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Abstract. We demonstrate some procedures in the statistical computing environ-

ment R for obtaining maximum likelihood estimates of the parameters of a psycho-

metric function by fitting a generalized nonlinear regression model to the data. A

feature for fitting a linear model to the threshold (or other) parameters of several

psychometric functions simultaneously provides a powerful tool for testing hypothe-

ses about the data and potentially for reducing the number of parameters necessary

to describe them. Finally, we illustrate procedures for treating one parameter as

a random effect which would permit a simplified approach to modeling stimulus-

independent variability due to factors such as lapses or inter-observer differences.

These tools will facilitate a more comprehensive and explicit approach to the mod-

eling of psychometric data.

2

H
A

L author m
anuscript    inserm

-00131799, version 1



Production Number: B125

1 Introduction

A psychometric function is used to summarize classification performance (such as

detection or discrimination) from a psychophysical experiment. An observer clas-

sifies events within a limited set of response categories over a series of trials. The

psychometric function is a sigmoidal curve that describes the probability of a correct

classification as a function of stimulus strength (Falmagne, 1982; Klein, 2001). If

there are n choices, then the lower asymptote should approach 1/n. Typically, the

upper asymptote is expected to approach 1. Given a sufficiently difficult task, how-

ever, the observer might not achieve perfect performance over the realizable range of

stimulus values (see, for example, Higgins, Arditi & Knoblauch, 1996).

The raw data consist of the numbers of trials on which the observer correctly and

incorrectly classified the stimulus for a discrete number of levels of the stimulus and

is typically summarized as a proportion. Thus, it is natural to consider the data as

arising from a Binomial distribution. The experimenter would like to adjust the pa-

rameters of an analytic psychometric function to fit the data in order to characterize

the threshold or the precision of the observer’s performance.

Logistic regression and probit analysis are two methods frequently used to model

Binomial data. These can be implemented as generalized linear models (GLM) (Mc-

Cullagh & Nelder, 1989). These models are generalized because they extend the

Gaussian linear model to the more general exponential family of distributions, of

which the Gaussian and Binomial are special cases. They are linear because the logit

and probit transformations (or link functions, in the terminology of GLM) are held to

transform the response variable so that it is linear in its covariates, thus, permitting
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the modeling of the dependence of the psychometric function on the experimental

factors as a linear model. A drawback of the logistic and probit GLMs for fitting psy-

chometric functions is that it is necessary to transform the data using the false alarm

rate so that the estimated probabilities span the interval (0,1), although Klein (2001)

demonstrates that when this is done appropriately, it establishes a link between the

psychometric function and the statistics of Signal Detection Theory (Green & Swets,

1966; MacMillan & Creelman, 1991).

Watson (1979) proposed a maximum likelihood method based on a generalized

nonlinear model to fit psychometric functions. The parameters of a sigmoidal func-

tion are adjusted to maximize the Binomial likelihood of the responses of the subject.

Watson used a Weibull function to describe the relation between probability correct,

P , and stimulus strength, c,

P (c) = 1− (1− γ)e−( c
α)

β

, (1)

where α is a location parameter of the psychometric function on the stimulus axis

and corresponds to a stimulus strength that yields a criterion level of performance,

β a parameter that determines how steeply the psychometric function rises and γ

the lower asymptote. It is convenient to define the parameter α as the threshold

stimulus strength.

Occasionally, observer or experimenter errors result in misclassifications within a

stimulus range over which performance would be expected to be perfect. Wichmann

and Hill (2001) demonstrate that letting the upper asymptote vary as a nuisance

parameter allows these lapses to be modeled and results in more stable estimates of
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the steepness parameter. The modified Weibull function can be written as:

P (c) = γ + (1− γ − λ)(1− e−( c
α)

β

), (2)

where λ is the distance of the upper asymptote from 1. Wichmann and Hill have

also made available programs for fitting psychometric functions incorporating these

possibilities, as well as others, for a wide variety of platforms (http://www.bootstrap-

software.com/psignifit/).

Often, however, one would like to model the dependence of the location or steep-

ness parameters as a function of an experimental manipulation, rather than the psy-

chometric function itself. It is common to fit the psychometric functions to obtain

threshold estimates and then to model the threshold as a function of the experimen-

tal manipulation. This procedure, however, discards potentially valuable information

about observer performance. For example, suppose that the dependence of the psy-

chometric function on radiance is assessed for each of several test wavelengths. The

variation of threshold with wavelength is typically used to define a spectral sensi-

tivity. If the spectral sensitivity resembles a standard photopigment template, one

might suppose that detection is mediated by a single mechanism. However, if the

steepness of the psychometric functions changed as a function of test wavelength, it

would indicate a failure of univariance and raise the possibility that more than one

mechanism is active.

It would be more comprehensive to model the entire psychometric function and

how its parameters vary as a function of the experimental variables. In some cases,

modeling the data in this fashion can considerably reduce the number of parameters
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necessary for a good fit between model and data. Few off-the-shelf tools permit

this type of extended modeling, and it has been traditional to program such models

using special purpose minimization routines (Chandler, 1965; Gegenfurtner, 1992)

in high level languages like Fortran or C, or else using the optimization tools within

computational environments such as Matlab or Mathematica.

The freeware program R is an implementation of the S programming language

(Becker, Chamber & Wilks, 1988) that provides a powerful environment for statistical

computation and graphics (R Development Core Team, 2003). The purpose of this

report is to demonstrate how extended modeling of the psychometric function can be

performed easily in R with the use of a few remarkably powerful functions from some

R modules (or packages) developed by J. K. Lindsey and available from his web page

(http://popgen0146uns50.unimaas.nl/˜ jlindsey/rcode.html). The rest of this report

is divided into five sections that demonstrate i) how to perform a maximum likelihood

fit of a psychometric function using a generalized nonlinear model, ii) how to compare

the location parameters of two psychometric functions using a linear model, iii) how

to introduce differences in the steepness parameters while testing differences in the

location, iv) how to fit a group of psychometric functions for which the location

function is constrained by a linear model and v) how to fit a a psychometric function

as a generalized nonlinear mixed effects model with one random parameter.

The analyses presented require three of Linsdey’s packages, gnlm, repeated and

rmutil. All calculations reported here were performed on a Powerbook Mac G4 under

OS 10.3.5 using version R-1.8.1, except where otherwise noted. It is not the purpose

here to present a tutorial on R. Familiarity with its syntax and basic commands is
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assumed. R comes with extensive documentation and additional documents can be

found on the Comprehensive R Archive Network (CRAN) website.

2 Fitting a psychometric function with gnlr

The function gnlr() from the gnlm package will fit a user-specified nonlinear regres-

sion to a number of one and two parameter probability distributions. In the case

considered here, the distribution will always be Binomial. For illustrative purposes,

we will use the Weibull function to model the psychometric function, but without a

specific theoretical justification other reasonable alternatives would perform as well.

Consider the following simulated data, Binomial random deviates generated in R

based on 160 trials at each contrast level and on probabilities generated by Equation 2

with parameters set to α = 0.04, β = 3.5, γ = 0.25, λ = 0.05.

Contrast NumYes NumNo

1 0.010 40 120

2 0.016 47 113

3 0.025 65 95

4 0.040 107 53

5 0.063 155 5

6 0.100 149 11

Figure 1 about here

The proportion correct based on the simulated data is plotted as circles in Fig-

ure 1. To fit a psychometric function to these data, requires two steps. (The code

to generate this analysis can be found in Appendix A.2). First, define a function
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that describes the psychometric function with a vector, p, as argument to specify the

input parameters. An example of how this is done in R for Equation 2 is as follows:

> wb <- function(p) {

+ p[3] + (1 - p[3] - p[4]) * (1 - exp(-((cnt/p[1])^exp(p[2]))))

+ }

We have used here the trick of setting β = exp(p[2]), so that the parameter can

vary along the whole real line but the estimate, β̂, will always be non-negative. A

similar trick can be used to confine a parameter between two bounds using the atan2

function. An example of this will be shown in the next section. Second, use the

function gnlr to find the maximum likelihood estimates of the parameters. To fit the

data in Figure 1, gnlr requires a minimum of four arguments as input: y, the 6 x 2

matrix of the responses with columns NumYes and NumNo (here called resp.mat),

distribution, the probability distribution on which the likelihood will be based, mu,

the user specified regression function (also referred to as the location model of the

probability distribution, to be distinguished from α, one of its parameters, which was

described above as the location parameter of the psychometric function), and pmu,

a vector of initial estimates for the parameters. Here, we know the exact values of

the psychometric function that generated these data. Normally, one would choose

these by visual inspection of the data. The call and the output of the print method

are shown below.

sim.fit <- gnlr(y = resp.mat, distribution = "binomial", mu = wb,

+ pmu = c(0.04, log(3.4), 0.25, 0.017))
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Call:

gnlr(y = resp.mat, distribution = "binomial", mu = wb, pmu = c(0.04,

log(3.4), 0.25, 0.017))

binomial distribution

Log likelihood function:

{

m <- mu1(p)

-sum(wt * (y[, 1] * log(m) + y[, 2] * log(1 - m)))

}

Location function:

{

p[3] + (1 - p[3] - p[4]) * (1 - exp(-((cnt/p[1])^exp(p[2]))))

}

-Log likelihood 16.6

Degrees of freedom 2

AIC 20.6

Iterations 17

Location parameters:

estimate se

p[1] 0.04020 0.001711

p[2] 1.25675 0.197688

p[3] 0.26155 0.032378

p[4] 0.04942 0.012667

Correlations:

1 2 3 4

1 1.0000 0.30439 0.50743 -0.22093

2 0.3044 1.00000 0.66110 0.09098

3 0.5074 0.66110 1.00000 0.03329

4 -0.2209 0.09098 0.03329 1.00000

In this case, the output is stored in a variable that we have named sim.fit. The

output of gnlr is an object of class gnlm which contains a wealth of information about

the fit beyond what is printed out above and whose structure can be examined with

the command str(sim.fit). Method functions exist for extracting the final estimates
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of the parameters, the residuals and the values fitted to the raw data, coefficients(),

residuals(), and fitted.values(), respectively. Other values can be extracted from the

object using the list extraction operator “$”. For example, sim.fit$maxlike gives the

final maximum likelihood estimate. When attempting to fit more complex models to

the data, it may be necessary to adjust additional arguments, for example, specifying

the number of iterations and the tolerance of the convergence criterion in order to

obtain convergence. An example in which this was necessary is presented in Section 5.

The estimate of β is obtained by taking the antilog of coefficient p[2] which

gives β̂ = 3.51. To obtain a standard error for β̂, the function wb can be redefined

without the exp applied to the second parameter and the fit repeated with the current

estimate, β̂, used in pmu. The results of the fit are shown in Figure 1 as the smooth

curve.

The AIC or Akaike Information Criterion (Akaike, 1973; Lindsey, 1999; Myung,

2000; Venables & Ripley, 2002) is defined here as the negative of the log of the likeli-

hood plus the number of parameters and can serve as an aid in model selection. More

parameters will always increase the likelihood. The AIC penalizes the likelihood by

the number of parameters so in some sense represents a balance between optimizing

the likelihood and the parsimony of the model. Lower AIC values correspond to a

better model. Unlike the likelihood, the AIC can be used to compare non-nested

models. Some texts define the AIC as twice this value, but this has no effect on the

model selection results. 1
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3 Comparing two psychometric functions

Often, psychophysical data will be obtained under two different experimental condi-

tions, and one would like to test the hypothesis that the conditions influenced the

performance of the observer. For example, such influences could be changes in the

position or the steepness of the functions, corresponding to changes in sensitivity

or precision, respectively, of the observer. The function gnlr includes an optional

argument, linear, which can be used to fit a linear model to one of the parameters

of the location function, mu, assuming the other parameters constant, to evaluate

such hypotheses in a handy and rigorous manner. To demonstrate its use here and

subsequently, we introduce a set of data obtained in a dual judgment, psychophysical

task.

Yssaad-Fesselier (2001) collected data from a four-alternative, forced-choice, double-

judgment experiment using the method of constant stimuli. On a given trial, the

observer first reported in which of four locations (detection) a low contrast letter of

duration 50 ms was presented. Subsequently, the observer judged which of four pos-

sible letters (identification) was presented. Within a given session, the letter height

and eccentricity of presentation in the visual field were fixed. Six contrasts were

employed and the session consisted of 192 trials. Four letter heights at each of three

eccentricities were tested. Each of the twelve letter height/eccentricity conditions was

repeated five times, so that each psychometric function was based on 960 judgments.

The raw data from one observer for four letter heights presented at an eccentricity

of 2 deg can be found in Appendix A.1. The data for the smallest letter height are

plotted in Figure 2 as proportion of correct responses. The circles correspond to the
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detection judgments and the triangles, identification. The identification proportion

correct was calculated conditionally on a correct detection.

Figure 2 about here

The solid lines in Figure 2 were obtained by fitting a Weibull function to the data

from each task separately, just as in the preceding example (code in Appendix A.3).

The parameter estimates are presented as the first two lines of the table, ecc2.res.df

in Appendix A.1. The thresholds differ by about a factor of two, but β̂’s and γ̂’s are

similar and might be taken as equal across the two curves. The upper asymptotes

appear to be different, but this almost certainly reflects the fact that no data were

collected at higher contrasts. In fact, in this example, the value of λ̂ was constrained

to be in the interval (0,0.05) using an arctangent transformation of this parameter in

the definition of the Weibull function. Thus, it would be interesting to fit both data

sets simultaneously with all parameters except α̂ constrained to be equal for both

curves.

The linear argument of gnlr allows one to perform such a fit in a simple fashion.

To exploit this feature, one could initially redefine the Weibull function to take an

argument, named linear, that takes the place of the parameter α.

wb2 <- function(p,linear) {

+ p[2]+(1-p[2]-atn(p[3]))*

+ (1-exp(-((cnt/exp(linear))^exp(p[1]))))

+ }

However, this entails renumbering the other three parameters in the input vector, p.
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We have used here the exp function to keep α̂ non-negative as for β̂. Also, we define

a function atn and its inverse tn, which are used, respectively, to bound λ̂ in the

interval (0, 0.05), as suggested by Wichmann and Hill (2001), and as a convenience

in specifying the initial values in pmu.

atn <- function(x) {

+ (atan2(x, 1)/pi + 0.5)/20

+ }

tn <- function(x) {

+ tan(pi * (20 * x - 0.5))

+ }

An alternative approach is to define the location function in the argument of gnlr

as an inline function with named parameters. We will illustrate this approach here

and follow it for the rest of this article. The advantage of named parameters is that

the estimates are labelled with meaningful names rather than as array elements in

the print-out. The disadvantage is an increasingly complex argument in the calling

function.

Next, we create a factor variable coding the levels of the two tasks, detection and

identification, as they appear in the response matrix.

> (Task <- factor(rep(c("DET", "ID"), 6)))

[1] DET ID DET ID DET ID DET ID DET ID DET ID

Levels: DET ID
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This variable will appear in the argument of gnlr in the form, linear = ˜Task, which

is interpreted as the linear model, α0 +α1Task. Thus, in the results, the value of eα̂0

will correspond to the threshold for detection and eα̂0+α̂1 will be the threshold for

identification. The estimated standard error of α̂1 can be used to evaluate whether

this coefficient differs significantly from zero, that is, whether the thresholds differ

significantly between the two curves. Finally, we use gnlr to perform the fit (code in

Applendix A.3).

gnlr(y = resp.mat1, dist = "binomial", mu = ~gamma + (1 - gamma -

atn(tnlambda)) * (1 - exp(-((cnt/exp(linear))^exp(logbeta)))),

linear = ~Task, pmu = c(0.25, tn(0.01), log(0.15), log(2),

log(3)))

-Log likelihood 35.7

Degrees of freedom 7

AIC 40.7

Iterations 29

Location parameters:

estimate se

gamma 0.2496 0.03344

tnlambda -5.7210 6.84493

logbeta 1.0671 0.12392

(Intercept) -1.9082 0.03638

TaskID 0.8746 0.04576

The common steepness parameter is 2.91 and upper asymptote is 0.003. The

thresholds are obtained from the coefficients (Intercept) and TaskID, as exp(Intercept) =

0.15 and exp(Intercept + TaskID) = 0.36. These are very close to the values from

the individual fits. The small standard error for the coefficient Task with respect to

its magnitude attests to the significance of the difference between the location on

the contrast axis of the two curves. The AIC for the constrained fit, 40.7, is larger
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than the sum of the AICs for the individual fits, 37.2, indicating that the constrained

model with fewer parameters (5 instead of 8) does not describe the data better. The

predicted curves shown as dashes in Figure 2 suggest that a model that lets the slopes

vary between tasks would perform better. We examine how to implement this in the

next section.

4 Comparing β’s

The linear parameter could have been used in place of β to test the equality of slopes

but assuming equal values of α for both curves. The present data do not warrent

such a treatment. Note, gnlr only directly supports fitting a linear model to one

parameter of the location function, mu. (It also supports fitting a separate linear

model to a dispersion parameter of the probability distribution, such as the variance,

through an optional argument, shape.)

It is possible to fit multiple values of other variables by adding parameters in the

definition of the location function, mu. For example, to fit different values of β in

the example above, substitute a vector of parameters c(logb1,logb2) for the single

parameter. This vector must be multiplied by a n x 2 matrix, dm, where n is the

total number of data points from both curves and each row is of the form either 1 0

or 0 1, as a function of the arrangement of the covariate Task in the response matrix,

y. In the present case, dm, and the argument mu are defined as follows

dm <- matrix(c(2-as.vector(unclass(Task)),as.vector(unclass(Task))-1),

+ ncol=2)
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mu =~ gamma+(1-gamma-atn(tnlambda]))*

(1-exp(-((cnt/exp(linear))^exp(dm%*%c(logb1,logb2)))))

The call to gnlr is similar to that in the previous example, keeping in mind that

now there are initial estimates for each of six parameters: (γ, tnλ, α0, α1, log β0, log β1).

The example call and partial print-out from fitting the data in Figure 2 are shown

below (code in Appendix A.4). Note that it is generally a good idea to base the

initial estimates on those from the fits to the individual curves (first two lines of

table ecc2.res.df in Appendix A.2).

Call:

gnlr(y = resp.mat1, dist = "binomial", mu = ~gamma + (1 - gamma -

atn(tnlambda)) * (1 - exp(-((cnt/exp(linear))^exp(dm %*%

c(logb1, logb2))))), linear = ~Task, pmu = c(0.24, tn(0.01),

log(0.15), log(2.2), log(2.28), log(3.67)))

-Log likelihood 29.3

Degrees of freedom 6

AIC 35.3

Iterations 40

Location parameters:

estimate se

gamma 0.2351 0.03189

tnlambda -4.7288 4.87143

logb1 1.2958 0.12459

logb2 0.7421 0.14415

(Intercept) -1.9091 0.03393

TaskID 0.8541 0.04848

The values of β̂ are extracted from the antilogs of the estimates logb1 and logb2,

3.65 and 2.10, respectively, and λ̂ by applying the function atn, defined above, to
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the second parameter estimate, 0.003. The values of α̂ are extracted as explained in

the previous section, 0.148 and 0.348. The AIC is lower for this model than for the

individual fits, indicating that the best model for the data requires different values

of β for detection and identification. The technique shown in this section can easily

be extended to estimating parameters of several psychometric functions by adding

additional columns to the matrix dm and parameters to the vector which it multiplies.

This technique might be used to fit an individual λ to each curve, but an alternate

method will also be presented in section 6.

5 A more complex model of α

When several psychophysical functions are estimated as a function of a continuous

parameter, the threshold and/or precision may vary systematically with this parame-

ter. Accounting for such systematic variation can simplify the model by reducing the

number of parameters while revealing an underlying relation between the parameters

of the psychometric function and the continuous parameter. The linear argument of

gnlr is easily adapted to perform this more sophisticated analysis.

Figure 3 shows a more extensive set of conditions analyzed by Yssaad-Fesselier

(2001). The data in the top figure are based on the detection task and those on the

bottom, identification. Each set of symbols corresponds to a different letter height.

The circles on the far right are the data from Figure 2. Moving left, each succesive

data set corresponds to a larger letter height. Increasing letter height reduces the

contrast necessary for detection and identification. The solid curves drawn through

17

H
A

L author m
anuscript    inserm

-00131799, version 1



Production Number: B125

the data are based on fitting the Weibull function independently to each combination

of size and task. The results of these fits are summarized in Appendix A.2.

Figure 3 about here

Figure 4 shows how α̂ (left) and β̂ (right) vary as a function of letter height. The

circles indicate detection and the triangles identification. On these double logarithmic

coordinates, the contrast threshold for both tasks decreases with increase in letter

size. Detection requires less contrast at all letter heights, though there appears

to be a tendency for the values to converge at large letter heights. There is a slight

curvature in the data that has been confirmed under other conditions as well on other

observers (see also, Strasburger, Harvey, & Rentschler, 1991). These observations

suggest modeling the data with a quadratic function. A quadratic function of size

to describe threshold would permit the four estimates of α to be described with

three parameters. However, if data from more sizes were obtained, the number of

parameters in the individual fits would increase with each new size tested, while the

number of parameters describing α under the quadratic model would still just be

three, thus gaining parsimony in the description of the data. The solid curves in the

left graph of Figure 4 correspond to quadratic functions fit directly to the values of

α̂ obtained from the individual fits (code in Appendix A.5).

Above, we found that identification required a smaller value of β than detection

for the smallest letter height tested. The data from other sizes does not lend support

to a generalization of this observation. For this more extended set of conditions, a

constant value of β may suffice, or perhaps a model that is constant except for the

identification judgments at the smallest letter size.
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Figure 4 about here

The linear argument of gnlr is easily adapted to fitting a quadratic model, since

such a model is linear in its coefficients. The formula becomes:

linear = ˜ log10(size) + I(log10(size)̂ 2),

which corresponds to a polynomial fit with intercept, linear and quadratic terms.

It could easily be extended to higher powers, though such higher order polynomials

are rarely necessary to describe data. Powers in R model formulae are normally

used to specify the order of the highest interaction term when several factors are

crossed. The AsIs function, I(), must be applied to the quadratic term so that

the interpretation as a factor is inhibited and the covariate is squared. Both the

detection and identification data can be fit simultaneously with different coefficients

by including the factor variable Task as before, but now defined over the full data

set. A model with only a difference in intercepts would be fit by linear = ˜log10(size)

+ I(log10(size))̂ 2) + Task. If the coefficients differ between the two tasks, as will be

the case here, then the interaction terms must be included. This is accomplished by

the formula linear = ˜ (log10(size) + I(log10(size)̂ 2)) * Task.

Initially, we fit the latter model to the data of Figure 3 with β̂ constrained to be

fixed across all sizes and tasks. The AIC was 140, higher than the summed AICs over

all the independent fits, 137. We show below the call and partial output from the fit

in which we constrained β̂ to be equal across all conditions except for identification

at the smallest letter height for which it was allowed to differ (code in Appendix A.5).

The AIC is reduced to 132, indicating that the addition of this one extra parameter
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resulted in a better model. When each curve is fit separately there are 32 parameters.

With the quadratic constraint on α̂ and the two values of β̂, only 10 parameters were

needed to account for all the data.

Call:

gnlr(matrix(c(nyes, nno), ncol = 2), dist = "binomial", mu = ~gamma +

(1 - gamma - atn(tnlambda)) * (1 - exp(-((cnt/exp(linear))^exp(dm %*%

c(logb1, logb2))))), linear = ~(log10(size) + I(log10(size)^2)) *

Task, pmu = c(0.23, tn(0.01), as.vector(pmu.D[1:3]),

as.vector(pmu.I[1:3] - pmu.D[1:3]), log(3.2), log(2)),

iterlim = 1000, steptol = 1e-05)

-Log likelihood 122

Degrees of freedom 38

AIC 132

Iterations 112

Location parameters:

estimate se

gamma 0.2205 0.01947

tnlambda -5.7676 4.03531

logb1 1.1612 0.06435

logb2 0.7040 0.12334

(Intercept) 2.9763 0.40535

log10(size) -5.7251 0.55418

I(log10(size)^2) 1.1274 0.18209

TaskID 3.0113 0.65604

log10(size):TaskID -2.7778 0.88535

I(log10(size)^2):TaskID 0.7291 0.28787

For this more complex model, we found the results to be sensitive to the initial

estimates, pmu. The six initial estimates of the coefficients of the linear term were

obtained from fitting a quadratic polynomial to the values of α̂ displayed on the left

graph of Figure 4. The other values were adjusted as well to insure convergence to
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the smallest AIC. Note the inclusion of argments iterlim and steptol to adjust the

maximum number of iterations and the final tolerance of the stepsize in searching

for a minimum, respectively.

The two estimates of log(β) yield β̂ estimates equal to 3.21 and 2.02, respectively,

the second applying only to the identification data at the smallest letter height. The

parameters Intercept, log10(size) and I(log10(size)̂ 2) are the estimates of the constant,

linear and quadratic coefficients, respectively, of the quadratic function describing the

variation of log(α̂) as a function of log(size) for the detection data. The coefficients for

the identification data are obtained by adding the detection coefficients to the last

three estimates. In other words, the constant term of the identification quadratic

is obtained by the sum Intercept + TaskID, the linear coefficient by log10(size) +

log10(size):TaskID, etc.

The predicted psychometric functions under this model are shown as dashed

curves in Figure 3 and appear to describe the data well for all but possibly one

curve, the second to smallest letter height for the identification task. Examination

of the predicted curves (dashed lines) with respect to the values of α̂ obtained from

the independent fits on the left graph of Figure 4 reveals this to be an unimportant

difference, however. The model fits the data very well with 22 fewer parameters than

if each condition had been fit independently.

Closer examination of the coefficients with respect to their standard errors raises

a question as to the significance of the interaction term I(log10(size)̂ 2):TaskID. A

model without this interaction term is easily fit using the formula ˜ log10(size) *

Task + I(log10(size)̂ 2), but leads to a higher AIC, 134. This model generates identi-
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cal parabolic curves for both tasks, but which differ in their vertical and horizontal

positions. The larger AIC of this model is interesting because a similar relation has

been proposed between contrast thresholds for sine-wave gratings and for discrimi-

nation of the presence of added higher harmonics as a function of spatial frequency

(Campbell & Robson, 1968). and, also, between contrast detection and reading

thresholds as a function of letter size (Legge, Rubin & Luebker, 1987). 2

Finally, for completeness, we note that eliminating the quadratic term completely

from the model raises the AIC to 184.

6 Treating λ as a random effect

In the analyses of the preceding section, the parameter λ was constrained to be equal

across all eight curves. As mentioned earlier, Wichmann and Hill (2001) advocate

treating the upper asymptote as a nuisance parameter that is free to vary for each

psychometric function in order to stabilize estimates of the steepness parameter. This

can be implemented in the same fashion as was done to fit simultaneously multiple

values of the steepness parameter in section 4. First, a n x q indicator matrix is

defined, where n is the number of responses and q the number of values of λ to

estimate. Then, the function to be assigned to the argument mu is redefined so that

the value of the coefficient for λ is replaced by a product of the indicator matrix and

a vector containing the q parameters of λ to estimate. The number of additional

parameters will equal the number of curves fit (here, q = 8). Fitting this model with

two values of β̂, as previously, yields an AIC = 130.1, lower than that obtained with
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just one value of λ̂ (code in Appendix A.6).

This leads us to consider what would happen if we also let β̂ vary for each curve.

Again, we add additional parameters in the same way, with an indicator matrix times

a vector of parameters. This model yields an AIC = 132.4, a less good fit than the

model with only two values of β̂ (code in Appendix A.7). Here, we see an example of

overfitting, in which the increase in the number of parameters has offset the increased

flexibility in the fit to raise the AIC.

In data with a greater number of conditions, the effect on the AIC of adding a

parameter to each condition could be even more dramatic, leading to higher AICs

just by letting λ vary as we have above. As one of the reasons that λ is being treated

as a nuisance factor is that it can vary in a fashion unrelated to the experimental

conditions, it might be better to treat it as a random rather than as a fixed effect

parameter. This approach entails estimating the parameters of the random distri-

bution of λ rather than the individual values. Then, as the number of conditions

increases, the number of parameters associated with λ remains fixed.

While providing a conceptually elegant solution to the estimation of λ above, the

fitting of random parameters in non-normal, non-linear regression problems presents

a daunting challenge in calculation. Estimating the maximum likelihood values for

such models is non-trivial because it involves integrating the product of the condi-

tional probability of the responses and the random effects (or mixing) distribution

to determine the marginal distribution of the responses, at each step of the iterative

fitting process. Analytic solutions exist only in the case of normally distributed re-

sponses with random effects and a few other special cases (Lindsey, 1999). Lindsey’s
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repeated library contains two functions, gnlmix and hnlmix, that permit maximum

likelihood fitting of a nonlinear regression including one random parameter with a

specified mixing distribution. We demonstrate each in turn below.

6.1 gnlmix

The first of these, gnlmix, performs the integration numerically for the random pa-

rameter, which results in it being rather slow, even for small models. The function

requires several arguments in addition to those used with gnlr. The argument mix-

ture is used to select one of eleven mixture distributions. Here, the parameters of the

location function, mu, are g, lambda, linear, logb1 and logb2. We have defined a func-

tion atng to constrain the value of g to the interval (0.2, 0.3). The random argument

is used to specify which parameter is to be treated as a random effect. The initial

estimates of the fixed effects are specified in pmu in the order of their appearance in

the definition of mu. In the current case, this is g, the six values of linear followed by

logb1 and logb2. The argument pmix specifies an initial estimate for the logarithm

of the dispersion parameter of the mixing distribution. Finally, the argument nest

indexes the observations by the units to which the different values of the random

parameter are associated. Here, these correspond to the eight combinations of size

and task. An example call for a normal mixing distribution is shown below.

gnlmix(matrix(c(nyes, nno), ncol = 2), distribution = "binomial",

mixture = "normal", mu = ~atng(g, 0.1) + (1 - atng(g, 0.1) -

atn(lambda)) * (1 - exp(-((cnt/exp(linear))^exp(dm %*% c(logb1,

logb2))))), random = "lambda", pmu = pmu1, pmix = 6,

linear = ~(log10(size) + I(log10(size)^2)) * Task,
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nest = c(rep(1:2,6), rep(3:4, 6), rep(5:6, 6), rep(7:8, 6)),

iterlim = 1000,steptol = 1e-05)

The partial output is shown below (code in Appendix A.8). Initial attempts to

perform this fit on a Powerbook Mac G4 failed to converge after six hours. The

results shown below were obtained under Red Hat linux version 9.0 with a dual

processor running at 1.8 GHz in just over two hours. The fit requires ten parame-

ters, the nine fixed effects parameters and one parameter for the dispersion of the

mixing distribution. The coefficients are quite similar to those from the fixed-effect

model which required seventeen parameters, though the AIC is higher, 132.2. Three

other mixing distributions were examined, each giving nearly identical values of AIC:

Cauchy 132.3, logistic 132.3 and Laplace 132.4. Choice of mixing distribution and

an initial estimate for pmix can be guided by kernel density estimation applied to the

values of λ̂ obtained when they are fit as fixed effects.

-Log likelihood 122.1819

Degrees of freedom 38

AIC 132.1819

Iterations 133

Location parameters:

estimate se

g -0.6237 0.77521

logb1 1.2385 0.05867

logb2 0.7878 0.13487

(Intercept) 2.9848 0.18795

log10(size) -5.7217 0.25307

I(log10(size)^2) 1.1265 0.08355

Task 3.4246 0.75531

log10(size):Task -3.4916 1.00400
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I(log10(size)^2):Task 0.9890 0.32158

Mixing dispersion parameter:

estimate se

6.067 1.448

6.2 hnlmix

The function hnlmix employs a novel and ingenious approach to modeling a random

parameter that avoids having to perform an integration (and, thus, achieves conver-

gence much more rapidly than gnlmix) by interpreting the integral as a penalized

likelihood in which the random effects are estimated as fixed effects subject to two

constraints: i) that their sum (product) equal zero (one) and ii) that their distri-

bution follow as closely as possible the chosen mixing distribution. The procedure

generalizes the h-likelihood approach of Lee and Nelder (1996) to nearly arbitrary

distributions (distributions with infinite variance, such as the Cauchy, are excluded)

and yields results quite similar to those obtained by fitting directly a random effects

model (Lindsey, submitted).

The example call, shown below, is very similar to that of gnlmix with two excep-

tions (code in Appendex A.9). First, the argument pmix represents the dispersion

and not its logarithm as in gnlmix. If this argument is not specified, then its value

is estimated during the fitting process. Second, an initial estimate of the random

effect must be furnished by means of the argument prandom as either a single value

or a vector with one estimate for each condition. In this case, the last estimate is

ignored. Recall that the sum of the random effects will be constrained to equal zero.
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hnlmix(matrix(c(nyes,nno),ncol=2), distribution="binomial",

mixture="normal", mu=~atng(g)+(1-atng(g)-atn(lambda)) *

(1-exp(-((cnt/exp(linear))^exp(dm%*%c(logb1,logb2))))),

linear=~(log10(size)+I(log10(size)^2))*Task,

pmu=pmu1, pmix=408, prandom=tn(0.01), random="lambda",

nest=c(rep(1:2,6),rep(3:4,6),rep(5:6,6),rep(7:8,6)),

iterlim=1000,steptol=1e-6)

The output of hnlmix, obtained in seconds on a Powerbook Mac G4 rather than

minutes or hours, is shown below. The AIC was 129.0, lower than any of the other

models. The model required 15 parameters, which is still less than the fixed effects

model that treated λ as a fixed effect, nuisance parameter. Nine of these parameters

were due to the fixed effects. The 8 random effects contributed only 6 parameters,

one being used for the sum constraint and the other in the estimation of the mixing

distribution.

-Log likelihood 114

Penalty 32.8

Degrees of freedom 33

AIC 129

Iterations 270

Location parameters:

estimate se

g -1.6924 4.65970

logb1 1.2495 0.06143

logb2 0.8032 0.13129

(Intercept) 2.9636 0.39339

log10(size) -5.6953 0.53713

I(log10(size)^2) 1.1185 0.17639

Task 2.9349 0.68404

log10(size):Task -2.7994 0.92318

I(log10(size)^2):Task 0.7567 0.30032
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Fixed mixing shape parameter: 408

Variances: conditional = 18.7, mixing = 129

Random effect parameters:

effect se

1 -3.69862 3.1144

2 28.73601 10.7282

3 -7.74941 5.8836

4 -0.05468 0.7343

5 -8.02126 6.8539

6 0.11232 0.9269

7 -8.31563 6.6738

8 -1.00873 NA

7 Discussion

One objective of this paper has been to demonstrate how an explicit modeling

strategy can lead to a comprehensive description of the data with a minimum num-

ber of parameters. We have only scratched the surface of what is possible with

the tools demonstrated above from R. For example, random effects could be used

to model individual differences between subjects or variation across days within a

subject. Currently, Lindsey’s tools only permit a single random effect, but it would

not be difficult to modify them to include multiple random effects (Lindsey, personal

communication). The major limitation will be the computational time required for

convergence.

Random sources of variability can be modeled in other ways. For example, if the

observer cannot maintain a stable criterion (because of the difficulty of the task or
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perhaps because of learning effects), the probabilities estimated over sessions may

vary. This situation can result in over-dispersion, i.e., the variability of the estimated

probabilities is greater than that predicted by a Binomial distribution. In such a

case, one alternative is to model the likelihood as a Beta Binomial distribution.

The three functions described above permit this as well as several other mixture

distributions (including user-defined likelihood functions) to be used in place of the

Binomial distribution. The AIC provides a convenient index for comparing different

distributions applied to the same data (Lindsey, 1999).

More elaborate models than those shown above may be specified. Of course,

modeling the data for its own sake is not the ultimate goal. The approaches demon-

strated here are most powerful when they permit the differentiation of experimental

hypotheses. Yssaad-Fesselier (2001) conducted similar experiments at several eccen-

tricities in the visual field. The regression equations in the above models can be

extended to include a parameter coding eccentricity, in this fashion permitting an

evaluation of whether the same model is applicable across the visual field, which

corresponds to a test of a certain model of the organization of the visual system.

A second objective of this paper has been to demonstrate the ease with which

the type of modeling discussed here is performed in R. There are particularities of

Lindsey’s functions, however, that some might view as drawbacks. As the complexity

of the model increases, so does the difficulty in choosing initial estimates that avoid

converging to a local minimum of the negative log likelihood. This, in fact, is a

problem that is common to all nonlinear minimization routines. It is always wise

to run such minimizations from multiple starting points to maximize the likelihood
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of finding the global minimum. A second particularity is that the way Lindsey’s

functions are implemented, the only variables that can be passed to the regression

function are those that the functions, themselves, will manipulate. Other quantities

that one might want to have vary across calls, such as the variable cnt in our examples,

must be defined in the Global Environment. This means that these functions will

not work correctly when called from within a function, unless the ancillary variables

are defined as global variables (e.g., using the <<− operator). Such a situation would

arise, for example, in the implementation of a bootstrap function using gnlr in which

it was necessary to call it over and over, again. This is less a limitation, however,

than a question of programming esthetics.

In summary, we have demonstrated how several functions from a suite of tools

available in R can be exploited to model psychometric functions as a generalized

nonlinear regression. A parameter can be specified as a linear model, which permits

comparisons of psychometric functions across experimental conditions. In addition,

the introduction of a random effect may provide an effective procedure to treat

nuisance parameters, such as the lapse rate.
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Appendix

A.1 The Data

Detection and letter identification data at 2 deg eccentricity: ecc2

Contr task size nyes nno

1 0.059 DET 12.4 47 113

2 0.059 ID 12.4 12 35

3 0.088 DET 12.4 45 115

4 0.088 ID 12.4 15 30

5 0.133 DET 12.4 103 57

6 0.133 ID 12.4 30 73

7 0.199 DET 12.4 152 8

8 0.199 ID 12.4 65 87

9 0.299 DET 12.4 159 1

10 0.299 ID 12.4 104 55

11 0.449 DET 12.4 160 0

12 0.449 ID 12.4 136 24

13 0.028 DET 20.6 34 126

14 0.028 ID 20.6 9 25

15 0.043 DET 20.6 57 103

16 0.043 ID 20.6 14 43

17 0.064 DET 20.6 94 66

18 0.064 ID 20.6 23 71

19 0.097 DET 20.6 152 8

20 0.097 ID 20.6 69 83

21 0.146 DET 20.6 160 0

22 0.146 ID 20.6 135 25

23 0.219 DET 20.6 160 0

24 0.219 ID 20.6 155 5

25 0.015 DET 41.3 53 107

26 0.015 ID 41.3 14 39

27 0.021 DET 41.3 44 116

28 0.021 ID 41.3 13 31

29 0.032 DET 41.3 95 65

30 0.032 ID 41.3 35 60

31 0.046 DET 41.3 145 15

32 0.046 ID 41.3 80 65
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33 0.068 DET 41.3 160 0

34 0.068 ID 41.3 140 20

35 0.100 DET 41.3 160 0

36 0.100 ID 41.3 157 3

37 0.014 DET 83.0 65 95

38 0.014 ID 83.0 19 46

39 0.018 DET 83.0 78 82

40 0.018 ID 83.0 30 48

41 0.023 DET 83.0 134 26

42 0.023 ID 83.0 72 62

43 0.030 DET 83.0 155 5

44 0.030 ID 83.0 108 47

45 0.039 DET 83.0 160 0

46 0.039 ID 83.0 145 15

47 0.050 DET 83.0 160 0

48 0.050 ID 83.0 158 2

Results of fits to individual conditions: ecc2.res.df

alpha beta gamma lambda task size AIC ML

1 0.1483 3.67 0.236 3.29e-03 Det 12.4 17.9 13.9

2 0.3283 2.28 0.241 5.00e-02 ID 12.4 19.3 15.3

3 0.0707 3.18 0.181 7.57e-05 Det 20.6 14.4 10.4

4 0.1263 4.04 0.228 3.14e-02 ID 20.6 17.6 13.6

5 0.0380 3.94 0.272 7.39e-05 Det 41.3 16.9 12.9

6 0.0560 3.32 0.262 1.79e-02 ID 41.3 17.2 13.2

7 0.0215 3.78 0.249 7.24e-05 Det 83.0 16.4 12.4

8 0.0297 2.73 0.207 7.44e-05 ID 83.0 17.7 13.7

A.2 Fit with simulated data

> library(gnlm)

> beta <- log(3.5)

> gamma <- 0.25

> lambda <- 0.05

> alpha <- 0.04

> p <- c(alpha, beta, gamma, lambda)

> num.tr <- 160

> cnt <- 10^seq(-2, -1, length = 6)
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> wb <- function(p) {

+ p[3] + (1 - p[3] - p[4]) * (1 - exp(-((cnt/p[1])^exp(p[2]))))

+ }

> NumYes <- rbinom(length(cnt), num.tr, wb(p))

> NumNo <- num.tr - NumYes

> phat <- NumYes/(NumYes + NumNo)

> resp.mat <- matrix(c(NumYes, NumNo), ncol = 2)

> sim.fit <- gnlr(y = resp.mat, distribution = "binomial",

+ mu = wb, pmu = c(0.04, log(3.4), 0.25, 0.017))

A.3 Simple covariate

> atn <- function(x) {

+ (atan2(x, 1)/pi + 0.5)/20

+ }

> tn <- function(x) {

+ tan(pi * (20 * x - 0.5))

+ }

> wb2 <- function(p, linear) {

+ p[2] + (1 - p[2] - atn(p[3])) *

+ (1 - exp(-((cnt/exp(linear))^exp(p[1]))))

+ }

> ecc2 <- read.table("ecc2.dat", header = TRUE, sep = "\t")

> subdata <- subset(ecc2, size == 12.4, select = Contr:nno)

> names(subdata) <- c("Contrast", "Task", "NumYes",

+ "NumNo")

> resp <- subset(ecc2, size == 12.4 & task == "DET",

+ select = c(NumYes, NumNo))

> cnt <- subset(ecc2, size == 12.4 & task == "DET")$Contr

> fit10D <- gnlr(y = resp, distribution = "binomial",

+ mu = wb, pmu = c(0.15, log(3.5), 0.25, tn(0.01)))

> resp <- subset(ecc2, size == 12.4 & task == "ID",

+ select = c(NumYes, NumNo))

> cnt <- subset(ecc2, size == 12.4 & task == "ID")$Contr

> fit10I <- gnlr(y = resp, distribution = "binomial",

+ mu = wb, pmu = c(0.3, log(3.5), 0.25, tn(0.1)))

> Task <- subset(ecc2, size == 12.4)$task

> cnt <- subset(ecc2, size == 12.4)$Contr

33

H
A

L author m
anuscript    inserm

-00131799, version 1



Production Number: B125

> resp.mat1 <- as.matrix(subset(ecc2, size == 12.4,

+ select = c(NumYes, NumNo)))

> fit10DID <- gnlr(y = resp.mat1, dist = "binomial",

+ mu = ~gamma + (1 - gamma - atn(tnlambda)) * (1 -

+ exp(-((cnt/exp(linear))^exp(logbeta)))),

+ linear = ~Task, pmu = c(0.25, tn(0.01), log(0.15),

+ log(2), log(3)))

A.4 Comparing β’s

> dm <- matrix(c(2 - as.vector(unclass(Task)),

+ as.vector(unclass(Task)) - 1), ncol = 2)

> TwoBeta.fit <- gnlr(y = resp.mat1, dist = "binomial",

+ mu = ~gamma + (1 - gamma - atn(tnlambda)) * (1 -

+ exp(-((cnt/exp(linear))^exp(dm %*% c(logb1,

+ logb2))))), linear = ~Task, pmu = c(0.24,

+ tn(0.01), log(0.15), log(2.2), log(2.28),

+ log(3.67)))

A.5 Quadratic model with Task interaction

> attach(ecc2.res.df)

> sz <- unique(size)

> pmu.D <- lm(log(alpha[seq(1, 8, 2)]) ~ log10(sz) +

+ I(log10(sz)^2))$coefficients

> pmu.I <- lm(log(alpha[seq(2, 8, 2)]) ~ log10(sz) +

+ I(log10(sz)^2))$coefficients

> detach(ecc2.res.df)

> bI <- c(rep(c(1, 0), 6), rep(1, 36))

> dm <- matrix(c(bI, 1 - bI), ncol = 2)

> Task <- ecc2$task

> attach(ecc2)

> cnt <- Contr

> TxQ <- gnlr(matrix(c(nyes, nno), ncol = 2), dist = "binomial",

+ mu = ~gamma + (1 - gamma - atn(tnlambda)) * (1 -

+ exp(-((cnt/exp(linear))^exp(dm %*% c(logb1,

+ logb2))))), linear = ~(log10(size) +

+ I(log10(size)^2)) * Task, pmu = c(0.23, tn(0.01),
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+ as.vector(pmu.D[1:3]), as.vector(pmu.I[1:3] -

+ pmu.D[1:3]), log(3.2), log(2)), iterlim = 1000,

+ steptol = 1e-05)

> detach(ecc2)

A.6 λ unconstrained as a fixed-effect

> bI <- c(rep(c(1, 0), 6), rep(1, 36))

> bm <- matrix(c(bI, 1 - bI), ncol = 2)

> cdm <- matrix(c(rep(c(1, 0), 6), rep(c(0, 1), 6)),

+ ncol = 2)

> dm <- cbind(rbind(cdm, matrix(0, 36, ncol = 2)),

+ rbind(matrix(0, 12, ncol = 2), cdm, matrix(0,

+ 24, ncol = 2)), rbind(matrix(0, 24, ncol = 2),

+ cdm, matrix(0, 12, ncol = 2)), rbind(matrix(0,

+ 36, ncol = 2), cdm))

> wb8d <- function(p, linear) {

+ p[3] + (1 - p[3] - atn(dm %*% c(p[4], p[5], p[6],

+ p[7], p[8], p[9], p[10], p[11]))) * (1 -

+ exp(-((cnt/exp(linear))^(exp(bm %*% c(p[1],

+ p[2]))))))

+ }

> pmu <- c(log(3.38), log(2.21), 0.23, tn(ecc2.res.df$lambda),

+ as.vector(pmu.D), as.vector(pmu.I - pmu.D))

> attach(ecc2)

> cnt <- Contr

> d8 <- gnlr(matrix(c(nyes, nno), ncol = 2), dist = "binomial",

+ mu = wb8d, linear = ~(log10(size) + I(log10(size)^2)) *

+ Task, pmu = pmu, iterlim = 1000, steptol = 1e-05)

> detach(ecc2)

A.7 β and λ unconstrained

> cdm <- matrix(c(rep(c(1, 0), 6), rep(c(0, 1), 6)),

+ ncol = 2)

> dm <- cbind(rbind(cdm, matrix(0, 36, ncol = 2)),

+ rbind(matrix(0, 12, ncol = 2), cdm, matrix(0,

+ 24, ncol = 2)), rbind(matrix(0, 24, ncol = 2),
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+ cdm, matrix(0, 12, ncol = 2)), rbind(matrix(0,

+ 36, ncol = 2), cdm))

> wb8d8 <- function(p, linear) {

+ p[9] + (1 - p[9] - atn(dm %*% c(p[10], p[11],

+ p[12], p[13], p[14], p[15], p[16], p[17]))) *

+ (1 - exp(-((cnt/exp(linear))^(exp(dm %*%

+ c(p[1], p[2], p[3], p[4], p[5], p[6],

+ p[7], p[8]))))))

+ }

> pmu <- c(log(ecc2.res.df$beta), 0.23, tn(ecc2.res.df$lambda),

+ as.vector(pmu.D), as.vector(pmu.I - pmu.D))

> attach(ecc2)

> cnt <- Contr

> bd8 <- gnlr(matrix(c(nyes, nno), ncol = 2), dist = "binomial",

+ mu = wb8d8, linear = ~(log10(size) + I(log10(size)^2)) *

+ Task, pmu = pmu, iterlim = 1000)

> detach(ecc2)

A.8 Mixed-effect model fit with gnlmix

> library(repeated)

> Task <- ecc2$task

> atng <- function(g, rg) {

+ (0.25 - rg/2) + (atan2(g, 1)/pi + 0.5) * rg

+ }

> tng <- function(g, rg) {

+ tan(pi * ((g - (0.25 - rg/2))/rg - 0.5))

+ }

> pmu1 <- c(tng(TxQ$coef[3], 0.1), TxQ$coef[4:9], TxQ$coef[1:2])

> attach(ecc2)

> cnt <- Contr

> dI <- c(rep(c(1, 0), 6), rep(1, 36))

> dm <- matrix(c(dI, 1 - dI), ncol = 2)

> TxQg <- gnlmix(matrix(c(nyes, nno), ncol = 2), dist = "binomial",

+ mixture = "normal", mu = ~atng(g, 0.1) + (1 - atng(g, 0.1) -

+ atn(lambda)) * (1 - exp(-((cnt/exp(linear))^exp(dm %*%

+ c(logb1, logb2))))), random = "lambda", linear = ~(log10(size) +

+ I(log10(size)^2)) * Task, pmu = pmu1, pmix = log(420),
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+ nest = c(rep(1:2, 6), rep(3:4, 6), rep(5:6, 6),

+ rep(7:8, 6)), iterlim = 1000, steptol = 1e-06)

> detach(ecc2)

A.9 Mixed-effect model fit with hnlmix

> Task <- ecc2$task

> attach(ecc2)

> cnt <- Contr

> dI <- c(rep(c(1, 0), 6), rep(1, 36))

> dm <- matrix(c(dI, 1 - dI), ncol = 2)

> atng <- function(g) 0.225 + atn(g)

> tng <- function(g) tn(g - 0.225)

> pmu1 <- c(tng(0.23), TxQ$coef[5:10], log(3.5), log(2.2))

> TxQh <- hnlmix(matrix(c(nyes, nno), ncol = 2), dist = "binomial",

+ mixture = "normal", mu = ~atng(g) + (1 - atng(g) -

+ atn(lambda)) * (1 - exp(-((cnt/exp(linear))^exp(dm %*%

+ c(logb1, logb2))))), random = "lambda", linear = ~(log10(size) +

+ I(log10(size)^2)) * Task, pmu = pmu, pmix = 408,

+ prandom = tn(0.01), nest = c(rep(1:2, 6), rep(3:4,

+ 6), rep(5:6, 6), rep(7:8, 6)), iterlim = 1000,

+ steptol = 1e-05)

> detach(ecc2)
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Notes

1 Alternative measures for model selection, such as the Bayesion Information Crite-

rion (BIC) and the Minimal Description Length (MDL) may be more appropriate

under certain circumstances (Myung, 2000). As the object of this article is not to

compare such measures, we will consider only the AIC for simplicity. It is usually

rather simple to calculate other measures, and in a formal analysis, they should be

given serious consideration. In the case of nested (or hierarchical) models, as here,

the AIC (or other measure) can be used to identify a candidate best model and

nearby models evaluated using a likelihood ratio test (Venables & Ripley, 2002).

2 This statement requires further elaboration. Campbell and Robson (1968) com-

pared contrast threshold for detecting a sine-wave grating to that for discriminating

whether a 3rd harmonic at one-third contrast had been added to the same spatial

frequency. The multi-channel model that they were considering predicted that dis-

crimination would be possible when the contrast of the 3rd harmonic reached its

own threshold, independent of the contrast of the fundamental. Thus, the frequency

dependence of the discrimination task would follow that of the contrast threshold for

a single frequency but shifted vertically and horizontally by a factor of three along

both log contrast and log frequency axes. Legge et al. (1987) performed a similar

analysis in which they compared the contrast sensitivity for gratings to the contrast

threshold for reading. They believed that optimal reading depended on the sensi-

tivity to spatial frequencies up to an octave above a measure that they defined as

the fundamental frequency of the letter size of the text. Thus, they expected that

the reading thresholds would be shifted by a factor of two along the log frequency
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axis with respect to the contrast sensitivity for sine-wave gratings. Suppose the data

treated here is replotted in terms of reciprocal contrast (sensitivity) as a function of

reciprocal size (a measure comparable to spatial frequency). We note that the iden-

tification curve is similar but shifted to higher inverse sizes than the detection curve

and of lower sensitivity. If letter identification were based on the contrast thresholds

of frequencies in a fixed band above the frequencies necessary for detection, then we

might find that the two curves had the same shape on these axes, but were simply

shifted vertically and horizontally.
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Figure Legends

Figure 1. Psychometric function based on simulated data. The points show the

proportion of correct responses as a function of contrast based on random

Binomial covariates, with n = 160 for each point and P determined by a

Weibull function with the parameters indicated in the text. The curve is based

on the estimates from a maximum likelihood fit to the points, obtained using

gnlr.

Figure 2. Psychometric functions based on detection (circles) and identification

(triangles) of letters as a function of contrast from one observer. The solid

curves are based on the maximum likelihood fits individually to each set of

points. The dashed curves are based on a fit to both data sets simultaneously

with β̂, γ̂ and λ̂ constrained to be identical for both tasks.

Figure 3. Psychometric functions from one observer for detection (upper graph)

and identification (lower graph) of letters. Each symbol type refers to a differ-

ent letter height (12.4 (circles), 20.6 (squares), 41.3 (diamonds) and 83 mins

(triangles)). Data were collected at 2 deg eccentricity in the visual field. The

solid curves are based on maximum likelihood fits separately to each data set.

The dashed curves were fit constraining log(α̂) to be a quadratic function of

log(letter height).

Figure 4. The left figure shows α̂ as a function of letter height for detection (circles)

and identification (triangles) tasks. The solid curves are quadratic functions

fit directly to these values. The dashed curves result from constraining log(α̂)
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in the psychometric functions to be a quadratic function of log(letter height).

The right figure shows estimates of β̂ as a function of letter height.
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