
HAL Id: inserm-00131461
https://inserm.hal.science/inserm-00131461

Submitted on 1 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EEG SPIKE DETECTORS BASED ON DIFFERENT
DECOMPOSITIONS : A COMPARATIVE STUDY

Lotfi Senhadji, Jean-Jacques Bellanger, Guy Carrault

To cite this version:
Lotfi Senhadji, Jean-Jacques Bellanger, Guy Carrault. EEG SPIKE DETECTORS BASED ON
DIFFERENT DECOMPOSITIONS : A COMPARATIVE STUDY. Akay, M. Time Frequency and
Wavelets in Biomedical Signal Processing, Wiley-IEEE Press, pp.407-421, 1997, IEEE Press Series on
Biomedical Engineering;Sponsored by the IEEE Engineering in Medicine and Biology Society;Number
of Pages: 739. �inserm-00131461�

https://inserm.hal.science/inserm-00131461
https://hal.archives-ouvertes.fr


 

 

1 

 

EEG SPIKE DETECTORS BASED ON DIFFERENT DECOMPOSITIONS : A COMPARATIVE STUDY 

 

 

 

L. SENHADJI, J.J BELLANGER, G. CARRAULT 

Laboratoire Traitement du Signal et de l'Image  

 

INSERM - Université de RENNES I - 35042 RENNES CEDEX - FRANCE 

 

 

 

 

 

 

 

 

Author for correspondence : Lotfi Senhadji 

Fax : 33 2 99 28 69 17 

Phone : 33 2 99 28 62 20  

e-mail : lotfi.senhadji@univ-rennes1.fr 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key Words :  

Interictal EEG, Wavelet Transforms, Detection, Hypothesis Test, ROC curves.  

H
A

L author m
anuscript    inserm

-00131461, version 1

HAL author manuscript
Time Frequency and Wavelets in Biomedical Signal Processing Wiley-IEEE Press (Ed.) (11/1997) 407-421



-2- 

 

I. INTRODUCTION 

 

 The EEG signal of epileptic patients exhibits some particular episodes where the most relevant are the seizures. 

Between seizures, the EEG is characterized by occasional epileptiform transients such as spikes and sharp waves. Because 

seizures do not occur frequently, the recording might require a long-term EEG monitoring. The detection of the interictal 

events is therefore of particular importance in the characterization of epilepsy and may have a high significance in terms of 

localization of epileptic foci. The interpretation of the underlying process (propagation routes, synchronism between brain 

regions) depends on the detection quality of the EEG segments where these transients are present. Gotman [1] gave an 

overview of the methods designed to recognize and quantify spikes, sharp-waves and spike-waves. Recent approaches have 

increased the detection performances by making use of the spatial and temporal context of the EEG [2] [3] [4]. Although 

an effort to automate the detection of epileptiform transients was undertaken, a complete solution has not been found yet. 

This is mainly due to the wide variety of shapes of these transient signals, their similarities to waves that are part of the 

background activity and to impulsive artifacts.  

 

 

 EEG signals observed over a period of time [0, T] can be described, after sampling, by a random process X(k) 

whose form is : 

X k  = F k  + B k  + Pi k-!Pi!
i=1

np

 +  Aj k-!Aj!
j=1

na

 + B k  ; k " 0, 1, ..., T

 = F k  + B k  +  P k  + A k
       (1) 

This relation depicts relevant activities (elementary waves, background activity, noise, artifacts ...) which constitute the 

signal. F(k) may be considered as a piece-wise stationary signal present either casually or over the whole duration of the 

observation; for each i, Pi represents a brief duration potential, with time occurrence !
Pi

, and corresponds to an abnormal 

neural discharge; the Aj terms may be related to artifacts occurring at times !Aj; finally, measurement noise which can be 

considered as stationary over the observation duration is described by B(k). Over the period of observation, the entities np 

and na represent respectively the number of temporal occurrences of brief useful events and artifact transient signals. 

 

Cerebral background activity includes basic activities (Alpha, Beta, Delta, Gamma) as well as ictal stationary periods of 

time (recruitment phase during an epileptic seizure for example) and is modelled here by F(k). The distinction between the 

Aj and Pj components depends on the goals of the study : in our case, the epileptic events to detect are described by the Pj 

terms; accordingly, transitory waves associated to sleep, vertex sharp transients or K complexes, belong to the set of 

artifacts. Whatever the clinical objectives, the transient signals generated by eye movements or electrode shifts are 

represented by Aj terms. 

 

 From a signal processing point of view, the detection of spikes and sharp-waves can be seen as a classical 

detection problem where, at each time, the hypothesis "presence of spike" is confronted to its opposite. The difficulties 

encountered here come from the time-varying characteristics of both relevant signals (not perfectly known signals) and 
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noises (superposition of transient artifacts and locally stationary activities), and the unknown firing rate of the interictal 

events. To face the composite structure of the noises and the inherent non stationary character of the spikes and artifacts, 

we proposed in [5] [6] a two-stages detection scheme based on time-scale representation of the observation X under the 

following hypothesis :  

• F+B is approximately stationary on {0, ..., T} and is a zero mean gaussian signal with unknown covariance matrix, 

• the frequency range of the artifacts (Aj) is statistically higher than the frequency band of the spikes (Pi),  

• the transients being sparse events in the observation, first and second order statistics of F+B can be learned using X, 

• the shapes of Aj and Pi are random, only their duration is approximately known.  

 

 The proposed detection structure in [5] is based on two decision stages N1 and N2 : the first one is a quadratic 

imposed structure aimed at the detection of Pi and the second one at the rejection of false alarms (of N1) due to Aj. N1 and 

N2 use a wavelet filter bank determined heuristically.  

 

 In this chapter we compare the stage N1 of the proposed detector to other quadratic detectors (with imposed 

structure or not) that make use of more or less information on transients and background activity. The problem is stated in 

the next section and the solution proposed in [5] is briefly presented. The new solutions for N1 are introduced in section 

III. Experimental results and discussions are then reported.  

 

II. PROBLEM STATEMENT 

 

 When dealing with the detection, over an observation time interval [0, T], of an unknown number of transient 

signals whose supports are disjoined and arrival times are unknown, a classical sub-optimal solution, that we use here, is to 

consider the detection task like a sequence of elementary detection problems, each consisting in the detection of the 

presence of one transient on a short observation window covering the time support of the expected event. A serie of tests of 

the same type are conducted on a set of observation windows with equal length L, the union of them being the whole 

observation time interval. More precisely:  

 • we define the following vectors :  

 
X k  = X k-L+1 , ..., X k

t
, k! L-1,..., T

F k  +B k  = F k-L+1  + B k-L+1 , ..., F k  + B k
t

P k  = P k-L+1 , ..., P k
t

A k  = P k-L+1 , ..., P k
t

 

All these vectors are built, for each k, in the same way, with L consecutive samples extracted respectively from the 

observation X, the sum of instrumental noise B and background activity F, the signal describing the spikes and the artifacts 

 

 • For each k, we have to decide between two hypotheses :  
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H0,k : X k  = F k  + B k   or  X k  = F k  + B k  + A k

H1,k :  X k  = F k  + B k  + P k
 

which are mutually exclusive because we neglect the probability of A(k) ≠ 0 and P(k) ≠ 0 on {k-L+1, ..., k}. The 
hypothesis H0,k can be decomposed in H0,k = H0,k

'
 !  H0,k

' '  such that :  
H0,k

'
 : X k  = F k  + B k   

H0,k
' '

 :  X k  = F k  + B k  + A k
 

When assuming that the distribution of F+B is known (i.e. given or estimated with enough precision), the hypothesis H'0,k 

is simple while the hypotheses H"0,k and H1,k are composite because the shape of the transients and their arrival times are 

governed by a priori unknown distributions.  

 

 • We introduce here a serie of tests Tk between the hypothesis H0,k and H1,k and the corresponding serie of 

decision variables δk which are set to 0 if H0,k is true and to 1 otherwise.  

 

 • A "fusion" procedure on δk is then used to ensure that 1) one transient signal leads at most to one detection, 2) 

the number of false alarms is not greater than 1 for a serie { k1, ..., k2} of decision instants such that k2-k1 is less than a 

given value ( the minimal time duration of the spikes).  

 

DESCRIPTION OF THE TEST T1  

 

 The heuristic detection algorithm proposed in [5] avoids the direct classical construction of the tests Tk. It uses a 

wavelet filter bank, the outputs of which are processed by a two stage decision scheme. The first stage N1 uses of a serie of 

identical tests denoted T1 between the hypothesis H'0,k and H1,k by ignoring the hypothesis H''0,k. For each k we have δk 

= 1 (H'0,k true) if S1(X(k)) > λ1 otherwise δk = 0 (H1,k true). S1 is a quadratic form and λ1 is a threshold determined 

adaptively based on the empirical distribution of S1(X(k)), k belonging to {L, ..., T}. The second stage, N2, is aimed at the 

elimination of the false alarms due to the presence, at the input of N1, of artifacts Aj. This stage has already been reported 

and will not be presented in this chapter. It has been shown experimentally (for detailed description see [5] and [6] ) that 

most of the artifacts are removed through N2.  

 

 The decision statistic, associated to the proposed detector is S1(X(k)) = || FX(k) ||2 where F is a matrix such that 

F =  F 1

t
,  F 2

t
,  ..., F M

t
 t

 (t denotes the matrix transposition) has M rows F
i
, i = 1, ..., M which are FIR filters of a same 

length L and where || Z ||2 is equal to ZtZ for Z vector belonging to RL. The detection test T1 built in N1 is of quadratic 

form (Figure 1) i.e. ||Y(k) = FX(k) ||2 >< λ1. As the transients Pi and Aj are brief and occur in the observation as "details", 

well localized in time-scale space, the matrix F was built based on a wavelet transform [7]. The Fi are then the sampled 

versions of the functions !ai
t  = 1

ai

! t
ai

, i = 1, ..., M , where ai are scale values and ψ is a complex analyzing wavelet 

defined by :  

  
! t( ) = C " 1 +Cos2#f0t( ) "e2i#kf0t

, t $1 / 2f0 ,k integer % &1,0,1{ }  

The parameter k sets up the number of oscillations of the complex part (admissibility conditions are verified for k different 

from -1, 0, 1), f0 is the normalized frequency and C is a normalization coefficient (|| ψ || = 1).The wavelet transform is then 
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exploited as a linear feature extraction procedure to obtain relevant time-scale atoms where the spikes Pi are located. The 

Fi were determined in [5] based on visual inspection of a large amount of interictal EEG data processed by wavelets 

(different patients and different interictal periods). The adaptive strategy presented in [5] allows a good control of the false 

alarm probability of T1 both on simulated and real data. S1(X(k)) can be expressed by the quadratic form X k
t

QX k  

where Q = Qo = F
t

F  . The associated test is then noted T1,o. Obviously, such construction of the decision test T1,o 

exploits heuristically the morphology of Pi to determine the matrix F and does not make a full use of the statistical 

properties of F+B that can be achieved by learning on X. The main concern of this contribution is to propose alternative 

forms of S1, in other words new matrices Q by introducing more prior or learned information. For this purpose, a set of NE 

sampled spikes Pr ! IR
L
, r = 1,..., NE was selected manually from a real digitized EEG channel to build a dictionary of 

sampled spikes which is used to estimate the covariance matrix Cp of Pi.  

 

 

VARIATIONS OF S1  

 

 All the proposed forms of S1 are expressed by a quadratic function S1(X(k)) = X k
t
QX k , where Q is set 

according to the selected criteria (each criteria gives to the test S1(X(k)) >< λ1 a statistical signification). In the following, 

F+B will be replaced by B for simplification and the distribution assumed to be gaussian with the estimated covariance 

matrix CB.  

 

Detectors built without using the spike waveform  

 

• Null hypothesis rejection test : T1,N  

 The only required information on the signal is its duration. The test is based on the distance between the 

observation X(k) and a null reference for the metric associated to CB
-1

 where CB is an estimate of the expectation of 

X(k)X(k)t (i.e. IE X k X k
t ) conditionally to the hypothesis H'0,k. The resulting quadratic form is obtained by setting Q 

to QN = CB
-1

,  

 

• Null hypothesis rejection test applied to Y(k) : T'1,o 

 Q is set to  F t
  Cy

-1

F  where Cy is an estimate of the expectation of Y(k)Yt(k) under the null hypothesis H0,k. 

T'1,o may be interpreted as T1,N , with Y instead of X.  

 

Detectors based on objective knowledge on Pi (other than their time duration) 

 In this section, the noise B and spikes Pi are supposed to be independent. With the help of the dictionary, the 

covariance matrix Cp of the transients Pi is estimated according to :  

CP = 1

NE

 PrPr

t

!
r = 1

NE

 

• Neyman Pearson detector : T1,NP 
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This detector is based on the likelihood ratio calculated assuming that the spikes are normally distributed with the 

estimated covariance matrix CP. The log-likelihood ratio is equal to X
t
k QNPX k  (up to an additive constant) where 

QNP = C B

-1

- CB + C P

-1

.  

 

• Deflection criteria detector : T1,DC 

The deflection associated to S1(X(k))  is defined by :  

D S1  = 
IE1 S1  - IE0 S1

2

Var0 S1

 

where IEi S1  and Vari S1  are the expectation and the variance of S1 conditionally to the hypothesis Hi,k ; i = 0, 1 

respectively. The matrix Q is obtained by maximizing the deflection D(S1). Consequently Q is equal to 

QDC = C B

-1

CPCB

-1

.  

 

• Generalized likelihood ratio detector : T1,GLR 

The detector relies on the composite hypothesis H1,k which is defined by "Pi is present and is localized in a given d-

dimensional subspace, noted Ep, of IRL ". The generalized log-likelihood ratio between H0,k and H1,k leads to the statistic 

S1(X(k)) where the matrix Q is set to :  

Q =  Q GLR = C B

-1

G G
t
CB

-1

G

-1

G
t
CB

-1

 

where G is a matrix ,of d columns and L rows, such that the column vectors span the space Ep. The hypothesis that the 

spikes are elements of Ep is approximately verified if we suppose that the whole energy of the transient signals is localized 

in the subspace spanned by d (d< L) eigenvectors corresponding to the d largest eigenvalues of the covariance matrix Cp.  

 

• Stochastic extension of the matched filter 

The method described in [9] considers the signal to be detected as random and relies on a quadratic detection statistic 

S1(X(k)) with imposed form. Moreover, S1(X(k)) = || F'X(k) ||2 where F'
 = F 1

' t
,  F 2

' t
,  ..., F M'

' t
 

 t is a bank of M' filters 

defined by the M' eigenvectors associated to the M' greatest eigenvalues of the matrix CB
-1

CP. For M' = 1, F'X(k) is the 

linear form which maximizes a deflection criteria. When M' > 1 and assuming that the spikes distribution is gaussian, the 

authors argue that S1(X(k)) is an approximation of the likelihood ratio. As it was conducted, the method supposes that the 

transients Pi are stationary upon the time support of X(k) and that their time locations are uniformly distributed over the 

time interval [0, T], which lead to covariance matrices of stationary structures. The estimated covariance matrix is then a 

Toeplitz matrix noted CPS. According to our notations, CPS is proportional to the square matrix of dimension L whose 

elements are given by CPS i,j   = Pr k  Pr k-(i-j)!
k

!
r = 1

NE

. The above method was implemented and a modified version was 

proposed based on the following remarks : for the detection problem, we introduced the hypothesis H1,k which assumes 

implicitly that the whole energy of the spike is concentrated around the midpoint of X(k). In other words, the spike is 

centred over the time support of X(k). The spikes are then non stationary random signal and the estimate CPS is replaced 

by CP . The original and modified statistics are associated to the tests T1SMF and T'1SMF respectively.  
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EXPERIMENTATION AND PERFORMANCE EVALUATION 

 

 The performance of the tests described above has been evaluated and compared on simulated data using Receiver 

Operating Curve (ROC) and modified ROC curves [8]. For each value of the decision threshold λ1, the associated ROC 

curve point represent the probability PD for detecting a signal Pi, which is present in an observation window of length L, 

versus the false alarm probability FAP defined by : Pr S1 X k  >  !1 / H0,k , while the modified ROC curves represent the 

evolution of PD versus the false alarm rate FAτ which corresponds, for large values of λ1, to the mean value of the number 

of λ1 up crossing of S1(X(k)) per time unit.  

 

 A dictionary of NE = 100 sampled spikes, extracted manually from an interictal EEG signal recorded using the 

standard protocol 10-20 and a sampling frequency equal to 200 Hz, was built and the covariance estimates were computed. 

According to the time duration of the spikes and to the frequency sampling, the observation vector dimension L was set to 

60 for all the statistics except for those based on wavelets (T1,o and T'1,o) where the retained ai's led to L = 30. For the test 

T1,GLR, the dimension of the space, generated by the covariance matrix of the spikes was set to d = 4. Hence the number 

of filters used for both original and modified stochastic extension of the matched filter is M' = 4. These choices were a 

compromise between the calculus complexity of T1,k at each step k and the a priori information on signal and noise used 

(number of eigenvectors selected for CP and CB
-1

CP ).  

 

 Before presenting experimental results, we must emphasize that the validation of detection methods like those 

mentioned above is a very difficult task. The main problems encountered are :  

1) the definition of a set of EEG recordings to build a database with clinical significance. Signals are generally recorded 

over a long time period (several days) with a large number of electrodes, and they depend on the relative positions between 

cortical sources and electrodes. On the other hand, the shapes of epileptiform transients vary with patients and may change 

from an interictal period to another one.  

2) The labelling of the signal components : it involves the detection of epileptiform transients by a visual inspection of the 

recordings and the validation by different physicians. Such procedure is subjective and expert dependent. It may discard 

some transients which could be detected in other circumstances or by another group of experts.  

 

 A complete evaluation of the above presented detectors on real data is far from being straightforward. 

Performances were then studied mainly by using simulation (artificially generated EEG) and preliminary results were 

obtained on real data.  

 

RESULTS AND DISCUSSION 
 

 For performance analysis, artificial EEG signals were generated based on the following method : background 

activities were generated using autoregressive (AR) modelling of real EEG stationary periods without transients. 24 

models were estimated based on classical criteria [10]. Abnormal EEG was obtained by superimposing periodically spikes, 
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randomly selected over the dictionary. An example of the simulated signal is presented in Figure 2. Based on the AR 

model's coefficient the matrices CB were calculated (one model corresponds to one matrix). Both false alarm probability 

and false alarm rate were measured on simulated background activities (204800  samples for each model). Two 

representative models were selected to illustrate the behavior of the detectors. Both ROC and modified ROC curves exhibit 

a similar hierarchy between the detection statistics. Over all the models, three groups can be distinguished. The best results 

are obtained for the Neyman Pearson test (the best), the deflection criteria test and the generalized likelihood test. The 

performances decreases when imposed quadratic structures (i.e. wavelet and stochastic matched filter) are used. The null 

hypothesis test leads to an intermediate level of performances. Among all the models, the modified stochastic matched 

filter extension detector as well as the modified wavelet transform detector perform better than their associated original 

versions (Figures 3a - 3b ; 4a - 4b ).  

 

 The tests on real data were conducted on the EEG signal from which the spike dictionary was built. CB was 

estimated on a spike free segment of the signal, while the estimates of CP and CPS are those used on synthetic EEG data. 

Figure 5 depicts the behavior of the detection statistics for an interictal EEG period of 10 seconds. The performance 

evaluations were made only through ROC curves. Figure 6 shows the behavior of the studied tests. The results point out 

that a new performance based hierarchy is exhibited. The Neyman-Pearson test and the null hypothesis rejection test are 

the worst. None of the tests perform better than the other ones for all false alarm probability values. However, two main 

points can be emphasized. Firstly, the introduction of the estimated covariance matrix Cy in the detector using wavelets 

(T'10) decreases significantly the performances especially for small values of FAP, while the use of CP in place of CPS 

improves the performance of the stochastic extension of the matched filter (T'1,SMF). Secondly, the test T1,o produces 

satisfactory results regarding the required a priori information (i.e. time-scale atoms where the spikes are located).  

 

CONCLUSION  

 

 Different quadratic methods for detecting transients embedded in stationary background EEG activity were 

compared using simulated EEG. Some methods make use of objective information on the morphology of the waves to be 

detected (based on a dictionary of transient prototypes). All of the proposed structures, except the one proposed in [5], 

require an estimated covariance matrix of the background activity. Performance analysis in terms of both ROC curves and 

modified ROC curves, conducted on artificial interical EEG shows that a significant improvement of the quadratic tests 

performance is achieved when using the non stationary estimate of the spike covariance matrix. Original version of the 

stochastic extension of the matched filter can not be used as it is. The appropriate modification of the spike covariance 

estimate leads to bestter result. However, its performance remains lower than those obtained by means of the tests T1,NP, 

T1,GLR and T1,DC. The behavior of the wavelet tests T1,o, T'1,o is similar to T'SMF. The first attempt made on real EEG 

data shows some modifications in the detectors hierarchy. However, we note that the best require the estimate of the 

covariance matrices of both background activity and spikes. Thus, the wavelet based detector T1,o is more attractive 

because such estimates are not required and its performance level is satisfactory. Furthermore, the procedure developed in 

[5] using the same wavelet decomposition scales to reject the artifacts detected due to the presence of Aj and which leads 
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to good results, cannot be easily replaced by classical detectors because, in practice, the morphological informations on 

artifacts at our disposal are not precise enough. On real EEG data, the Neyman-Pearson detector and the null hypothesis 

rejection test exhibit the worst performances. Both tests assume that the background activity is stationary and normally 

distributed and the first (T1,NP) supposes that the Pi are gaussian. Real signals may not comply with the above 

assumptions and it would be interesting then to investigate more extensively the domain of validity of such hypotheses and 

to study the robustness under non gaussianity.  

 

 The threshold (λ1) determination was not discussed in this chapter. It can be evaluated adaptively, as presented in 

[5], to control the false alarm probability based on the T1,. samples (algorithm A1 in figure 1). Another approach is 

possible if the probability density law of T1,. under the null hypothesis, can be analytically determined as a function of the 

covariance matrix CB. In fact, using the analytical expression of the law, a threshold value is computed for a given false 

alarm probability (algorithm A'1 in figure 1).To control the false alarm rate, the algorithms A1 and A'1 require the joint 

density of T1,. and its variation between two consecutive samples.  
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CAPTIONS 
 

Figure 1 Block diagram of the quadratic detection structure.  

Figure 2 Examples of 10 seconds simulated EEG signals : from top to bottom, 24 signals corresponding to 24 AR models, 

the spikes were added periodically (every 300 samples).  

Figure 3-a ROC curves for the model 11. a) T1,NP, b) T1,DC, c) T1,GLR, d) T'1,SMF, e) T1,N, f) T'1,o, g) T1,SMF, and h) 

T1,o.  

Figure 3-b Modified ROC curves for the model 11. a) T1,NP, b) T1,DC, c) T1,GLR, d) T1,N, e) T'1,SMF, f) T'1,o, g) 

T1,SMF, and h) T1,o.  

Figure 4-a ROC curves for the model 14. a) T1,NP, b) T1,GLR, c) T1,N, d) T1,DC, e) T'1,o, f) T1,o, g) T'1,SMF and h) 

T1,SMF.  

Figure 4-b Modified ROC curves for the model 14. a) T1,NP, b) T1,GLR, c) T1,N, d) T1,DC, e) T'1,o, f) T1,o, g) T'1,SMF 

and h) T1,SMF.  

Figure 5 Detection statistics behavior on real EEG signal. A : Artifact, P : Spike. From top to bottom : raw EEG signal, 

T1,NP, T1,DC, T1,o, T'1,o, T1,N, T1,SMF, T'1,SMF, and T1,GLR  

Figure 6 ROC curves obtained on a real EEG channel, a) T1,DC, b) T'1,SMF, c) T1,o, d) T1,GLR, e) T1,SMF, f) T'1,o, g) 

T1,NP and h) T1,N.  
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• C
B+F

 : covariance of B + F, estimated on X(0),...., X(T) (off line)

• C
P
 : covariance of spikes estimated using the dictionary 

•! !
1
  : decision  threshold, it may be calculated using  C

B+F

    or estimated based on the empirical distribution of   S
1
(X(k))

Q

S  (. )
1

Covariance 
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 B + F
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(covariance 
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