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Blind source separation for ambulatory sleep recording
Fabienne Porée, Amar Kachenoura, Hervé Gauvrit, Catherine Morvan, Guy Carrault, Lotfi Senhadji, Member, IEEE

Abstract— This paper deals with the conception of a new system for
sleep staging in ambulatory conditions. Sleep recording is performed by
means of five electrodes: two temporal, two frontal and a reference. This
configuration enables to avoid the chin area to enhance the quality of the
muscular signal and the hair region for patient convenience. The EEG,
EMG and EOG signals are separated using the Independent Component
Analysis approach. The system is compared to a standard sleep analysis
system using polysomnographic recordings of 14 patients. The overall
concordance of 67.2% is achieved between the two systems. Based on
the validation results and the computational efficiency we recommend
the clinical use of the proposed system in a commercial sleep analysis
platform.

Index Terms— Ambulatory recording, blind source separation, inde-
pendent component analysis, electroencephalogram, electrooculogram,
electromyogram, electrocardiogram, sleep disorders, sleep apnea syn-
drome, polysomnography, home recording, sleep analysis, sleep staging.

I. INTRODUCTION

Beyond sleep disorders, sleep apnea syndrome (SAS) has a high
prevalence estimated at 2% in women and 4% in men between the
ages of 30 and 60 years [1] [2]. It is responsible for a significantly
higher frequency of road accidents in this population than in the
general population [3]. This syndrome is typically treated by means of
continuous positive airway pressure therapy (CPAP) or by surgery. As
adequate treatments are available and efficient, it is crucial to perform
an early diagnosis of individuals suffering from SAS. The definitive
diagnosis is based on standardized polysomnographic (PSG) tech-
niques with overnight recordings of sleep stage, respiratory efforts,
oronasal airflow, electrocardiographic findings, and oxyhemoglobin
saturation parameters in an attended laboratory setting [4]. This ”gold
standard”, whose demand has doubled between 1991 and 1994 in
some regions of the United States [5], is high cost and requires
intensive work. As a result, sleep laboratories are overbooked and
long waiting lists contribute to a lack of diagnosis and many cases
of untreated SAS.

A less expensive and less time consuming solution would consist
in carrying out PSG at home. Several works evaluating home versus
laboratory PSG have been reported (see [6] for review). Two major
problems have been emphasized. One is the complexity of sleep
recording devices: the intervention of qualified personnel is required
for correct system set-up [7]. The second is the high number
of sensors: classical sleep analysis needs information provided by
different physiological signals such as electroencephalogram (EEG),
electrooculogram (EOG), electromyogram (EMG), airflow, respira-
tory effort, etc.

This paper focuses on the problem of recording the electrophys-
iological signals required for sleep staging using a small number
of well-located sensors. The use of a limited number of sensors
in such a system implies the recording of a new set of signals
consisting of a mixed version of the EEG, EOG and EMG as well
as the development of the dedicated signal processing techniques
to separate them. The main difficulties are related to the optimal
location of the new sensors and to the estimation of signals of interest
from the recorded mixtures. Moreover, these recorded signals may be
corrupted by electrocardiographic (ECG) activity, which in this case
is considered as a noise. In order to address this problem, we perform

the separation of four types of signals: the EEG, the EOG, the EMG
and the ECG.

Several techniques can be considered for dealing with source
separation, ranging from linear filtering, linear or non-linear Wiener
theory to Independent Component Analysis (ICA). Linear or non-
linear filtering theory are not well adapted for solving this problem
even if EMG can be easily estimated by linear filtering methods [8].
Conversely, ICA seems to be a promising approach for EEG, EOG
and ECG separation [9].

In the present paper the separation of these signals is achieved
using an ICA approach. The technical issues regarding the reduction
of the number of sensors, the selection of their location and the
different processing steps are investigated in section II. ICA methods
and the associated mixing model are described in section III. The
results are reported in section IV where a blind comparison between
night profile estimations issued from gold standard recordings and
our system is conducted.

II. PROBLEM STATEMENT

A. Minimal Configuration

According to the definition proposed by Rechtschaffen [10], in or-
der to establish night sleep profiles, the electrophysiological activities
EEG, EOG and EMG need to be separately recorded (Figure 1).

Fig. 1. Minimal configuration for sleep recording. Top: placement of E1,
E2, A1 and A2 for detection of eye movements, and recording of EMG from
mental and submental muscle areas. Down: placement of C3, C4, A1, and A2
for EEG recording [10].

A set of four channels are considered minimal for the scoring of
stages, one EEG channel, two eye movement channels, and one EMG
channel [10]:� for EEG recording, the recommended derivation is C4A1 or

C3A2,� eye movements are taken from two temporal sensors located near
each eye (E1 and E2), slightly moved relatively to the median
plan in order to simultaneously observe horizontal and vertical
eye movements, relatively to the same electrode A1 (or A2)
located on mastoids;� muscular activity is obtained by a derivation between two
electrodes located on the chin.

The system also requires a reference electrode [11], which leads to
a total of 7 electrodes in this configuration. However, in practice,
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the position of the electrodes on the chin area and the quality
of the contact with the skin are critical factors in obtaining good
EMG signal. It is then recommended to use 3 electrodes for EMG
recordings to overcome high failure rate problems. Moreover, with
some patients for which alpha rhythm is difficult to observe, it is
necessary to add an electrode in the occipital area (O1 or O2) [10]
(thus the total number of sensors becomes 9).

Each recorded channel is filtered to enhance the signal of inter-
est [10] [12]:� for EEG, a low-pass filter is used to highlight rhythmic activities

(alpha 8-12 Hz; beta
�

13 Hz; sigma 12-14 Hz; theta 4-
7.5 Hz; delta � 4 Hz) and attenuate EMG interference. The
recommended cut-off frequency is between 60 and 75 Hz. A
high-pass filter with a corner frequency of 0.5 Hz (time constant
0.3 s) is also used;� for EOG, the low-pass filter is limited to 15 Hz and the time
constant is the same as for EEG;� EMG is observed between 5 and 120 Hz.

B. Sensor Number and Position Choice

In order to obtain the same amount of information with a reduced
number of well-located sensors, compared to the classical configura-
tion, two questions have to be tackled:

1) How many sensors can the system be limited to?
2) Which locations have to be chosen for these new sensors?
We performed different experiments by changing the number

and/or the location of sensors and for each configuration, signals
issued from both the laboratory PSG system (i.e. gold standard) and
the system proposed here were simultaneously recorded for further
processing.

After many configuration trials [8], [9], it appeared that a good
compromise could be achieved by considering four electrodes (Fig-
ure 2): two temporal, in front of the higher part of the ears, denoted
F7m and F8m (where m stands for modified) and two frontal, above
the eyes, denoted FP1m and FP2m, with an additional reference
electrode.

F8m
F7m

FP2m FP1m� �� �

Fig. 2. New sensor locations: two frontal FP1m and FP2m and two temporal
F7m and F8m (reference electrode is not presented here).

The placement of the electrodes was motivated by two objectives.
Firstly, to retrieve the same information as in the classical config-
uration. Secondly, to avoid chin area to ensure quality of muscular
signal and hair region for patient convenience. The four electrodes
F7m, F8m, FP1m and FP2m satisfy these two conditions. Concerning
the reference, several placements avoiding hair region are possible,
such as mastoids, tip of the nose, linked-ears, among others [11].
However, for experiments combining both systems, we simply made
use of the reference electrode of the classical system, that were chosen
on vertex (Cz).

Figure 3 displays an example of recorded signals with the gold
standard configuration (a) and the new one (b). The signals are
visualized using the software Coherence � (Deltamed SA, Paris
FRANCE), which contains the appropriate high and low-pass filters.

New channels F7m, F8m, FP1m and FP2m are visualized in their
raw format.

E1A1

E2A1

E1E2

C4O2

EMG

(a)

F7m

F8m

FP1m

FP2m

(b)

Fig. 3. 20 seconds of a subset of recorded data with a sampling rate
of 256 Hz. (a) Sample of a classical polysomnographic recording showing
ocular, brain and muscular activities. (b) Signals recorded using the new set
of sensors. All electrophysiological activities required for sleep scoring are
available but in a mixed manner with ECG interference.

In Figure 3(a) only five derivations are drawn:� For eye movements, we plot channels E1A1 and E2A1 and
their derivation E1E2, often used by the clinicians for sleep
analysis. Vertical eye movements, usually present on E1A1
and/or E2A1, are not clearly seen because of ECG interference.
E1E2 magnifies the horizontal movements as they are in opposite
phase on E1A1 and E2A1 and attenuates ECG activity.� The EEG channel C4O2 (derivation between C4A1 and O2A1)
exhibits alpha rhythm.� The EMG channel shows muscular activity with higher tonus in
the middle of the period.

By comparing Figures 3(a) and 3(b) it can be observed that, with
the new system:� Eye movements are well recorded: vertical eye movements are

easily discernible on FP1m and FP2m, whereas horizontal eye
movements are better seen on F7m and F8m and are in opposite
phase.� Muscular activity is present on the four channels and is syn-
chronous with the EMG channel.� ECG activity is present on the four channels and thus corrupts
the signals of interest.� EEG signal is masked by ocular, muscular and cardiac activities.

Therefore, all of the relevant information is present but in a mixed
manner, thus validating sensor location.

C. A Three-step Processing Approach

We are faced with a mixture of signals which have to be separated
in order to retrieve the night sleep profile. To do so, a three-step
procedure is proposed for extracting the electrophysiological signals
(Figure 4).

1) Extraction of EMG: The frequency components of EMG are
above the frequency band of the useful components of EEG and EOG.
It is thus possible to derive an estimate of EMG (

�
EMG) using a high-

pass filter. Experiments showed that a good estimation of EMG can
be achieved by filtering the difference F7m-F8m, choosing the corner
frequency around 30 Hz.
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BSS

F7m−F8m

F7m F8m

FP2mFP1m

F7p F8p

FP2pFP1p

3)

2)1)

�
EOG2

�
EEG

�
ECG

�
EOG1

�
EMG

Fig. 4. Schematic representation of the proposed procedure. 1) �EMG is
obtained by high-pass filtering of F7m-F8m. 2) The low-pass filtering of F7m,
F8m, FP1m and FP2m provides F7p, F8p, FP1p and FP2p. 3) 	EEG, 
EOG1,
EOG2 and 	ECG are obtained by applying Blind Source Separation (BSS) to
F7p, F8p, FP1p and FP2p.

2) Low-Pass Filtering of F7m, F8m, FP1m and FP2m: Each of
the four signals F7m, F8m, FP1m and FP2m contains some high
frequency components which are mainly related to EMG activities.
Prior to separation, it may be interesting to low-pass filter these
signals to suppress the EMG. The cut-off frequency was empirically
determined and finally set at 22 Hz to provide satisfying results
without loss of information. Indeed, all eye movement frequencies,
even the highest, do not exceed 15 Hz. Moreover, relevant EEG
spectral components are generally below 22 Hz [12]. In the following,
we will refer to F7p, F8p, FP1p and FP2p as the signals resulting
from this low-pass filtering.

3) Extraction of the Remaining Electrophysiological Activities:
ECG interference may occur during the entire recording or only for
limited periods (see Figure 3). This perturbation often obscures rele-
vant information and therefore has to be removed. Thus, we propose
to estimate the cardiac activity from mixtures as well. Furthermore,
in classical recordings, eye movements are projected onto sensors
E1 and E2 (see Figure 3). In our approach, this principle is kept
by introducing two estimated activities

�
EOG1 and

�
EOG2. Signal

extraction can then be formulated as a Blind Source Separation (BSS)
problem, where the observations and the sources are respectively F7p,
F8p, FP1p, FP2p and �EEG,

�
EOG1,

�
EOG2, �ECG.

Note that another solution could consist of using the Blind Source
Separation framework for producing estimates of the five signals
( �EEG,

�
EOG1,

�
EOG2, �ECG and

�
EMG). This solution was previously

investigated [9] and leads to good results but increases the complexity
of the overall system, even if the EMG filtering step is dropped. It
is also important to stress that ECG interference suppression may
be conducted based on adaptative filtering techniques. Nevertheless,
their use requires an ECG channel (i.e. reference signal) and thus
imposes an additional sensor. Moreover, the ECG channel has to
be continuously recorded even if no interference is observed. The
proposed procedure depicted on Figure 4 overcomes such drawbacks.

III. BLIND SOURCE SEPARATION APPROACH

A. Introduction

The blind source separation approach deals with the problem
of identifying  mutually independent unknown sources from �

linear and instantaneous mixtures (where � �  ) when no a priori
knowledge of sources and mixtures are available. Only information
carried out by received signals are used. This problem has been
widely studied for the last ten years and each of the algorithms found
in the literature takes advantage of some additional hypotheses on the
sources.

The choice of the method to apply is closely related to these
additional hypotheses. For example, when the sources are mutually
independent, stationary and no more than one of them is gaussian,
Cardoso [13] proposed an algorithm (JADE) based on the minimiza-
tion of cross cumulants between the components of the whitened sig-
nal and the maximization of the auto-cumulants. On the other hand,
if sources are temporarily correlated, the SOBI algorithm [14] takes
advantage of this temporal correlation by developing an approach
using only second order statistics. If the sources are non-stationary,
a joint-diagonalization of a set of spatial time-frequency distribution
matrices (TFBSS) was proposed [15]. In the context of the desired
application, some additional hypotheses and some constraints have
to be taken into account:� the temporal correlation of sources (EEG, EOG1, EOG2, ECG

signals) is not obvious, which implies that SOBI algorithm can
not be chosen;� reduced computational complexity: a typical clinical procedure
implies the processing of several hours of recordings. This
constraint excludes the TFBSS method which is very slow and
very greedy for memory;� the proposed contrast functions must be robust to outliers and to
the diversity of the situation observed in clinical practice. Thus,
the calculation of cumulants, as required in JADE algorithm, is
proscribed.

None of the previously mentioned methods comply with these
requirements. Thus the retained solution belongs to the more general
framework of independent component analysis. The algorithm looks
for the most mutually independent components with respect to a
negentropy criterion (to be defined), which hunts the directions of
nongaussianity. Indeed, it has been demonstrated that negentropy
criterion is equivalent to mutual information criterion, known as
an independence criterion between random variables [16], [17].
Moreover, negentropy criterion may be efficiently optimized using
fast algorithms.

B. Mixing Model

We assume that multichannel recordings are mixtures of four
physiological signals of type EEG, EOG1, EOG2 and ECG. As brain
volume conduction is assumed to be linear and instantaneous, the
choice of a linear model is reasonable [18]. The mixing model is
then written as: �������

(1)

where:� ����� ��������������� �"!$#
is a � -vector of � observations,� �%��� � � ���������&�(')! #

is the  -vector of  unknown sources,� �
is the �+*, unknown full rank mixing matrix,� and � �  .

In our application,
�

is the vector [EEG EOG1 EOG2 ECG]
#

and
�

is the vector [F7p F8p FP1p FP2p]
#

, so that � �  . The
independence hypothesis is satisfied because EEG, EOG1, EOG2 and
ECG sources are supposed physiologically independent.

C. ICA Algorithm

A very simple and highly efficient fixed-point algorithm for com-
puting ICA was introduced by A. Hyvärinen and E. Oja [19]. A
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preliminary step consists in whitening the data as explained in the
Appendix and leads to a new mixing model:- �/.���0�

(2)

Then, the algorithm looks for nongaussian directions defined by 1 #2 -
that represents a column of the demixing matrix 3 ( 3 is the inverse
of

.�
). This leads to a negentropy criterion which is approximated by

a non-quadratic function 4 [16]. The overall algorithm comprises
several steps and is summarized hereafter:

1) Center the observed variables
�

.
2) Whiten the data and obtain - (cf. Appendix).
3) Choose the number  of independent components to estimate

(cf. Appendix).
4) Choose initial values for the 1 2 , 5 �760�����8���  , each of unit

norm. Orthogonalize the initial matrix 3 as in step 6 below.
5) For every 5 �96:���������  , let1 2<;>=@? -:ACB 1 #2 -)D�EGF =H? -IAKJLB 1 #2 -)D�E 1 2 � (3)

where A and A J are the first and second derivative of the non
quadratic function 4 .

6) Do a symmetric orthogonalization of the matrix 3 �B 1 � �����8��� 1 ' D # by 3 ; B 3�3 # DNM �LONP 3 �
(4)

7) If non-convergence, go back to step 5.
Several properties of the above algorithm, reported in [16], are of

practical interest in the context of our application:� the convergence rate is cubic (or at least quadratic), which means
a fast convergence,� the algorithm finds directly independent components of any non-
gaussian distribution using any non-linearity A . This contrasts
with many algorithms for which an estimation of the probability
distribution function has to be initially available and the non-
linearity must be chosen accordingly,� the performance of the method can be optimized by choosing
a suitable non-linearity A . In our paper, A is chosen as in [17]:ACBRQCD �HSNT:UWV BRXKQCD with XGY[Z .

To apply this algorithm, data are windowed into non-overlapping
blocks of one hour, as a compromise between the required number
of samples for estimating the matrix parameters and the dynamics of
signals during night sleep. Hence an additional step, called matching
sources, is introduced to overcome the recurrent problem of source
permutation (identifiability) in ICA and to guarantee the continuity
of the extracted components between blocks.

D. Matching Sources

For each block of one hour, the ICA algorithm leads to four
different signals (firstly denoted IC1, IC2, IC3 and IC4) that have
to be identified among the searched signals: �EEG,

�
EOG1,

�
EOG2 and�ECG. This operation can be performed by correlating each of the

estimated signals and combinations of F7p, F8p, FP1p and FP2p.
Indeed, we observed that horizontal eye movements are more

visible on F7p and F8p and are in opposite phase, and that vertical
eye movements are more visible on FP1p and FP2p. Thus, we decided
to create three pseudo-reference signals:� PRef1 = F8p-F7p for horizontal eye movements,� PRef2 = FP1p+FP2p for vertical eye movements,� and PRef3 = F7p+F8p for ECG.

Figure 5 shows an example of the pseudo-reference signals ob-
tained from F7p, F8p, FP1p and FP2p of Figure 3(b). Both PRef2 and

PRef1

PRef2

PRef3

Fig. 5. The three pseudo-reference signals generated for mapping the
components obtained by applying ICA algorithm to physiological activities:
PRef1 for 
EOG1, PRef2 for 
EOG2 and PRef3 for 	ECG.

PRef3 display ECG activity, but ambiguity is avoided since vertical
eye movements are particularly visible on PRef2.

The matching is performed by calculating the covariance matrix
between IC = [IC1 IC2 IC3 IC4]

#
, and PRef = [PRef1 PRef2

PRef3]
#

:

\ � =^] IC PRef
#`_ �baccd \ �e� \ �LP \ �gf\ Ph� \ PeP \ P�f\ f8� \ f&P \ fef\ji � \ji P \ji f

khllm (5)

The matrix
\

is of size n�*po . If each column q (q �96:�hrK� o ) reaches its
maximum (in absolute value) on a different line 5 ( 5 �96:��������� n ), we
decide that IC 5 match PRefq . Particular cases can occur, for example,
when two columns q and s have their maximum on the same line 5 .
In this case, IC 5 matches PRefq , if

\ 2 t Y \ 2vu (and PRef s otherwise).
Line 5 and column q are then removed, and the procedure is repeated.
Finally, this procedure allows identifying three of the four IC 5 as
channels

�
EOG1,

�
EOG2 and �ECG. The last source is then the channel�EEG. It is important to notice that this procedure does not need any

external information but uses only the intrinsic properties of F7p,
F8p, FP1p and FP2p signals. The PRefq (q �w6:�NrK� o ) are only built
to arrange correctly the estimated channels �EEG,

�
EOG1,

�
EOG2 and�ECG.

E. Examples

To illustrate the entire procedure (ICA algorithm followed by the
matching step), let us consider two examples.

Example 1 is derived from the signals of Figure 3(b). Figure 6
shows the results of the estimation of the signals EMG, EEG, EOG1,
EOG2 and ECG, from the signals F7m, F8m, FP1m and FP2m of
Figure 3(b).x

EMGy
EEGx
EOG1x
EOG2y
ECG

Fig. 6. Separation result of signals depicted in Figure 3(b). �EMG is obtained
by high-pass filtering. 	EEG, 
EOG1, 
EOG2 and 	ECG are derived using ICA
approach and the matching step.

Comparing the estimated signals with the reference signals of
Figure 3(a), we observe that muscular activity is well recovered
on

�
EMG and that the channel �EEG contains mainly alpha rhythm,

as in the reference C4O2, despite a still light alteration by EOG.
Regarding eye movements,

�
EOG2 shows horizontal eye movements

and vertical eye movements are displayed on
�
EOG1 although they
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were barely visible on the reference channels, mainly because of ECG
interference.

Example 2 considers a case without ECG interference on the
data (patient P1 of the database). The results depicted on Figure 7
show that the four channels

�
EMG, �EEG,

�
EOG1 and

�
EOG2 are well

estimated and that the fifth channel contains only a very weak signal.

x
EMGy
EEGx
EOG1x
EOG2y
ECG

Fig. 7. Separation results in the absence of ECG. The overall procedure
leads to good estimates of sources.

These two examples show that the proposed approach works
whether the ECG is present or not.

IV. RESULTS

A. Evaluation Methodology

A data set issued from 14 patients (P1 to P14) was used for
evaluating the proposed system. A total of 14 sleep nights, combining
both systems, the PSG gold standard and the new one (Figure 2), were
recorded at the “Fondation Rothschild” of Paris.

The two series of nights were randomized and anonymized and
then manually scored by a sleep specialist. Only the neurophysio-
logical signals were considered, no respiratory analysis was done
and no information regarding other events during the night, such as
respiratory pauses or leg movements, was available.

We recall that the sleep analysis consists of scoring a night, per 30
seconds epochs, in different sleep stages. The stages and their most
prominent features are [10], [20]:� Stage W (wakefulness) is characterized as low voltage; rapid,

desynchronized activity (10 to 30 z V and more than 17 Hz);
and alpha rhythm. This stage is usually, but not necessarily,
accompanied by a relatively high tonic EMG, and often rapid
eye movements and eye blinks are present in the EOG tracing.� Stage 1 contains some alpha waveforms mixed with theta waves.
It is characterized by the presence of slow eye movements and
the absence of rapid eye movements. EMG activity is moderate
to low.� Stage 2 is composed of a background activity consisting of low
voltage, mixed frequency EEG signals with bursts of distinctive
waves of 12 to 14 Hz called sleep spindles. These are accom-
panied by K complexes, which are delineated, negative, sharp
waves immediately followed by positive components lasting
more than 0.5 seconds.� Stage 3 contains at least 20% but less than 50% delta waves
which are high-amplitude (greater than 75 z V from peak to
peak) and slow-frequency waveforms.� Stage 4 is indicated by more than 50% delta waves.� Stage REM (or REM sleep) is characterized by relatively low-
voltage, mixed-frequency EEG activity with episodic rapid eye
movements and low EMG activity.

After scoring, the evolution of night sleep can be displayed by an
hypnogram which represents the global course of the night.

The double analysis provided two hypnograms for each patient: the
first hypnogram derived from the analysis of signals recorded by the
classical system, and the second hypnogram obtained by analyzing

the extracted signals issued from the new system described above.
Figure 8 shows hypnograms obtained for patient P1.

WRS1S2S3S4

WRS1S2S3S4

Fig. 8. Hypnograms of patient P1. Top: with the classical system, down:
with the new system. W: wakefulness, R: REM sleep, S1-S2-S3-S4: stages
1, 2, 3 and 4 (After manual scoring, hypnograms are automatically generated
by the software Coherence of Deltamed).

B. Performance Evaluation

In order to evaluate the performance of the new system, both
hypnograms have been compared to verify whether each epoch had
been scored as the same sleep stage or not, first hypnogram being
considered as the reference hypnogram. From a medical point of
view, stages 3 and 4 being very close. They are typically lumped
together when clinicians discuss sleep architecture and referred to as
slow-wave sleep [20]. To evaluate the performance of our system we
maintain this convention and referred to this new stage as stage “3+4”.
This led to a confusion matrix for each patient, from which two
criteria of performance have been performed. The first computes the
sensitivity and the specificity for each stage and the second computes
the concordance between both hypnograms of each patient.

1) Criteria 1: The sensitivity and the specificity are calculated
for the whole database from the confusion matrix of all the patients,
reported in Table I. This matrix is obtained by the addition of the
confusion matrices of the 14 patients.

TABLE I
CONFUSION MATRIX OF ALL THE PATIENTS. Rows: original coding,

columns: new coding.

Stages W 1 2 3+4 REM Total

W 2458 856 68 19 60 3461

1 118 1417 692 91 167 2485
2 77 290 3266 971 200 4804

3+4 14 16 409 1589 1 2029
REM 32 391 406 14 1281 2124
Total 2699 2970 4841 2684 1709 14903

To show how this criteria has been performed, let us consider the
case of stage W. From a total of 14903 epochs, 3461 were coded in
stage W in the reference hypnogram whereas with the new system
2458 epochs were coded in stage W and 1003 (856+68+19+60) were
coded in a different stage. On the other hand, a total of 2699 epochs
were coded in stage W in the new system, among which 2458 were
already in stage W and 241 (118+77+14+32) were coded in another
stage. From these values, 2458 True Positives, 241 False Positives,
1003 False Negatives and 11201 (14903-3461-241) True Negatives
are obtained. Then the sensitivity {`| and the specificity {~} are
defined by: {�| � �%��%������� (6){~} � �%��%�w����� (7)

which leads to a value of 0.71 for sensitivity and 0.98 for specificity
for stage W.
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The sensitivity and the specificity calculated for all the stages are
presented in Table II.

TABLE II
SENSITIVITY AND SPECIFICITY CALCULATED FOR THE WHOLE DATABASE

FOR EACH STAGE.

Stage W Stage 1 Stage 2 Stage 3+4 REM���
0.71 0.57 0.68 0.78 0.60���
0.98 0.87 0.84 0.91 0.97

We can see that sensitivity ranges from 0.57 (stage 1) to 0.78 (stage
3+4), whereas specificity is between 0.84 (stage 2) and 0.98 (stage
W).

2) Criteria 2: The concordance between both hypnograms has
been calculated for each patient from his confusion matrix (not
presented here). It is obtained as the sum of the diagonal over the
total number of epochs. The results obtained for each patient in the
database are presented in Figure 9.
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Fig. 9. Concordance for the 14 patients and for the whole database (Total).

The percentage of concordance varies from 47.0% for patient P13
to 83.5% for patient P3. When considering the total of the database,
the global concordance is 67.2%.

V. DISCUSSION AND PERSPECTIVES

Evaluating our system is not an easy task. In fact, the results rely
on the assumption that the scoring based on PSG gold standard is the
target whereas patterns specific to particular stages are more obvious
with the new system. Thus mismatching of sleep stages may also
arise from reference scoring.

The results obtained from criteria 1 show that large confusions
exist between stages. As seen in Table I, the most important con-
fusion occurs between stage 2 and stage 3+4. This may be due to
percentage of delta activity in the EEG channel. In fact, the epoch
is scored as stage 2 when EEG contains delta activity of less than
20%, and as stage 3+4 when this percentage is greater than 20%.
The quantification of delta activity is subjective and thus leads to
questionable decision. Moreover, we noticed that spindles and K-
complexes are particularly visible with the new system. This may
explain why several epochs scored as stage 1, 3+4 or REM in the
reference coding were scored as stage 2 in the new coding. Another
confusion occurs between stage W and stage 1: 856 epochs scored
as stage W in the reference system are scored as stage 1 in the new
system. Since stage W is characterized by high tonic EMG whereas
in stage 1 EMG is moderate to low, confusion may arise from the
reconstructed muscular activity. This latter is well correlated with
the EMG recorded on the chin but often has a low amplitude. An
additional mismatch is observed between REM and stage 1: among

2124 epochs scored as REM in the reference system, 391 became
stage 1 in the new coding. However, it is important to note that 40%
of the encountered confusions are related to one patient (P13) for
which the signal to noise ratio in both recordings (original and new)
is weak. The results obtained from criteria 2 show that six patients
have a concordance greater than 70%, six between 60% and 70% and
two below 60% (Figure 9). The weakest performance is obtained for
patient P13 (47.0%) where the quality of the recorded data is poor.
Knowing the observed inconsistencies when night sleep is scored by
several specialists [21], on the whole these results are satisfactory.

The proposed system is able to record electrophysiological activi-
ties required for sleep staging using less technological constraints.
Indeed, the number of electrodes has been reduced to five and
their placement (frontal and temporal) avoids, on the one hand, the
chin area, to ensure quality of muscular signal and on the other
hand, the hair region for patient convenience (the placement of the
reference electrode in a non-hair region remains to be tested). From
a computational point of view, the cost is very low since a night can
be processed in less than one minute using a standard computer thus
making the system appropriate for daily clinical use. The integration
of the overall proposed method on Deltamed’s sleep platform is in
progress as well as the development of a headband, incorporating the
sensors, easy to put on.

APPENDIX

Whitening linearly transforms the observed mixing vector
�

in
a whitened vector - (i.e. its components are uncorrelated and their
variance equal unity): = � -�- # ! �@�~�

(8)

A traditional whitening method makes use of the eigenvalue de-
composition of the observation vector covariance matrix: = � �~� # !~����G� #

, where
�

is an orthogonal matrix of the eigenvectors of= � �~� # ! and
�

is a diagonal matrix of its eigenvalues. Whitening is
performed by - � ��� M �LONP � # � and gives:- � ��� M �LONP � # ����� .���0�

(9)

The whitening enables reducing the number of parameters to
estimate. More precisely, we have:= � -0- # !C� .� = � �(� # ! .� # � .� .� # �@�~�

(10)

which means that
.�

is orthogonal (an orthogonal matrix contains
degrees of freedom). Thus, only � B � F 6 De� r parameters instead of��*� have to be estimated. Such a process may also be useful to
reduce the dimension of the observation subspace: when eigenvalues
of = � �~� # ! are determined, those lower than a given threshold are
discarded.
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