment sizes: from 4 to 7 for Rooman et al. [34], from 7 to 19 for Bystroff and
Baker [20], or fixed at 8 for Unger et al. [32, 52], 9 for Schuchhardt et al. [33], 6 for
Fetrow et al. [35], or 4 for Camproux et al. [36]. We have chosen a size of 5 C, that is
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enough convenient to conserve the local contacts within the regular structures: positions
(i, 1 4 2) for the B-strand and (7, 7 + 3, 1 + 4) for the a-helix.

The second parameter, partially related with the first one, is the number of PBs. It
is critical to learning and prediction steps. Relative to the works of Unger et al. [32, 52]
and Schuchhardt et al. [33], we have determined a limited number of small 3D local
structures. Our choice is guided by two facts : (i) the precision of the protein 3D-
structure description (expressed into rsmda) which follows directly from this choice, and
(ii) the prediction accuracy which is likewise dependent on this number. In fact, smaller
the number of PBs is, more the average rmsda increases (i.e. the dihedral angles are
less well approximated). Inversely, using a higher number of PBs for prediction should
result in an decreasing prediction accuracy. To assess the levels of relationship between
the parameters : number of PBs, rmsda and Q(1)-value (i.e. prediction accuracy at the
first rank), we have carried out a training allowing a large reduction of PBs by taking a
high threshold rg in the structural similarity criterion. With an initial number of 34 PBs
and after 8 shrinking processes, we have obtained 10 PBs. The four first shrinking show
a fast decreasing of the number of PBs with a slow reduction of rmsda: it dropped from
34 PBs (with an average rmsda of 25.4°) to 22 (28.5°), then 19 (29.0°) and 16 (30.0°).
The following processes permit to obtain successively 14, 12, 11, and 10 PBs at the end,
the angular approximation remains stable between 30°-32° in these last steps.

By using a Bayesian prediction without the splitting into sequence families and only
based on a structural window of 5 amino acids, the accuracy decreases dramatically from
34.6% to 30.0% and 22.7% with 10, 16 and 34 BPs respectively. As expected, the predic-
tion accuracy is largely controlled by the number of PBs.

It must be emphasised that for a lower number of PBs (less than 12), the training only
yields classical secondary structures completed by their caps. As the coil regions of the
protein are more variable than the classical a-helix and (-strand secondary structures,
and associated with fold patterns less frequent, it is necessary to select a higher number
of PBs. Consequently, the choice of 16 BPs is consistent with a suitable balance between
a correct approximation of the 3D structures (i.e. an average rmsda = 30°) and an

acceptable initial prediction accuracy.

Training approaches
Different types of methods have been used for classifying the 3D segments into a lim-
ited set of fold patterns. Various approaches in the field of the training have been applied:
hierarchical clustering [20, 32, 34, 52], neural networks [35], self-organized maps (SOM)
[33] or hidden Markov model (HMM) [36]. Apart the last work, the sequential depen-

dence between the protein blocks does not take into account as constraints in the training.
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Another advantage of our unsupervised classifier must be highlighted relative to the ap-
proach HMM [37]: no hypothesis about the probability laws of parameters is needed in
the model. In fact, it is a nonparametric model. More we have introduced a shrink-
ing process allowing a fast selection of the optimal number of PBs according to a given
threshold of structure similarity. The algorithm is suited to a fast and efficient training
of multiple signals (in our study, the dihedral vectors along the proteins). A definition of
the protein blocks partially embedded for ensuring the continuity of the protein backbone
is of interest in light of its potential application in the building of molecular models from

protein sequence.

Prediction et Strategies

The Bayesian probabilistic approach has been frequently used [9, 38, 39]. Relative
to neural network approach, the scores directly reflect the sequence information content
expressed from the amino acid composition in every site of the sequence window. It is not
only limited to a PBs ordering. It gives the possibility to compute the Kullback-Leibler
asymmetric divergence profiles (i.e. KLd profiles), which point out the most informative
amino acid positions in the sequence window.

Concerning the prediction approach, only rare works in the literature have been carried
with such a structural alphabet. Two values for the prediction accuracy are actually
available. The first one in the range 65 - 75 % [4, 5, 7] is obtained with a 3-states
alphabet (classical secondary structure prediction). The second ones is the value given
by Bystroff and Baker [20], a prediction close to 50% with a 13-states alphabet (in reality
13 clusters of fragments of various lengths). It is trivial to see that a difference between a
prediction with 3 or 16 blocks cannot give the same level of accuracy. Bystroff and Baker
[20] have used a method which finally gives 13 clusters of fragments of different length
which are longer than our PBs of 5 C,, 50% accuracy for a 13-states alphabet is close to
our results with a 16-states alphabet.

The developed concept of a fuzzy sequence / 3D-structure model (1 fold - n sequences
| 1-sequence - n folds) is really important in the elaboration of a structural model. The
two parts of the fuzzy model have employed ” I fold for n sequences” in the definition of
the "sequence families” and ” 1 sequence for n folds” in the both strategies.

The success of the ab initio approach are actually very limited to only local prediction
[15] or limited to polypeptide folds prediction [14]. Our approach that leads to a global
prediction solution has to be considered as a very powerful initial step coupled with a
more elaborated method using for instance realistic physical force. For summarising, two
strategies have been built: the first gives a set of potential blocks along the sequence.

The second one consists of giving a constant number of blocks for limited zones. The only
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assumption is that the true PB is among the few selected ones, (this is globally true).

It must be noticed as an important point than for each site, the most 4 likely PBs are

sufficient to provide a high level of prediction rate (more than 75%).
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