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Observers detected a temporally modulated luminance pattern embedded

in dynamic noise. A Gabor function with a carrier frequency, in separate

conditions of 0, 1.56, or 3.12 Hz, modulated signal contrast. Classification

images were constructed in the time, temporal frequency, and temporal phase

domains. As stimulus frequency increased, amplitudes of the phase images

decreased and amplitudes of the frequency images increased, indicating a

corresponding shift in the observers’ criteria. The reduced use of phase

attenuated time domain images from signal-absent trials, but physical inter-

actions between signal and noise components tended to preserve time domain

images from signal present trials. The results illustrate a frequency-dependent

strategy shift in detection that may reflect a degree of stimulus uncertainty

in the time domain. c© 2005 Optical Society of America

OCIS codes: 330.1880, 330.4060, 330.6790

1. Introduction

The visual system does not simply generate a neural replica of a stimulus, but codes

and separately represents various components of it. DeValois and his students took a

leading role in characterizing the neural mechanisms underlying such separate repre-

sentations. Chromatic and luminance differences are coded early in segregated path-

ways,1,2 and neurons in primary visual cortex are selectively sensitive or tuned with
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respect to a variety of spatial and temporal properties.3–5 Such selectivities provide

the basis for separate representations and processing of the information coded in the

neural responses.3–8 One goal of psychophysics is to understand how these different

representations are weighted and combined in the performance of various percep-

tual tasks. In this research, we exploit classification images to understand better how

observers employ different temporal properties in a visual detection task.

Confusions have long been a source of information about the stimulus properties

important to the performance of perceptual tasks. Ahumada9,10 refined this approach

by embedding auditory signals in noise and comparing the noise profiles that increased

the probability of “present” responses with the noise profiles that increased the prob-

ability of “absent” responses. He termed the difference between these two types of

profiles, which he analyzed in the temporal frequency domain, the classification im-

age. More recently, Ahumada and others have used the technique to investigate the

stimulus properties used in a variety of visual tasks, (See reference11 for a recent

overview.). We here describe the classification images found for the task of detecting

a temporally modulated luminance pattern in temporally dynamic luminance noise,

with particular attention to how the images change with the rate of signal modula-

tion. A preliminary report was presented at the 1999 meeting of the Association for

Research in Vision and Ophthalmology.12

Our observers detected a temporal Gabor signal embedded in temporally dynamic

noise. In different conditions, the carrier signal of the Gabor varied from 0 Hz to

3

H
A

L author m
anuscript    inserm

-00131803, version 1



3.12 Hz. We formed classification images in the time, temporal frequency, and tempo-

ral phase domains. The forms and amplitudes of the images changed with the carrier

frequency in a way that suggested that temporal phase information became less im-

portant and temporal frequency information more important as carrier frequency

increased. The results demonstrate the utility of constructing images in all relevant

domains.

2. Methods

The stimulus set-up has previously been described in detail.13 In brief, all stimuli were

presented on an Eizo FlexScan T562-T color monitor driven by software on a PC com-

puter under the control of a Cambridge Research Systems (CRS) VSG/2 color graph-

ics card that provides 12 bits of resolution for each phosphor of the 800 × 600 pixel

display. The screen was run at a field rate of 100 Hz, non-interlaced. The voltage-

phosphor luminance relationship was linearized with look-up tables. Calibration of the

screen was performed with a Minolta CS-100 chromameter and a silicone photo-diode

used with the OPTICAL software (CRS). The screen was set to a steady background

with luminance 65 cd/m2 and chromaticity (0.294, 0.303) for the CIE 1931 standard

observer.

Observers detected a temporally modulated luminance signal embedded in dynamic

luminance noise. The stimulus presented on each trial was the product of a spatial

modulation function and a temporal modulation function. The spatial function was a
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2D Gaussian with a standard deviation (σ) of 2.4 degrees. On signal-present trials, the

temporal function was the sum of a Gabor function and a noise vector, both sampled

at 50 Hz. On signal-absent trials, only the noise vector modulated the target. The

Gabor function was the product of a positive-going Gaussian window and a sinusoid.

The window had a σ of 160 ms and was truncated at plus and minus two σ’s, yielding

a stimulus duration of 640 ms. In different conditions, the temporal frequency of the

sinusoid was 0 (i.e., the window multiplied by a positive DC shift), 1.56 or 3.12 Hz.

These Gabor functions are shown in the upper left corner image of Figures 1, 2

and 3, respectively. Each noise vector consisted of 32 independent samples from a

uniform random distribution varying symmetrically about zero. The stimuli were

viewed binocularly from 57 cm.

Each session comprised 224 trials, evenly divided between signal-present and signal-

absent trials. At the end of each stimulus presentation the observer indicated that the

Gabor signal was present or absent by pressing a key. Auditory feedback followed the

response. Each observer completed 16 sessions, distributed over at least four days, in

each condition. All sessions in one condition were completed before proceeding to the

next condition. For both observers, the order of conditions was 0, 1.56 and 3.12 Hz.

Noise power (1/3 contrast2) was 0.03 for all conditions. Signal contrast, measured

at the peak of the envelope, was separately set for each observer and condition to

yield a d′ near 1.0. The contrasts for the 0, 1.56, and 3.12 conditions, respectively,

were 0.07, 0.15 and 0.15 for observer KK, and 0.08, 0.21 and 0.18 for observer JPT.
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Hit rates varied between 0.71 and 0.75, and false alarm rates varied between 0.28 and

0.37.

The two authors served as observers but remained naive as to the results until

data collection from both observers was completed. KK is emmetropic and JPT was

corrected for the viewing distance.

2.A. Classification Images

The noise vector from each trial was labeled as to type of trial (signal-present or

signal-absent) and the observer’s response (“present” or “absent”) and stored. Dur-

ing analysis, the noise records were segregated into four groups: hits (trial=signal-

present, response=present); misses (trial=signal-present, response=absent); false

alarms (trial=noise only, response=present); and correct rejections (trial=signal-

absent, response=absent). The classification images were constructed from these noise

records.

2.B. Time Domain Images

Each noise record was smoothed by averaging each entry, beginning with the second,

with the previous entry. For each session, a mean vector was computed for each of the

four groups: hits, misses, false alarms, and correct rejections. Two session images were

computed for each session. A signal-present image was computed by subtracting the

mean vector for misses from the mean vector for hits, and a signal-absent image was

computed by subtracting the mean vector for correct rejections from the mean vector
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for false alarms. These two types of session images were then averaged over sessions

and standard errors of the resulting mean images computed from the variability over

sessions. Individual points in the images were converted to z-scores by dividing each

mean by its standard error. Columns 2 and 3 of the first row of Figures 1–3 display

the z-score images.

Analyses of variance were conducted on session images computed without the initial

smoothing. A within subject analysis was conducted on the 16 sets of session images

for each subject and each condition. The factors were time and trial type (signal-

present or signal-absent). The presence of a reliable image was tested by the main

effect for time. The difference between signal-present and signal-absent images was

tested by the time-by-trial-type interaction. When a difference was found, each image

was separately tested for the presence of a signal component. When the analysis found

a reliable image, the agreement between the image and the luminance profile of the

stimulus was quantified by a correlation coefficient.

2.C. Temporal Frequency and Phase Domain Images

Each noise record was fast-Fourier transformed using the Matlab fft function. The

temporal frequency spectrum of the record was extracted from the fft output using the

Matlab abs function, and the phase spectrum was extracted with the angle function.

The transformed records of each type were segregated into groups corresponding to

hits, misses, false alarms, and correct rejections. Session means were computed as
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described above and session images calculated by subtracting the mean spectrum for

misses from the mean spectrum for hits, in the case of signal-present trials, and by

subtracting the mean spectrum of correct rejections from the mean spectrum for false

alarms, in the case of signal-absent trials. These two types of session images were then

averaged over sessions and standard errors of the resulting mean images computed

from the variability over sessions. Individual points in the images were converted to

z-scores by dividing each mean by its standard error. Columns 2 and 3 of the bottom

two rows of Figures 1–3 display the z-score images.

The computation of z-scores for phase preserves sign, but the scores are not con-

strained to lie between ±π. Thus, it is the relative profile of the z-score images,

particularly with respect to modulations above and below zero, that is meaningful.

For example, if an observer used the correlation between the phase spectrum of the

signal and the phase spectrum of the stimulus (either noise-only or noise-plus-signal)

as the decision variable, the z-score image would mirror the sign of the spectrum of

the signal, but not match its values. More generally, reliable modulation of the z-

score phase image indicates that the observer used phase information in the decision

process.

2.D. Simulated observer

An observer who bases his judgments only on magnitude information was simulated

using the R statistical computing environment.14 A set of 3584 stimuli (16 sessions
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of 224 trials) was generated with the same characteristics as those used to test the

human observers. Each stimulus was composed of 32 samples. Half of the trials were

composed of only noise, the others of signal plus noise. The noise was drawn from a

uniform distribution with power=0.03, and the signal was a Gabor whose Gaussian

envelope had a σ equal to 8 samples and sinusoidal carrier a frequency equal to (2σ)−1.

The contrast of the Gabor was set at 0.15. The magnitude spectrum of each stimulus

was extracted using the fft() function of R. The decision variable was calculated from

the dot product of the magnitude spectrum of the stimulus with that of the signal.

When the decision variable was greater than a criterion value of 0.45, the trial was

classified by the observer as present, otherwise as absent. These conditions generated a

d′ = 1.3 with the proportion of hits and false alarms equal to 0.8 and 0.3, respectively.

The time domain samples (not their magnitude spectra) were sorted into response

categories (hits, false alarms, etc.), averaged and combined to obtain present and

absent classification images.

3. Results

Figure 1 presents the classification images from the 0 Hz condition. Both subjects have

well defined images in the time domain, with images derived from signal-present trials

and from signal-absent trials agreeing closely. KK’s images resemble the luminance

profile of the signal, although somewhat skewed toward higher values in the latter

half, while JPTs images are oppositely skewed, with higher values in the first half of
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the stimulus epoch. The correlations between the luminance profile of the signal and

the individual images range from 0.71 to 0.78.

In the Fourier domains, both observers have sharply defined phase images consisting

of a single, negative-going lobe. Relative to the phase spectrum of the signal, the lobe

is shifted toward lower temporal frequencies. The images derived from signal-present

and from signal-absent trials agree closely. In the magnitude domain, however, the

images are less clear-cut. At the lowest temporal frequency, the signal-present images

for both observers are negative. Since magnitudes are positive, the negative values

mean that the presence of noise components at this frequency biased the observers

toward an “absent” response. When the signal was absent, these same components

biased observer KK toward a “present” response and had little effect on the response

of JT. At higher frequencies, the data points of KK’s image hover around zero, while

those of JT suggest low amplitude peaks at 1.56 Hz.

Figure 2 presents the images from the 1.56 Hz condition. Again, both observers

have well defined images in the time domain. The images from signal-present and

signal-absent trials resemble each other, but the slight differences are statistically

significant (p < 0.01 for KK, p < 0.05 for JPT). The images derived from the signal-

present trials correlate more closely with the luminance profile of the signal (0.81 vs

0.80 for KK, 0.94 vs 0.78 for JPT).

In the Fourier domains, both observers have sharply defined phase images consisting

of single, negative-going lobes at the peak temporal frequency of the stimulus. The
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signal-present and signal-absent images of KK are essentially coincident, but the

signal-absent image of JPT has less amplitude than his signal-present image. In the

magnitude domain, the signal-absent image of KK peaks at the temporal frequency

of the signal, but his signal-present image is essentially flat. The signal-present image

of JPT has a single peak that occurs at a higher temporal frequency than the signal.

His signal-absent image is broad and of lower amplitude.

Figure 3 presents images from the 3.12 Hz condition. The time domain images of

KK differ between signal-present and signal-absent (p < 0.001). The signal present

image is skewed toward higher amplitude in the second half of the stimulus epoch,

but the correlation with the signal profile remains high (0.83). The signal-absent

image is nearly flat, but does contain a significant signal component (correlation =

0.63). The signal-present and signal-absent images of JPT also differ from each other

(p < 0.001). The correlation between the luminance profile of the signal and the

signal-present image is 0.87. The signal-absent image is flat and does not contain a

significant signal component.

In the Fourier domains, the magnitude images of both observers have greater am-

plitudes than in the other two conditions. The present images are broadly tuned and

peak at a lower temporal frequency than the peak frequency of the signal. For both

observers, the signal-absent image has greater amplitude than the signal-present im-

age. Just the opposite relationship occurs in the phase images: for both observers,

the phase image from signal-present trials has greater amplitude, and more closely
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resembles the profile of the phase spectrum of the signal, than the image derived from

signal absent trials. The signal-absent phase image for JPT is essentially flat.

4. Discussion

The presence of a classification image, particularly from signal-absent trials, indicates

that the property represented plays a significant role in the observer’s decision process.

Since performance levels were constant across conditions, changes in the classification

images from one condition to another reflect changes in the observer’s use of stimulus

information.

One such shift is in the balance between the use of temporal frequency and temporal

phase information. In the 0 Hz condition, the phase domain images are narrowly

defined and of high amplitude, while the temporal frequency domain images are less

well defined and of lower amplitude. In the 3.12 Hz condition, on the other hand,

it is the frequency images which are more clearly defined and of higher amplitude,

particularly on signal-absent trials. These changes support a conclusion that decision

processes emphasized phase in the low frequency condition, but that flicker rate,

perhaps without regard to phase, was emphasized in the high frequency condition.

The results should not be taken to mean that observers totally ignored temporal

frequency information in the lower modulation conditions: the narrowness of the phase

images on the frequency axis indicates that the selective use of phase information was

restricted to the frequency region of the signal.
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The reduced use of phase information provides one reason for the difference be-

tween time domain images from signal-present and signal-absent trials in the 3.12 Hz

condition. When the signal is present, any noise component similar in temporal fre-

quency and phase to the signal will increase the effective contrast of the signal and

strengthen the representations of both temporal frequency and phase information.

As a result, the decision process is biased toward responding “present” even if only

frequency information is used and phase information ignored. However, if the noise

component is out of phase with the signal, the effective contrasts of the signal and of

the noise component are reduced, as are the representations of frequency and phase,

and the decision is biased toward “absent.” As a result of this interaction, the time

domain image from signal-present trials tends to mirror the signal and a phase do-

main image may appear even though the decision processes ignore phase per se. When

the signal is absent, on the other hand, the strength of the temporal frequency rep-

resentation depends only on the frequency content of the noise and not on phase.

Because the phase relationships in the noise vary randomly, averaging the noise pro-

files over trials tends to produce flat images in the time and phase domains. Figure 4

presents the time domain classification images of a simulated observer who uses only

frequency information, i.e. who uses the correlation between the magnitude spectra

of the signal and of the stimulus (noise-only or noise-plus-signal) as the decision vari-

able. Consistent with the argument just given, there is a clear difference between the

simulated signal-present and signal-absent images: the signal-present image mirrors
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the temporal profile of the signal, while the signal-absent image is flat.

Solomon15 obtained analogous results in spatial domains. When observers sought

to detect a peripherally presented spatial grating, signal-present trials yielded a space

domain classification image, but signal-absent trials did not. However, both types of

trials yielded images in the spatial frequency domain. Solomon inferred that observers

used information about spatial frequency, but not about spatial phase, in their de-

cision processes. In a separate condition, Solomon found evidence that the effect of

noise components on signal contrast was a major determinant of observers’ responses

on signal-present trials.

Several investigators have noted and discussed differences between classification im-

ages derived from signal-present and signal-absent trials (e.g.9,16–20), and the consen-

sus is that such differences argue against completely linear decision models. Stimulus

uncertainty, in the spatial or temporal domain, has been proposed as one possible

source of the differences, and this suggestion has been supported by modeling re-

sults.18,21 With respect to the present findings, temporal uncertainty may underlie

the changing roles of temporal phase and temporal frequency information as signal

frequency increased. A given uncertainty in the time domain translates into a phase

uncertainty that increases in proportion to signal frequency. Thus, a temporal un-

certainty that might have little effect on phase information in the 0 Hz condition

might have substantial effect in the 3.12 Hz condition, leading observers to place

more emphasis on frequency information.
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These and other results, such as those of Solomon, illustrate the potential of clas-

sification images to increase our understanding of the manner in which the visual

system abstracts information about separate stimulus properties and about how de-

cision processes use the representations of these properties in perceptual judgment.
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List of Figure Captions

Fig. 1. Classification images for the 0 Hz condition. The first row shows images in

the time domain; the second row shows images in the temporal frequency domain;

and the third row shows images in the temporal phase domain. Column 1 shows

the luminance modulation profile and spectra of the Gabor signal. Columns 2 and

3 show the classification images for observers KK and JPT, respectively. Each data

point is a z-score, calculated as described in Methods. White symbols calculated from

signal-present trials; black symbols calculated from signal-absent trials.

Fig. 2. Classification images for 1.56 Hz condition. See legend for Figure 1.

Fig. 3. Classification images for 3.12 Hz condition. See legend for Figure 1.

Fig. 4. Simulated time domain images, in the 3.12 Hz condition, for an observer who

uses only frequency information. The decision variable is the correlation between the

magnitude spectrum of the signal and the magnitude spectrum of the stimulus. White

symbols calculated for signal-present trials; black symbols calculated for signal-absent

trials.

19

H
A

L author m
anuscript    inserm

-00131803, version 1



0 200 400 600

0.2
0.4
0.6
0.8
1.0

M
od

ul
at

io
n 

(L
um

)

0 200 400 600

0

5

10

15

Obs: KK

Time (ms)

z
−

sc
or

e

0 200 400 600

0

5

10

Obs: JPT

0 5 10 15 20

0.0
0.1
0.2
0.3
0.4

M
ag

ni
tu

de

0 5 10 15 20

−10
−5

0
5

10

z
−

sc
or

e

Temporal Frequency (Hz)

0 5 10 15 20

−5

0

5

10

0 5 10 15 20

P
ha

se
 (

ra
d)

− π

− π 2

0

0 5 10 15 20

−20
−15
−10

−5
0

z
−

sc
or

e

Temporal Frequency (Hz)

0 5 10 15 20

−20
−15
−10

−5
0

Fig. 1. Classification images for the 0 Hz condition. The first row shows images

in the time domain; the second row shows images in the temporal frequency

domain; and the third row shows images in the temporal phase domain. Col-

umn 1 shows the luminance modulation profile and spectra of the Gabor signal.

Columns 2 and 3 show the classification images for observers KK and JPT,

respectively. Each data point is a z-score, calculated as described in Methods.

White symbols calculated from signal-present trials; black symbols calculated

from signal-absent trials. 20
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Fig. 3. Classification images for 3.12 Hz condition. See legend for Figure 1.
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Fig. 4. Simulated time domain images, in the 3.12 Hz condition, for an observer

who uses only frequency information. The decision variable is the correlation

between the magnitude spectrum of the signal and the magnitude spectrum of

the stimulus. White symbols calculated for signal-present trials; black symbols

calculated for signal-absent trials.
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