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Psychophysical assessment of magno- and parvocellular function

in schizophrenia

Recently developed psychophysical techniques permit the biasing of the processing of

the stimulus by early visual channels so that responses reflect characteristics of either magno-

or parvocellular pathways (Pokorny & Smith, 1997, J Opt Soc Am A, 14, 2477). We used

such techniques to test psychophysically whether the global magnocellular dysfunction

reported in schizophrenia also affects early processes, as well. Seven schizophrenic patients

and 19 normal controls participated. The task was a 4-alternative forced-choice luminance

discrimination, using a 2x2 configuration of four 1 deg squares. Target luminance threshold

was determined in 3 conditions: the stimulus, including the target, was pulsed for 17 ms

(pulse paradigm), the target was presented on a steady background of 4 squares (steady

paradigm), or the target was presented alone (no background paradigm). We replicated

previous results demonstrating magnocellular and parvocellular signatures in control

participants. No evidence for an early magnocellular deficit could be detected as the

thresholds of all schizophrenic observers were higher both in the steady paradigm (presumed

magnocellular mediation), as well as in the pulse paradigm (presumed parvocellular

mediation). Magnocellular dysfunction, if present in schizophrenia, must concern more

integrated processes, possibly at levels at which parvocellular and magnocellular paths

interact.

Keywords : psychophysics, magnocellular, parvocellular, schizophrenia
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Introduction

While schizophrenia is a cognitive disorder, there have been a number of reports of

visual processing impairment, typically associated with the magnocellular and/or dorsal

streams (e.g., Butler & Javitt, 2005; Schwartz et al., 2001). The exact level of the impairment,

however, is uncertain. Electrophysiological studies suggest an impairment as early as primary

visual cortex. For example, visual evoked potentials (VEP) recorded over the occipital lobe

displayed a lower overall response for schizophrenic patients relative to normal volunteers,

specifically when the visual stimuli biased processing toward a magnocellular pathway

(Butler, et al., 2001). In addition, analysis of steady-state VEP spectra indicated attenuation of

the second harmonic response with little effect on the fundamental at low spatial frequencies

(Kim, et al., 2005).  The authors suggested a deficit in magnocellular signals to account for

this result, based on evidence of their contribution to the second harmonic response. In

contrast, VEPs measured during a higher level task involving identification of fragmented

forms revealed an impairment within the Lateral Occipital Complex (LOC) via crossover

input from the dorsal stream (Doniger, et al., 2002). This result was taken to suggest that

initial stages of ventral stream processing are intact but that the deficit results from an

abnormal interaction between dorsal (magno-dominated) and ventral pathways. Moreover,

Event Related Potentials revealed no decreases in early components, associated with sensory

processing, in schizophrenia (van der Stelt, et al., 2004).

Functional imaging has indicated activation differences between patients and controls in

cortical extrastriate area MT (Braus et al. 2002). Similarly first-degree non-psychotic relatives

of persons with schizophrenia showed a right hemisphere impairment in MT (Bedwell, et al.,

2004). These studies do not, however, exclude that magnocellular-like deficits could be

generated pre-cortically. Interestingly, somatosensory impairments in schizophrenia, observed

within 20 ms of target presentation, are interpreted in terms of a thalamic dysfunction which
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interferes with the flow of information from sensory input to cortex (Waberski, et al., 2004).

Psychophysical approaches to this question have been limited principally to studies of

backward masking and contrast sensitivity. In masking studies, spatial and timing differences

in the stimuli are exploited to probe visual coding mechanisms (Breitmeyer &  Ogmen, 2000).

Generally speaking, masking phenomena can be well explained in terms of the dynamics of

early coding mechanisms even when target processing depends on a high level task like

identification (Delord, 1998). Nevertheless, alternative hypotheses in terms of attentional

allocation are difficult to exclude (Enns & Di Lollo, 2000). Masking studies have

systematically revealed abnormalities in schizophrenics (Butler & Javittt, 2005; Cadenhead et

al., 1998; McClure, 2001; Schwartz, et al., 2001), though differences in stimulus conditions,

such as stimulus onset asynchrony (Grandhom & Verney, 2004; Slaghuis, 2004) and spatial

and chromatic characteristics of the mask (Bedwell, et al., 2002; Butler, et al., 2002;

Schechter, et al., 2003) have led to conflicting results and interpretations as to the selectivity

and the level of deficit.  Contrast sensitivity measurements have not indicated unequivocally

either whether schizophrenics show spatial frequency selective losses (Chen et al., 1999; Keri

et al., 2002; Slaghuis, 2004).  Chen et al. (2003) suggest that inconsistencies between reports

can be attributed to secondary effects related to medication that may differ between studies.

The present work is aimed at examining psychophysically the status of early visual

coding in schizophrenia. For this purpose, we used the short version of the steady and pulse

paradigms introduced by Pokorny and Smith (1997) that was adapted to testing patients

(Alexander et al., 2001). The tests exploit the different contrast gain characteristics of the

parvocellular (P) and magnocellular (M) pathways. The high contrast gain in the M pathway

results in high luminance contrast sensitivity at low contrasts but rapid loss of sensitivity to

contrast differences as contrast increases due to response saturation. Conversely, the P

pathway is less sensitive at low contrasts but its low contrast gain leaves its luminance
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contrast sensitivity relatively intact at contrast levels that saturate the M pathway signals.

These gain differences in the pathways, already evident in the retinal output (Kaplan &

Shapley, 1986), permit the design of stimuli that bias processing so that responses depend

more on signals transmitted through one or the other pathway.

Methods

Participants

The research followed the tenets of the Declaration of Helsinki and informed consent

was obtained from all participants. Seven schizophrenic patients and 19 normal controls

participated in the experiment. The patients were in-patients meeting DSM-IV criteria for

schizophrenia admitted at the psychiatric departments of Lille, Amiens and Armentières

(France). They ranged in age from 18 to 52 years. Diagnosis of schizophrenia was defined by

DSM-IV on the basis of the mini International Neuropsychiatric Interview plus (M.I.N.I. plus,

Sheehan et al., 1998), a short diagnostic structured interview assessed by an experienced

clinician. The Positive and Negative Syndrome Scale (PANSS) was used to measure the

severity of psychopathology (Kay, et al., 1987). Nineteen healthy volunteers, ranging from 18

to 54 years, were recruited. All volunteers were paid for their participation. Participants were

checked for visual acuity, color vision (Ishihara test) and contrast sensitivity. Any of the

following criteria excluded a participant from the study, either patients or controls:

ophthalmic and/or neurological disease, uncorrected myopia or mental retardation. The

patient and the control groups did not significantly differ in gender (controls: 10M/9F;

patients:  5M/2F; !2
=0.17, p=0.68) nor in age (mean (sd): controls 27 (9.5) ; patients 35 (15.1)

; t(24)= -1.66, p = 0.11). Demographic data and medication of the patients are presented in

Table 1.

---------------

Insert Table 1 about here

---------------
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Apparatus

The experiment was conducted inside the hospital and testing of the patients was

supervised by a medical practitioner. All stimuli were presented on a Nokia 445 pro color

monitor (21’) driven by software on a PC Hewlet Packard 128 Mo de RAM Pentium III 1 GB

under the control of an Intel 82815 Graphics card that provides 8 bits of resolution for each

gun of the 640*480 display. The screen was run at a field rate of 75 Hz, non-interlaced. The

voltage-phosphor luminance relationship was linearized with look-up tables. Calibration of

the screen was performed with a Minolta CS100 chromameter. Stimulus generation and

presentation were performed using Matlab 5.0 (The MathWorks) and the MatVis toolbox

(Carney, 1990). The observer was placed 57 cm (with a chinrest) from the display in an

otherwise dimly illuminated room. The background of the screen was set at 14.9 cd/m
2
.

Stimuli

The stimulus consisted of a 2x2 array of 4 squares of side 1 deg, each one separated by

3 min and arranged around a central fixation point (Figure 1). The four squares were either

higher (17.9 cd/ m
2
, i.e., +20%), lower (11.9 cd/ m

2
, i.e., -20%) or equal in luminance to the

background. On each trial, a randomly chosen square was slightly varied in contrast relative

to the others (always a luminance increment).

---------------

Insert Figure 1 about here

---------------

Procedure

Figure 1 shows the spatial and temporal configuration of the 5 experimental

conditions. When the pedestals were present, the temporal sequence varied : either pulsed

briefly (pulse paradigm), or continuously presented (steady paradigm). The experimental

session lasted from 45-90 min and comprised 5 blocks, one for each condition (pulse-brighter

pedestals, pulse-darker pedestals, zero-pedestals, steady-brighter pedestals, steady-darker

Page 6 of 19Visual Neuroscience

H
A

L author m
anuscript    inserm

-00131777, version 1



For Peer Review

7

pedestals). The conditions were presented in a random order different for each participant. For

each block, the contrast threshold was first approximated with a descending method of limits,

and then calculated using the method of constant stimuli with 6 levels of contrast (equally

spaced on a log scale) individually adjusted on the basis of the results obtained with the

method of limits. Threshold was defined from a Weibull function fit to the data as the contrast

generating a probability of 0.72 of correct response.

In the zero-pedestal condition, the target square was presented alone following the

presentation of a 500 msec fixation point. The task was to locate the target by pressing the

appropriate key (1, 2, 4, or 5 of the numeric pad). In the two pulse paradigms, the stimulus

was presented for 17 msec, together with an array of three square-pedestals and the task was

to locate the square among the four that appeared brighter than the others. In the two steady

paradigms, the stimulus was preceded and followed by a four pedestal screen that lasted for

500 msec.

Results

Figure 2 shows the average thresholds for the 5 experimental conditions for each

group. Five observers (4 controls and 1 patient) did not complete one condition because of

time constraints or fatigue. The solid lines, corresponding to the controls, replicate closely the

results obtained by Alexander et al. (2001). A monotonically increasing function is found for

the steady condition (thin line) and a V-shaped function for the pulse condition (thick lines).

Note that the zero pedestal condition experimentally is common to both pulsed and steady

pedestal conditions since both reduce to this condition at zero contrast.  The pulse condition

lines have typically not been connected through this point, however, to emphasize that the

zero pedestal condition is mediated theoretically by the same pathway that mediates the

steady condition (Pokorny & Smith, 1997). The average thresholds for the schizophrenic
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group (dashed lines, thin and thick for steady and pulsed pedestals, respectively) tend to

follow those of the controls though they are higher  and fall outside the 95% confidence

intervals for all conditions, indicated as error bars on the control points.

---------------

Insert Figure 2 about here

---------------

A mixed-effects analysis of variance (anova) was performed with group (Control,

Schizophrenic) and experimental condition as fixed effects and subject as a random effect. A

significant effect of condition was found (F(4,91)=145.0, p<0.001). Comparisons of the

means based on contrasts indicated that in the steady condition, the difference in thresholds

between the negative and zero pedestals was not significant (t(91) = -0.001, p = 0.99), but the

difference between the positive and zero pedestals was (t(91)=8.8, p < 0.001). In the pulsed

condition, the difference of both negative and positive pedestals from the zero pedestal was

significant (negative: t(91) = 10.8, p< 0.001; positive:  t(91) = 16.6, p<0.001). The effect of

group was also significant (F(1,24)= 20.1, p < 0.001) but  the interaction between group and

condition was not (F(4,91) = 0.99, p = 0.41).

---------------

Insert Figure 3 about here

---------------

Figure 3 shows the average control data (thick lines) compared with the data from the

individual patients for the steady (top) and pulsed (bottom) pedestal conditions (thin lines).

The greater variability of the patients is evident here indicating that some of the patients’

thresholds are close to the average normal data.  One patient showed a V-shaped function for

the steady condion (inverted triangles in Figure 3, top) and another a monotonic function for

the pulsed condition (x’s in Figure 3, bottom).  Nevertheless, across all conditions, over 70%
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of the patient observations fall above the upper 95% confidence limit of the control data.

Discussion

In normal observers, the steady and pulsed pedestal paradigms generate threshold

contours which vary in a manner consistent with the characteristics of parvo- and magno-

cellular contrast gain control mechanisms (Pokorny & Smith, 1997). The steady pedestal

condition generates thresholds that vary monotonically with luminance. It is argued that the

discrimination in this case depends on the comparison of the spatial differences between the

four stimulus fields (Smith & Pokorny, 2003). These are low contrast and, thus, would favor

discrimination based on signals in the magnocellular pathway that is sensitive to small

contrast differences. In contrast, the pulsed-pedestal is proposed to briefly saturate the high

gain mechanisms in the magnocellular pathway and produces a V-shaped function as the

discrimination switches to being constrained by the low-gain parvocellular pathway at high

pedestal contrasts.

Schizophrenics show qualitatively similarly shaped functions to normal controls. As

the shape of these functions is thought to reflect the properties of contrast gain control

mechanisms imposed at the retinal level (Smith & Pokorny, 2003), our results argue against a

low level deficit in visual processing. The relative heights of the curves are proposed, instead,

to reflect summation processes over populations of cells, mediated upstream from the retina,

possibly at a cortical level (Smith & Pokorny, 2003). We found that the thresholds of the

schizophrenic group were significantly higher than those of the control group. This difference

could reflect a simple criterion difference between the two groups or alternatively a difference

in post-retinal processing. As the interaction between group and experimental condition was

not significant, the differences between groups affect all conditions equally, consistent with a

criterion effect.  Hence, the lack of significant interaction argues against a deficit that is

selective for one pathway.
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Another possibility is that the raised thresholds are secondary effects of the patients'

medication.  This is difficult to assess directly because, on the one hand, it would be unethical

to withhold medication but, on the other hand, unreasonable to test patients when in an acute

phase, just prior to receiving medication.  Benzodiazepines have been reported to produce

overall losses of sensitivity (Blin, et al., 1993 ; Giersch, et al., 1997).  Long term use of

benzodiazepines, however, seems to produce little effect on retinal function (Stafanous et al.,

1999).  Chen et al. (2003) found that typical antipsychotic drugs raised contrast thresholds

while atypical ones did not.  Consistent with these findings, two patients from Table 1 (DN

and SS) with very different dosages of atypical neuroleptics displayed quite similar thresholds

(open circles and diamonds, respectively, from Figures 3a and b).

Some caveats must be raised, however. The sample size examined here was small.

This reflects partly the difficulty of finding patients on whom the extended testing required to

estimate thresholds would be possible. The data are heterogeneous which might, also, reflect

the small sample size or, alternatively, might be due to real sources of variability in the

schizophrenic population (Holcomb, et al., 2004; Wexler, et al., 2003). It would be desirable

to perform more extensive examinations of the most psychophysically extreme patients, when

possible, in future studies.

In conclusion, our data argue against an early magnocellular dysfunction in

schizophrenia.  If a magnocellular dysfunction is present, it may concern post-retinal

processes, possibly at the level of parvo- and magnocellular interactions in the cortex.
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Figure captions

Table 1: Patient summary information.

Figure 1: Examples of the five experimental conditions used in the experiment: the

two pulsed paradigms are shown on the left, with the pedestals brighter or darker than the

background and the randomly placed target is upper left or lower right, respectively; the zero

pedestal paradigm is shown in the center (target on the upper right), and the two steady

pedestal paradigm are on the right, with the 3 pedestals brighter or darker than the

background.

Figure 2: Mean results: mean incremental contrast thresholds as a function of the

pedestal contrast. Solid lines and open symbols show results for control observers and dashed

lines and black symbols for the schizophrenic patients. Thick lines and circles are used for the

pulse condition and thin lines and squares for the steady condition. Error bars represent 95%

confidence limits for the mean of the controls.  For variability of the patients, see Figure 3.

Figure 3: The mean results of the control group (thick lines with black circles) are

compared with the individual patients (thin lines) for steady (top) and, pulsed (bottom)

pedestals.
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Table 1

Patient Age Sex Neuroleptic

medication

Atypical neuroleptic

medication

Chlorpromazine

equivalence

Benzodiazepines PANSS

positive scale

PANSS

negative scale

PANSS

general scale

PANSS

Total

CC 21 F Zucoplentixol 300 mg

every 4 weeks

600 mg 21 16 37 74

DN 18 M Risperidone 4mg 400 mg Lorazepam 7 mg 26 32 59 117

GG 37 M Zucoplentixol 300 mg

every 4 weeks

600 mg 18 35 49 102

GL 20 M Haloperidol decanoate

200 mg every 4 weeks

400 mg Lorazepam 5 mg 23 16 39 78

HI 49 F Clozapine 250 mg 250 mg Lorazepam 1 mg 33 29 56 118

JPC 48 M Haloperidol decanoate

250 mg every 4 weeks;

Cyamepromazine 100

mg

600 mg Lorazepam 7.5 mg 26 32 56 114

SS 52 M Amisulpride 1200 mg 1200 mg Clorazepate 150mg 20 21 51 92
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Figure 1
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