

Reply to letter to editor by M.J. Sankeralli and K.T. Mullen published in Vision Research, 41, 53-55: Lights and neural responses do not depend on choice of color space.

Kenneth Knoblauch, Michael d'Zmura

▶ To cite this version:

Kenneth Knoblauch, Michael d'Zmura. Reply to letter to editor by M.J. Sankeralli and K.T. Mullen published in Vision Research, 41, 53-55: Lights and neural responses do not depend on choice of color space.: Lights and neural responses do not depend on choice of color space.. Vision Research, 2001, 41 (13), pp.1683-4. inserm-00131808

HAL Id: inserm-00131808 https://inserm.hal.science/inserm-00131808

Submitted on 19 Feb 2007 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Lights and neural responses do not depend on choice of color space

Kenneth Knoblauch^{a,b} and Michael D'Zmura^c

^a INSERM Unité 371, Cerveau et Vision, 18 avenue du Doyen Lépine, 69675 Bron cedex, France

^bInstitut de l'Ingénierie de la Vision, Université Jean Monnet, Site GIAT-Industrie, 3 rue Javelin-Pagnon, B.P. 505, 42007 Saint-Étienne cedex 01, France.

^cDepartment of Cognitive Sciences, University of California, Irvine, Irvine, California 92697, USA

Sankeralli and Mullen (2000) argue that the relationship between lights and neural mechanisms depends on which color space is used. In particular, they dispute what they term the "orthogonality property", according to which modulation of lights orthogonal to the direction of a linear mechanism is invisible to the mechanism. They maintain that the orthogonality property is not valid for any arbitrarily chosen color space. They claim, "It is critical to note that this orthogonality property was originally applied to a cone contrast space. . . and. . . is valid only for this space or any orthonormal transformation of this space."

We disagree with their claim. Lights and neural responses do not depend on the color space used to represent the data. The orthogonality property is not a relationship between lights, but a relationship between lights and mechanisms. That a modulation of lights is invisible to a particular detection mechanism does not depend on the color space used to represent this relationship.

A mathematical formulation can help to clarify this relationship. Color spaces used to represent human vision are constructed to give the same coordinates to lights that have the same appearance. A (linear) color mechanism is a (linear) functional defined on the coordinates of this space. The space of linear mechanisms is not the color space, itself, but its dual (Knoblauch, 1995; Krantz, 1975). A linear transformation of the color space in which lights are described induces a related but different transformation of the dual space of chromatic detection mechanisms (Kay, 1988; Lipschutz, 1968). The transformation of the dual space is represented by a matrix that is the transposed inverse of the matrix that represents the transformation of the space of coordinates of lights. The orthogonality between a chromatic stimulus and a detection mechanism is maintained when one takes care to transform both the color space and its dual space properly.

Preprint submitted to Elsevier Preprint

13 June 2000

Let us examine this in more detail. Suppose that a particular chromatic modulation is represented by a column vector $\mathbf{v} = [v_1, v_2, v_3]^T$ and that a linear detection mechanism is represented by a row vector $\mathbf{m} = [m_1, m_2, m_3]$. Suppose further that the chromatic modulation is orthogonal to the mechanism (and so is invisible). This can be expressed by setting the dot product of the two vectors equal to zero.

$$0 = \mathbf{m} \cdot \mathbf{v} \tag{1}$$

If one now transforms linearly the color space of lights using an invertible 3x3 matrix **A**, then one must take care to transform the dual space in which detection mechanisms reside by the transpose of the inverse of **A**. Applying these two transformations to the terms on the right-hand-side of Equation 1 reveals that orthogonality is valid for an arbitrary color space:

$$0 = ((\mathbf{A}^{-1})^T \mathbf{m}^T)^T \cdot \mathbf{A}\mathbf{v} = \mathbf{m}(\mathbf{A}^{-1}\mathbf{A})\mathbf{v} = \mathbf{m} \cdot \mathbf{v}$$
(2)

Specifically, we do not require that A be unitary as Sankeralli and Mullen suppose. Again, this is because we are defining a relationship between lights and mechanisms and not between lights.

In our work with sectored noise masking, we were careful to observe the formalisms outlined above in order to obtain results that do not depend on the choice of color space (D'Zmura and Knoblauch, 1998). In particular, we simulated the performance of various detection models numerically in terms of mechanism responses rather than in terms of the color spaces in which data were represented. The results of these simulations let us reject the notion that mechanisms along the L&M and S cardinal directions are responsible for chromatic detection as well as the hypothesis that detection mechanisms have nonlinear, narrowband sensitivities. The conclusion that chromatic detection is subserved by multiple linear mechanisms is valid.

References

- M. D'Zmura and K. Knoblauch. Spectral bandwidths for the detection of color. *Vision Research*, 38:3117–3128, 1998.
- D. C. Kay. Tensor Calculus. McGraw-Hill, New York, 1988.
- K. Knoblauch. Dual bases in dichromatic color space. In B. Drum, editor, *Colour Vision Deficiencies XII*, pages 165–177. Kluwer, Dordrecht, 1995.
- D. H. Krantz. Color measurement and color theory: II. Opponent-colors theory. *Journal of Mathematical Psychology*, 12:304–327, 1975.
- S. Lipschutz. Linear Algebra. McGraw-Hill, New York, 1968.
- M. Sankeralli and K. Mullen. Assumptions concerning orthogonality in thresholdscaled vs cone-contrast colour spaces. *Vision Research*, 40:to be determined, 2000.