

The human cumulus–oocyte complex gene-expression profile.

Said Assou, Tal Anahory, Véronique Pantesco, Tanguy Le Carrour, Franck Pellestor, Bernard Klein, Lionel Reyftmann, Hervé Dechaud, John de Vos, Samir Hamamah

▶ To cite this version:

Said Assou, Tal Anahory, Véronique Pantesco, Tanguy Le Carrour, Franck Pellestor, et al.. The human cumulus–oocyte complex gene-expression profile.. Human Reproduction, 2006, 21 (7), pp.1705-19. 10.1093/humrep/del065 . inserm-00130809

HAL Id: inserm-00130809 https://inserm.hal.science/inserm-00130809

Submitted on 30 Mar 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The human cumulus-oocyte complex gene expression profile

Said Assou^{§,*, ϕ}, Tal Anahory [‡], Véronique Pantesco^{*}, Tanguy Le Carrour[§], Franck Pellestor^{‡, δ}, Bernard Klein^{*,§, ϕ}, Lionel Reyftmann[#], Hervé Dechaud[#], John De Vos^{*,§, ϕ ,1 and Samir Hamamah^{*,§,‡, ϕ ,1}}

§ CHU Montpellier, Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, Montpellier,
F-34000 France; * INSERM, U 475, Montpellier, F-34000 France; φ Université
MONTPELLIER1, UFR de médecine, Montpellier, F-34000 France; ‡ CHU Montpellier,
Service de Biologie de la Reproduction B, Hôpital Arnaud de Villeneuve, Montpellier,
F-34000 France; δ Institut de Génétique Humaine, CNRS UPR1142, F-34396 Montpellier;
CHU Montpellier, Service de Gynécologie-Obstétrique B, Hôpital Arnaud de Villeneuve,
MONTPELLIER, F-34000 France.

Running Title: Gene expression profiling of oocytes **Key words:** oocytes, germinal cells, microarray, cumulus

1: To whom correspondence should be addressed: Pr. Samir Hamamah, CHU Montpellier, Service de Biologie de la Reproduction B, Hôpital Arnaud de Villeneuve, 371, av. du Doyen Gaston Giraud, 34295 MONTPELLIER cedex 5, Fax: + 33 4 67 33 62 90. Email: <u>s-hamamah@chu-montpellier.fr</u>; Dr John De Vos, Research Institute for Biotherapy, Hôpital Saint-Eloi, 80 rue Augustin Fliche, 34295 Montpellier Cedex 5, France. Fax: 33-(0)4-67-33-01-13. Email: <u>devos@montp.inserm.fr</u> **BACKGROUND**: The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells.

METHODS: Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF.

RESULTS: In addition to known genes such as *DAZL*, *BMP15* or *GDF9*, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-to-cell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7.

CONCLUSION: The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors.

2/37

Introduction

The quality of oocytes obtained under controlled ovarian stimulation (COS) for assisted reproductive technology (ART) varies considerably. While most oocytes are amenable to fertilization, only half of those fertilized complete preimplantation development and even fewer implant. During follicle growth, the oocyte obtains the complement of cytoplasmic organelles and accumulates mRNAs and proteins that will enable it to be fertilized and to progress through the first cleavage divisions until embryonic genes start to be expressed. Transcriptional activity decreases as the oocyte reaches maximal size (Fair *et al.*, 1995) and later on the oocyte depends on stored RNAs for normal function during maturation, fertilization and early embryonic development (Moor *et al.*, 1998). After oocyte retrieval, the mature oocyte (MII) and some still immature oocytes (GV and MI) are surrounded by the cumulus oophorus. Several layers of cumulus cells surround the oocyte in antral follicle and play an important support and regulation role in oocyte maturation (Dekel and Beers, 1980; Larsen *et al.*, 1986).

Analysis of the oocyte maturation using microarray analysis techniques could detail the genes involved in this process and the specific checkpoints regulating acquisition of full competence for ovulation and fertilization. The understanding of the molecular processes involved in the development of a competent oocyte under COS conditions could guide the choice of ovarian hyperstimulation protocols and lead to improvements in oocyte quality, oocyte culture and manipulation. Some studies demonstrate that changes in gene expression during COS, such as *GDF9* or *Bone Morphogenic Protein-15 (BMP15)* in oocyte, or *Pentraxin 3 (PTX3)* in cumulus cell, can be monitored for selecting oocytes for fertilization and embryos for replacement (Elvin *et al.*, 1999; Yan *et al.*, 2001; Zhang *et al.*, 2005). Therefore, transcriptome studies in human oocytes and cumulus cells could contribute not only to elucidate the mechanisms of oocyte maturation, but could also provide valuables molecular markers of abnormal gene expression in oocytes with reduced competence. The aims of the present study were to establish: (1) whole genome transcriptome of human immature and matures oocytes and cumulus cells, (2) specific gene expression signatures of immature and mature oocytes and cumulus cells and (3) genes whose expression progressively increase during oocyte maturation.

Materials and Methods

Oocytes and cumulus cells

Oocytes and cumulus cells were collected from patients consulting in our center for conventional in vitro fertilization (cIVF) or for intracytoplasmic sperm injection (ICSI). This study has received institutional review board approval. Patients were stimulated with a combination of gonadotropin-releasing hormone agonist (GnRH-a) (Decapeptyl PL 3; Ipsen, Paris, France) and recombinant FSH (Puregon and Gonal F; Organon and Serono respectively) or Menopur (Ferring). Ovarian response was evaluated by serum estradiol level and daily ultrasound examination to observe follicle development. Retrieval of oocytes occurred 36 hours after hCG administration and was performed under ultrasound guidance. Cumulus cells were removed from a mature oocyte (MII) 21 hours post insemination. Immature oocytes (GV and MI) and unfertilized MII oocytes were collected 21 hours or 44 hours post insemination or post microinjection by ICSI. Cumulus cells and oocytes were frozen at -80°C in RLT buffer (RNeasy kit, Qiagen, Valencia, CA, USA) before RNA extraction. Pools of 20 GV (7 patients, age 30 years ±4.6), 20 MI (6 patients, age 30.1 years ± 6.7) and 16 MII oocytes (6 patients, age 34 years ± 4.5) were analyzed by DNA microarrays. All these oocytes were from couples referred to our center for cIVF (tubal infertility) or for ICSI (male infertility).

Complementary RNA (cRNA) preparation and microarray hybridization

RNA was extracted using the micro RNeasy Kit (Qiagen) and the RNA integrity was assessed by using an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA). RNA quantity was also assessed for some samples using the Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies Inc., DE, USA). cRNA was prepared according to the manufacturer's protocol "small sample protocol II" starting from total RNA (ranging from ~4 ng pooled oocytes to 100 ng cumulus cells), and hybridized to HG-U133 plus 2.0 GeneChip pangenomic oligonucleotide arrays (Affymetrix, Santa Clara, CA, USA). HG-U133 plus 2.0 arrays contain 54 675 sets of oligonucleotide probes ("probeset") which correspond to $\approx 39\,000$ unique human genes or predicted genes. The GeneChip system is a robust microarray system with 3000 publications using this technology more than (http://www.affymetrix.com/community/publications/index.affx), little lab-to-lab variability and a good accuracy and precision (Irizarry et al., 2005). Primary image analysis of the arrays was performed by using GeneChip Operating Software 1.2 (GCOS) (Affymetrix), resulting in a single value for each probe set ("signal"). Data from each different array experiment were scaled to a target value of 100 by GCOS using the "global scaling" method. The dataset was floored to 2, i.e. each signal value under 2 was given the value 2.

Statistical analysis

Samples were analyzed using a pair wise comparison using the GCOS 1.2 software (Affymetrix). Of interest, this algorithm provides the information of whether a gene is expressed with a defined confidence level or not ("detection call"). This "call" can either be "present", when the perfect match probes are significantly more hybridized than the mismatch probes, "absent" when both perfect match and mismatch probes display a similar fluorescent signal, or "marginal" when the probeset does neither comply to the "present" nor to the "absent" call criteria. A gene was denoted as exclusively expressed in one category when this gene displayed a detection call "Present" in this given category and "Absent" or "Marginal" in all other three categories. A gene was considered as over- or underexpressed in a category when all three possible pair wise comparisons showed a significant change p-value ($P \le 0.01$) according to the GCOS 1.2 software and a ratio ≥ 3 or ≤ 0.333 for the genes increased and decreased respectively. We also determined a list of genes whose expression progressively increased during oocyte maturation by selecting the probesets with a significant increase

according to the GCOS 1.2 algorithm and matching the following ratio constraints: cumulus < GV (with GV/Cumulus \geq 3), GV < MI (MI/GV \geq 1.73) and MI < MII (MII/MI \geq 1.73), where cumulus, GV, MI and MII stands for signals values in these samples. Note that 1.73 x 1.73 = 3. Gene annotation was based on Unigene Build 176.

For hierarchical clustering, data were filtered (15 000 genes with a significant expression ("present" detection call) in at least one sample and with the highest variation coefficient), log transformed, median centered, and processed with the CLUSTER and TREEVIEW software packages with the average linkage method and an uncentered correlation (Eisen *et al.*, 1998). Gene Ontology (GO) annotations (http://www.geneontology.org/) were obtained and analyzed via the FATIGO web site tool (http://www.fatigo.org/) using level three annotations. In some cases we used the GO annotations downloaded from the Affymetrix NetAffx database. Genes with a role in cell-to-cell communication function were obtained by filtering the genes on the following criteria: cellular component comprising the terms "membrane" or "extracellular". Bibliographical search was carried out in Pubmed using Boolean logic. For each gene *G* present in table 2 and 3, using its Hugo approved abbreviation or any of its aliases, we looked for publication matching the query « gene *G* AND (gamete or "germ cell" or "germ cells" or egg or eggs or oocytes or oocyte or meiosis) » for genes found preferentially expressed in cumulus cells.

The expression, including signal values, of all genes cited in Tables 2 and 3 can be examined on our web site as online supplemental data : http://amazonia.montp.inserm.fr/the_human_oocyte_transcriptome.html. Expression of these genes in various normal tissues transcriptome datasets, including ovarian and testis samples, is provided through the Amazonia! database web page (Manuscript in preparation).

Results

Identification of genes expressed in human oocytes and cumulus cells

Total cRNA was synthetized from pools of GV, MI or MII stage oocytes, or cumulus cells, then labeled and hybridized to pan-genomic oligonucleotide microarrays. We analyzed the detection call (GCOS 1.2 software) of all 54 675 probes in oocytes and cumulus samples. Oocytes express in average 8728 genes. The lowest number of genes expressed was found in MII oocytes (n = 5 633) and highest in GV oocytes (n = 10 892) (Table 1). We found that expression variations between MI, MII or GV samples was low as illustrated by tight scatter plots and high correlation coefficients (0.63 – 0.92), as opposed to a marked difference of expression between the cumulus sample and the oocytes samples as illustrated by dispersed scatter plots and low correlation coefficients (0.39 – 0.50) (Figure 1A).

We visualized the respective gene expression across all samples using hierarchical clustering. Average linkage hierarchical clustering on 15 000 genes showed that oocytes cluster together, demonstrating a common gene expression, but are only distantly related to cumulus cells (Figure 1B). These results highlight that feminine germ cells and their nourishing neighbor cumulus cells display very different expression profile, in agreement with a very different but complementary biological function and with cell lineage disparity.

Specific transcription program in each sample type

We next examined which genes were specific to each sample category, using two different approaches. First we determined the genes that were only detected in one sample and not in the three other samples. These genes were called "exclusively expressed" (Table 1). As expected, cumulus cells have the largest number of exclusively expressed genes (n = 1829), likely because they display a very different transcriptome as compared to oocytes (n = 234 - 739). Second, we considered the probes that were overexpressed or underexpressed in one sample compared to all three other samples, with a fold ratio of at least three. Again, cumulus

cells show the largest lists of genes, overexpressing 2600 and underexpressing 1514 genes as compared to oocytes. Using this rather stringent criteria (fold change of at least 3 between a given sample and the three other samples), we found very few genes over or under expressed in GV and MI oocytes. This shows that very few genes modify their expression between GV and MI oocytes, as opposed to MII oocytes that overexpress more than 400 genes and underexpress more than 800.

We compared functional Gene Ontology annotations of overexpressed genes versus under expressed genes in oocytes and cumulus cells. We observed that certain functional annotations were more represented in either oocytes or cumulus cells (Figure 2). There were significantly more genes involved in "Response to stimulus", "Secretion", "Extracellular matrix" in cumulus cells, suggesting that cumulus cells are more active in cell-to-cell communication processes. Conversely, genes annotated "Reproduction", "Ubiquitin ligase complex", "Microtubule associated complex", "Microtubule motor activity", "Nucleic acid binding", "Ligase activity" were significantly more frequently associated with genes overexpressed in oocytes, in agreement with the major processes involved in meiosis and implying microtubules attachement to chromosomes and the ubiquitin ligase complex APC/C regulation.

Whole genome transcriptome of oocytes

We observed that 1514 genes were expressed with at least a 3-fold increase in oocytes, i.e. underexpressed in cumulus cells when compared to oocytes. Selected genes are highlighted in Table 2, which is also available as web supplemental data including the expression histogram for each gene (http://amazonia.montp.inserm.fr/the_human_oocyte_transcriptome.html). This list includes genes already recognized as specifically expressed in male and female germinal cells in mammals such as *DAZL*, the *RNA helicase DDX4/VASA* or *DPPA3/STELLA* (full

names are listed in Table 2). Numerous well recognized actors of meiosis were highly expressed in oocytes: the components of the maturation-promoting factor (MPF) (CDC2/CDK1, CCNB1, CCNB2), CDC25 phosphatases (CDC25A, CDC25B and CDC25C), components of the spindle checkpoint (BUB1, BUBR1, MAD2L1/MAD2, CENP-A, CENP-E), CDC20 which is a components of the anaphase promoting complex (APC/C), and a downstream target, the meiosis specific sister chromatid arm cohesin STAG3 (Figure 3A). As expected, we observed the overexpression of genes known to be specific of oocytes such as the Zona Pellucida genes (ZP 1, 2, 3 and 4), members of the transforming growth factor-beta superfamily such as Growth differentiation factor 9 (GDF9), Bone morphogenetic protein 6 and 15 (BMP6 and BMP15), FGFR2, the chromatin remodeling molecules histone deacetylase HDAC9 and the oocyte-specific H1 histone H1FOO (Figure 3B). Thus, the data are in complete agreement with published studies. Interestingly, we show here that many genes, previously found expressed in oocytes in various animal models, are indeed highly expressed in human oocytes. Hence, our microarray data are of sufficient scope and accuracy to pave the way to a systematic gene expression exploration of oocyte and cumulus transcriptome.

We observed that several genes previously reported to be expressed in male germ cells are also highly expressed in human oocytes, in all maturation stages, such as *Aurora Kinase C* (*AURKC*), *SOX30*, or *Sperm Associated Antigen 16* (*SPAG16/PF20*). Still, the majority of the genes we found overexpressed in oocytes were not yet reported to be associated with gamete biology. Some of these previously unrecognized "oocytes genes" are listed in Table 2 and comprise several functional categories. After fertilization, the spindle checkpoint inhibition is released and the APC/C complex degrades the securins, resulting in entry into anaphase. We found that genes of the centromere protein *CENPH* that interacts with the spindle checkpoint, the anaphase promoting complex subunits *ANAPC1* and *ANPC10* are highly expressed in

oocytes. Moreover, the securing genes *PTTG1* and *3* are 58 and 50 times more expressed in oocytes than in cumulus cells, respectively. We found several growth factors and growth factor receptors significantly overexpressed in oocytes (*IL-4, FGF9, FGF14, TNFSF13/APRIL*), transcription factors (*SOX15, OTX2, FOXR1*), three anti-apoptosis molecules (*BCL2L10, BNIP1, BIRC5/Survivin*), and the glucose transporter *SLC5A11*.

Whole genome transcriptome of cumulus cells

Conversely, we observed that 2600 genes are overexpressed in cumulus cells compared to all three oocytes samples. The cumulus sample we studied was obtained from a MII oocyte during ovulation. First, we observed a marked expression of the LH receptor LHCGR in cumulus cells, which primes these cells to respond to the LH surge. Second, we observed that genes overexpressed in MII cumulus cells comprise the main genes that are induced by the LH surge during ovulation (Table 3). We observed a very high expression of the progesterone receptors *PGRMC1* and 2, and the steroidogenic acute regulatory (*STAR*) that are induced by LH. Similarly we found that eicosanoids biosynthesis enzymes such as the two Prostaglandin Endoperoxyde Synthetase PTGS1 and PTGS2/COX2 and the Prostaglandin I2 (Prostacyclin) Synthase PTGIS, the Prostaglandin Receptor PTGER2, and two downstream effector of this signalling pathway, Interleukin IL1beta and Pentaxin-Related 3 (PTX3), are also overexpressed in cumulus cells. These genes were mostly described in animal models, and we show here for the first time that the RNA expression of these genes is also highly induced in human cumulus cells obtained after ovulation. Two chemokines are highly produced by cumulus cells, CXCL1/GRO-alpha and IL8, in agreement with the invasion of the granulosa by leucocytes during ovulation. Interestingly, the metalloprotease ADAMTS1, as well as its target Versican whose cleavage has been shown to contribute to the proteolytic disintegration of the cumulus matrix, were also highly induced. The transcription factor CEBPB, induced after the gonadotrophin surge and mediating the upregulation of *inhibin alpha (INHA*), is

found overexpressed in our post stimulation cumulus cells. Accordingly, *INHA*, as well as *INHBA/Activin A*, are 5 and 34 times more expressed in cumulus cells than in oocytes respectively. Another transcription factor characteristic of granulosa cells, *GATA6*, is also highly overexpressed in comparison to oocytes. We observed the upregulation of peroxiredoxins (*PRDX2, 4, 5 and 6*) that are part of a family of peroxidases involved in antioxidant protection and cell signaling and recently reported in bovine ovaries (Leyens *et al.,* 2004), as well as a lysosomal cysteine proteinase, *cathepsin K* (*CTSK*). Genes coding for protein found in follicular fluid such as *PAPPA* are also found overexpressed in cumulus cells. Thus, genes found overexpressed in cumulus cells by our whole genome transcriptome analysis recapitulates previous expression studies on post-LH surge granulosa cells carried out in various species.

Considering that cell-to-cell communication genes are a functional category that plays an essential role in the maturation of the cumulus-oocyte complex, we focused on genes filtered on the Gene Ontology cellular localization annotations "membrane" or "extracellular" (see material and method): 615 genes passed this filter. The most noticeable genes from this list were ligands (BMP1, BMP8B) or receptors (BAMBI, BMPR2) from the TGF superfamily, (TNFSF11/OPGL/RANKL) ligands or receptors from the **TNFR** superfamily (TNFRSF1A/TNF-R, TNFRSF10B/DR5, TNFRSF12A), components of the complement (CFHL1, C7, IF, CFH, C1S, C1R) and one inhibitor of the complement system (CLU), semaphorins (SEMA3A, SEMA6A, SEMA6D), tetraspanins (TM4SF1, TM4SF6, TM4SF8, TM4SF10) and various CD members (CD24, CD44, CD47, CD58, CD59, CD63, CD74, CD81, CDW92, CD99, CD151, CD200). Table 3 lists these genes, references key publications relevant for feminine reproduction biology. Furthermore, components of the cumulus-oocyte complex signalling pathways were retrieved such as *connexin 43*. We found that this connexin was expressed at a high signal in both cumulus cells and in all oocytes categories, in line with its extracellular domains that provide strong and specific homophilic adhesion properties. Most interestingly, many of these genes were never before highlighted as expressed in granulosa cells.

Differences in genes expression variation during oocyte maturation

An important feature of our work is that we established a transcriptome for each of the three stages of oocyte maturation: GV, MI and MII. We were thus able to identify genes whose expression gradually increased during oocyte maturation (see material and method). Fifty two probesets were retrieved, including the phosphatase *CDC25A*, *PCNA* and *SOCS7*. However, most of the resulting genes are poorly characterized or only predicted coding sequences. All these genes are candidate marker for oocyte cytoplasmic and/or nuclear maturation.

Discussion

We undertook to establish the molecular transcriptome phenotype of the human oocyte and its surrounding cumulus cells by using oligonucleotide microarrays covering most of the genes identified in human. Relying on a recently developed technique of double in vitro transcription, that amplifies more than 100 000 times the initial RNA input, we were able to establish the expression profile of pooled oocytes from distinct maturation stages, and from cumulus cells of MII oocytes. Thus, for the first time, we report in human samples, the variation of gene expression during oocyte nuclear maturation, and that of their neighboring cumulus cells, at whole genome scale. A global analysis of the number of genes expressed during oocyte nuclear maturation, with the lowest number of genes expressed found in MII oocytes compared with GV or MI oocytes. This is in agreement with the significant decrease, both in quantity and in diversity, of maternal RNAs observed in mouse oocytes (Bachvarova *et al.*,

HAL author manuscript inserm-00130809, version 1

1982)(Wang *et al.*, 2004). Indeed, GV and MI oocytes over or under expressed few genes compared with the other samples (Table 1), reflecting a very similar expression profile. By contrast, MII oocytes differed markedly, underexpressing specifically many genes (n = 803), which may be explained by the RNA content decrease. In addition, MII oocytes overexpress 444 genes, which may be due to a specific expression pattern related to the near completion of meiosis, or to the longer in vitro incubation time secondary to the IVF procedure (21 or 44 hours post-insemination).

Hierarchical clustering demonstrated that oocytes expression profiles where markedly different from cumulus cells (Figure 1). We compared the oocytes samples to the cumulus cells and we found that 1514 genes were upregulated in oocytes whereas 2600 genes were upregulated in cumulus cells. Analyzing these lists of genes, we observed that oocyte markedly overexpressed genes involved in meiosis process such as MPF, APC/C and spindle checkpoint complexes. Full completion of meiosis is only accomplished after fecundation because metaphase exit is prevented by the activity of cytostatic factor (CSF) that will only be relieved by gamete fusion. As expected, EMI1, which was recently found to be part of CSF, is highly expressed in all oocytes samples, as well as MOS. We also found that the two major cyclin-dependent kinase inhibitors CDKN1A/p21 and CDKN1B/p27, acting at the G1-S transition, were found markedly downregulated in oocytes as compared to cumulus cells (see Table 3). The separation of sister chromatids at the metaphase-to-anaphase transition is activated by proteases called separases that are activated by the destruction of the inhibitory chaperone securins. Interestingly, we found two securins highly expressed in all oocytes pools: PTTG1 and 3. These securins are expressed at least 15 times more in oocytes than in cumulus cells, CD34+ sorted bone marrow cells, B lymphocytes or mesenchymal stem cells (data not shown). PTTG1 expression was reported in mice oocytes, but not human oocytes, whereas PTTG3 marked expression in oocytes was not previously noted. Considering that post-ovulation oocytes are germinal cells that have just escaped the very long meiosis I arrest and are due to the second meiosis arrest, securins, that are crucial to these processes, must be expressed at a high level. We propose that *PTTG1* and 3 play this role in oocytes (Figure 3). The metaphase-to-anaphase transition is associated with a rapid drop of securin protein level mediated by the proteases of the separase family. Degradation of securins leads to the destruction of cohesins, a ring structure formed by a multisubunit complex that holds sister chromatids together. We confirm the specific upregulation of the meiosis-specific cohesin subunit *STAG3* in human oocytes, whereas the mitotic cohesin *STAG2* is markedly downregulated in oocytes compared to cumulus cells or other somatic cells (data not shown). Thus, as for the securins, two homologs of an essential component of the cell division machinery are differentially expressed between human oocytes and somatic cells, implying that one homolog (the cohesin *STAG2*) is operating during mitosis, whereas the other homolog (the cohesin *STAG3*) is replacing the first one during the very specialized cell division process of meiosis.

The high conservation of many of the molecular determinants of gametogenesis in the animal kingdom, sometimes from yeast to mammals, suggests that genes found in mammals oocytes should be expressed in human oocytes. We provide here the unambiguous demonstration for many genes that they are indeed strongly overexpressed in the three pools of oocytes (Table 2). These genes include *CENPA*, *CENPE*, *PTTG1*, *FBXO5/EMI1* or *BMP6*. These results underscore the consistency of our approach. Furthermore, the inventory of human genes essential for nuclear and cytoplasmic oocyte maturation is an important step toward the comprehensive understanding of oocyte biology.

Although female and male gametes differ in many aspects, they share a common meiosis machinery. Indeed, we see here that genes reported to be expressed specifically in spermatozoa are also highly overexpressed in oocytes in comparison with somatic cumulus (SPA Three HAL cons asser invo sugg inserm-00130809, version 1

cells. This is the case for *Aurora Kinase C (AURKC)*, *Sperm Associated Antigen 16* (*SPAG16/PF20*) and *SOX30* (Osaki *et al.*, 1999; Horowitz *et al.*, 2005; Yan *et al.*, 2005). Three aurora kinases have been identified (*AURA/STK6*, *AURKB* and *AURKC*) that share a conserved catalytic domain and play a role in centrosome separation and maturation, spindle assembly and segregation, and cytokinesis (Giet *et al.*, 2005). Whereas *AURA* and *AURKB* are involved in mitosis in somatic cells, *AURKC* was only found highly expressed in testis, suggesting a tissue specific role in meiosis. It is therefore of special interest to observe that *AURKC* is also 49 times more expressed in pure oocytes samples than in somatic cells. Since *AURKB* and *AURKC* have a similar cellular localization and a similar biological activity such as *SURVIVIN/BIRC5* binding, we propose that *AURKC* is replacing *AURKB* during meiosis in both male and female gametes. In line with this proposition, our data shows that in oocytes samples, *AURKB* expression is close to background whereas survivin/BIRC5, a known partner of the *AURKC* complex (Yan *et al.*, 2005) is also strongly overexpressed.

We found the specific upregulation in oocytes of two methyltransferase enzymes (*DNMT1* and *3B*), one histone deacetylase (*HDAC9*) and an oocyte specific histone (*H1FOO*). Interestingly, the *Chromosome Condensation Protein G* (*HCAP-G*) which is a components of the condensin complex that mediates genome-wide chromosome condensation at the onset of mitosis and directly interacts with *DNMT3B* (Geiman *et al.*, 2004) is also found preferentially expressed in oocytes, suggesting that this condensin is essential to the nuclear maturation of oocytes. Keeping in line with epigenetic modifications of the genome, we screened our list of oocytes genes for imprinted genes. Of note, one paternally imprinted gene, *MEST*, was highly overexpressed in all three oocytes samples as compared to cumulus cells, while other paternally imprinted gene such as *IGF2* or *NNAT* were not.

We noted the overexpression of two pro-apopototic genes in oocytes (*BNIP1* and *BCL2L10*). These findings strongly argue in favor of a model where the survival of oocytes is mediated by external signals provided by surrounding cumulus cells rather than by intrinsic cues such as overexpression of anti-apoptotic factors. Accordingly, we found many receptors for growth factors overexpressed on oocytes, including a BMP receptor (BMPR2), the receptor for the stem cell factor (KIT), a member of the EGF receptor familiy (ERBB4), and a frizzled receptors (FZD3) member of the WNT pathway. In addition we observed 6 poorly characterized G protein-coupled receptors in oocytes (GPR37, GPR39, GPR51, GPR126, GPR143, GPR160). The fact that oocytes overexpress these growth factors receptors strongly suggests that the ligands of these receptors are involved in conveying surviving and maturation cues from the oophorus cumulus to the oocytes. Conversely, oocytes express many growth factors. Among the genes, we noted the remarkable overexpression of a ligand from the TNF superfamily, TNFSF13/APRIL that we found 131 times more expressed in oocytes than in cumulus cells. We did not see a significant expression of the two TNF receptors for APRIL, TNFRSF13B/TACI and TNFRSF17/BCMA (data not shown). But it was recently described that APRIL's binding to proteoglycan was necessary for the survival signal conveyed by this cytokine to targets cells (Ingold et al., 2005). Since cumulus cells overexpress several proteoglycan such as CSPG2/VERSICAN (Table 3) and SYNDECAN4 (data not shown), APRIL could mediate a comparable trophic signal from the oocyte to the surrounding cumulus cells.

We also focused our analysis on genes which expression increased progressively during oocyte meiosis. We postulate that they could be interesting candidate genes for oocyte maturation. Indeed, if these genes fail to be upregulated in MII-stage oocytes, it is likely that the maturation process was defective. Genes increasing progressively during oocyte maturation comprise *SOCS7*. This gene is part of a family of proteins negatively regulating intracellular signal transduction cascades (Krebs and Hilton, 2000). Its overexpression in MII-stage oocytes may indicate the shutting down of specific cytokine signalling. For this

a fi b HAL author manuscript inserm-00130809, version 1

category, it must also be noted that many genes are still not characterized and remain without any hint about their function (20 out of 48 genes, = 42%). It is not a surprise if so many genes from this list have escaped bioinformatics or biological functional investigations to date, because (i) MII-stage oocytes are a very rare cell type, (ii) it is a very specialized cell type expressing numerous genes that may not be found in any other tissue type, including genes devoided of any molecular motif found in other tissues, and (iii) we used here pangenomic microarray to study here for the first time gene expression of this cell type without any selection bias. It will be essential to describe in detail the function of these genes to obtain further insights in oocyte biology.

In order to decipher the tight relationship weaved between the oocyte and its surrounding follicle cells, we also analyzed the transcriptome profile of cumulus cells. Indeed, 24% of the 2600 genes overexpressed in cumulus cells are annotated either "membrane" or "extracellular", demonstrating a strong bias towards genes involved in cell-to-cell communication processes. The signalling pathways involved comprise the progesterone and its receptors, eicosanoids and several enzymes involved in their biosynthesis and chemokines. We showed in this study that cumulus cells up regulated hormonal receptors and hormones such as *LHCGR*, *Inhibin alpha*, *Inhibin beta A*, *GNRH1* and *progesterone receptor membrane component1 and 2*.

Interestingly, cumulus cells overexpress *BMPR2* which is the receptor for *GDF9* which is overexpressed by oocytes, demonstrating a typical intercellular communication process. In addition to the inhibins *INHA* and *INHBA*, we also observed the overexpression of *BMP1* and *BMP8B*, as well as the pseudoreceptor *BAMBI*, lacking an intracellular serine/threonine kinase domain and thus negatively regulating TGF-beta signalling. Another important growth factor superfamily found to be overexpressed in cumulus is the TNF superfamily. The marked

overexpression of *TNFSF11/OPGL/RANKL* (80 times more expressed in cumulus cells than in oocytes) is intriguing and awaits further investigations. Magier et al. suggested a positive effect of cumulus cells on fertilization, a protective effect and a possible beneficial effect on further embryo development (Magier *et al.*, 1990). In addition, Platteau et al. (Platteau *et al.*, 2004) suggested that the exogenous luteinizing hormone activity may influence treatment outcome in IVF but not in ICSI. We provide here molecular evidence for cumulus cells expression by of hormones and growth factors that could mediate these functions.

Another puzzling observation is the increased expression of seven complement factors or closely related genes. Whether this overexpression is involved in the cellular destruction process taking place in the antrum during ovulation needs to be considered. Finally, cumulus cells express several other cell surface gene families such as semaphorins, first identified for their role in neuron guidance, tetraspanins, with one member, *CD9*, directly involved in fertilization (Le Naour *et al.*, 2000), and many other CD molecules with various function (Table 3). Very interestingly, some genes overexpressed in granulosa cells are also found expressed in ovarian tumors. We found for example a high expression in cumulus cells of *CD24* and *CD99* which are expressed in ovarian tumors and have been proposed as either diagnostic tools (Choi *et al.*, 2000) or as prognostic tools (Kristiansen *et al.*, 2002). These findings suggest that many of the genes overexpressed in cumulus samples, including the cell surface markers of cumulus cells listed in Table 3, could provide ovarian cancer markers.

We pooled oocytes according to their maturation stage for this first, exploratory, whole genome transcriptome analysis. This strategy leveled down differences that would be associated with different IVF settings such as maternal age, sperm exposure or in vitro incubation time length. In order to describe the expression modifications that may be related to specific conditions, we are currently analyzing the transcriptome of oocytes pooled according to the hormonal profile at day 3, maternal age or ovarian hyperstimulation protocol.

Nevertheless, to appreciate variations in gene expression according to each patients idiosyncrasy, we will need to achieve reliable transcriptome analysis from single oocytes. In conclusion, DNA microarray provided us with the opportunity to analyze human oocytes and cumulus cells expression profiles on a genome scale and permitted a significant progress to understand the molecular events involved in the process governing oocyte maturation. Many of the genes described here may well provide markers to monitor health, viability and competence of oocytes. In addition, underpinning oocyte growth factors receptors should help to design optimal in vitro culture conditions for oocyte and early embryo development.

Acknowledgments

We are grateful to Stephan Gasca, Irène Fries, Benoit Richard, Benoit Latucca and Benoît Crassou for helpful discussions. We wish to thank all members of our ART team for their assistance during this study. This study was supported by grants from Ferring and Organon Pharmaceuticals France.

Tables

Table 1 : genes expressed in oocytes and cumulus cells

	GV	MI	MII	Cumulus
Expressed genes (1)	10 869	9 682	5 633	10 610
Exclusive genes (2)	739	326	234	1 829
Genes overexpressed (3)	104	4	444	2600
Genes underexpressed (4)	6	5	803	1514

1: genes (based on Unigene Build 176) that had at least one probe with a detection call "Present".

2: genes (based on Unigene Build 176) that had a detection call "Present" only in one sample category.

3: genes significantly overexpressed in one sample compared to all other samples, with a fold ratio of at least three.

4: genes significantly underexpressed in one sample compared to all other samples, with a fold ratio of at least 0.333.

Table 2 : genee	s significantly overexpressed in oocyte	70				
Gene Symbol	Gene Title	Fold ratio	Probeset	Chromosom al Location	Specie s (1)	References
Gamete markers						
DAZL DDX4/VASA	deleted in azoospermia-like DEAD (Asp-Glu-Ala-Asp) box polypeptide 4	976.3 1181.5	206588_at 221630_s_at	chr3p24.3 chr5p15.2-	ב ב	(Nishi <i>et al.</i> , 1999; Cauffman <i>et al.</i> , 2005) (Castrillon <i>et al.</i> , 2000)
DPPA3/STELLA	developmental pluripotency associated 3	10389.1	 231385_at	p13.1 chr12p13.31	۲	(Saitou <i>et al.</i> , 2002)
Maturation promotiny	g factor and related factors					
CCNB1	cyclin B1	157.0	228729_at	chr5q12	۲	(Heikinheimo <i>et al.</i> , 1995)
CCNB2	cyclin B2	308.8	202705_at	chr15q22.2	q	(Wu <i>et al.</i> , 1997)
CDC2	cell division cycle 2, G1 to S and G2 to M	18.4	210559_s_at	chr10q21.1	E	(Kalous <i>et al.</i> , 2005)
CDC25A	cell division cycle 25A	90.8	1555772_a_a t	chr3p21	E	(Wickramasinghe <i>et al.</i> , 1995)
CDC25B	cell division cycle 25B	9.7	201853_s_at	chr20p13	E	(Lincoln et al., 2002)
CDC25C	cell division cycle 25C	75.2	205167_s_at	chr5q31	U	(Gall <i>et al</i> ., 2002)
Spindle checkpoint						
RI IR 1	BUB1 budding uninhibited by benzimidazoles 1	20.6	209642_at	chr2q14	۲	(Steuerwald <i>et al.</i> , 2001)
BLIB1B / BLIBR1	BUILDER BUDB budding uninhibited by benzimidazoles 1 homolog beta	117.8	203755_at	chr15q15	×	(Abrieu <i>et al.</i> , 2000)
CENPA	centromere protein A	88.1	204962_s_at	chr2p24-p21	E	(Schatten et al., 1988)
CENPE	centromere protein E	113.9	205046_at	chr4q24-q25	E	(Duesbery <i>et al.</i> , 1997)
CENPH	centromere protein H	14.3	231772_x_at	chr5p15.2	NR	
MAD2L1/MAD2	MAD2 mitotic arrest deficient-like 1	53.5	203362_s_at	chr4q27	E	(Wassmann <i>et al.</i> , 2003)
APC/C complex, sec	curins, cohesins					
ANAPC1/APC1	anaphase promoting complex subunit 1	6.8	218575_at	chr2q12.1	NR	
ANAPC10/APC10	anaphase promoting complex subunit 10	7.0	207845_s_at	chr4q31	NR	
CDC20	CDC20 cell division cycle 20	273.9	202870_s_at	chr1p34.1	E	(Chang <i>et al.</i> , 2004)
PTTG1	pituitary tumor-transforming 1	58.2	203554_x_at	chr5q35.1	E [(Yao et al., 2003)
PTTG3 etags	pituitary tumor-transforming 3	50.4 76.9	208511_at 240753_at	chr8q13.1 ⊔- 323634	х г	(Prieto <i>et al.</i> . 2004)
00410		>>>	<u>ר ואו טט_</u> מו	12.02004	:	

23 /37

Epigenetic remodeling

DNMT1	DNA (cvtosine-5-)-methvltransferase 1	49.8	201697 s at	chr19p13.2	۲	(Huntriss <i>et al.</i> , 2004)
DNMT3B	DNA (cytosine-5-)-methyltransferase 3 beta	24.2		chr20q11.2	ч	(Huntriss <i>et al.</i> , 2004)
HDAC9	histone deacetylase 9	342.6	1552760_at	chr7p21.1	E	(De La Fuente <i>et al.</i> , 2004)
H1F00	H1 histone family, member O, oocyte-specific	414.5	1553064_at	chr3q21.3	۲	(Tanaka et al., 2003)
HCAP-G	chromosome condensation protein G	260.1	218663_at	chr4p15.33	NR	
Meiosis, miscellaneo	SIC					
AKAP1	A kinase (PRKA) anchor protein 1	72.1	210625_s_at	Hs.78921	<u>۔</u>	(Carr <i>et al.</i> , 1999)
MCM3	MCM3 minichromosome maintenance deficient 3	21.2	201555_at	chr6p12	×	(Kubota <i>et al.</i> , 1995)
NOS	v-mos Moloney murine sarcoma viral oncogene homolog	72.5	221367_at	chr8q11	۲	(Pal <i>et al.</i> , 1994)
SPAG16	sperm associated antigen 16	393.4	240898_at	chr2q34	NR	
TUBB4Q	tubulin, beta polypeptide 4, member Q	866.5	211915_s_at	chr4q35	NR	
FBXO5/EMI1	F-box protein 5	414.2	234863_x_at	chr6q25-q26	E	(Paronetto <i>et al.</i> , 2004)
AURKC	aurora kinase C	49.1	211107_s_at	chr19q13.43	NR	
Extracellular matrix,	growth factors, cell surface, signalling					
BMP15	bone morphogenetic protein 15	31.0	221332_at	chrxp11.2	۲	(Aaltonen <i>et al.</i> , 1999)
BMP6	bone morphogenetic protein 6	38.3	206176_at	chr6p24-p23	E	(Lyons <i>et al.</i> , 1989)
GDF9	growth differentiation factor 9	83.0	221314_at	chr5q31.1	Ч	(Aaltonen <i>et al.</i> , 1999)
FGFR2	fibroblast growth factor receptor 2	8.4	208228_s_at	chr10q26	E	(Haffner-Krausz <i>et al.</i> , 1999)
FGF9	fibroblast growth factor 9 (glia-activating factor)	43.8	206404_at	chr13q11-q12	NR	
FGF14	fibroblast growth factor 14	28.1	221310_at	chr13q34	NR	
КІТ	 v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 		205051 s at	chr4a11-a12	٦	(Liu, 2006)
IL4	interleukin 4	52.5		chr5q31.1	NR	
TNFSF13 / APRIL	tumor necrosis factor superfamily, member 13	131.6	210314_x_at	chr17p13.1 chr2g33 3	NR	
ERB84	v-erb-a erguinobiasuo reunerrira virar pricogerie homolog 4	32.3	206794_at	dıızqəə.ə- q34	NR	
FZD3	frizzled homolog 3	17.9	219683_at	chr8p21	NR	
GPR37	G protein-coupled receptor 37 (endothelin receptor type B-like)	64.4	209631_s_at	chr7q31	NR	
GPR39	G protein-coupled receptor 39	1234.0	229105_at	chr2q21-q22	NR	
GPR51	G protein-coupled receptor 51	5.7	209990_s_at	chr9q22.1	NR	
GPR126	G protein-coupled receptor 126	11.7	213094_at	chr6q24.1	NR	
GPR143	G protein-coupled receptor 143	94.1	206696_at	chrxp22.3	NR	

Т	
5	
2	
<u>n</u>	
Ξ.	
5	
С	
-	
₹	
ก	
٣,	
Ξ	
S	
<u></u>	
<u>-</u> .	
4	
3	
Ś	
Ð	
3	
-	
Ó	
Ö.	
-	
2	
ಸ	
ĩ.	
õ	
\leq	
4	
S.	
0.	
5	

GPR160	G protein-coupled receptor 160	11.3	223423 at	chr3a26.2	NR	
ZP1	zona pellucida glycoprotein 1 (sperm receptor)	86.6	237335_at	11q12.2	۲	(Lefievre <i>et al.</i> , 2004)
ZP2	zona pellucida glycoprotein 2 (sperm receptor)	1558.8	207933_at	chr16p12	ч	(Hinsch <i>et al.</i> , 1998)
ZP3	zona pellucida glycoprotein 3 (sperm receptor)	87.6	204148_s_at	chr7q11.23	ч	(Grootenhuis <i>et al</i> ., 1996)
ZP4	zona pellucida glycoprotein 4	52.2	231756_at	chr1q43	۲	(Eberspaecher <i>et al.</i> , 2001)
SLC5A11	solute carrier family 5 (sodium/glucose cotransporter), member 11	144.7	237254_at	chr16p-p11	NR	
SOCS7	suppressor of cytokine signaling 7	26.3	2265772_at	chr17q12	NR	
Transcription factors						
SOX15	SRY (sex determining region Y)-box 15	127.2	206122_at	chr17p13	NR	
SOX30	SRY (sex determining region Y)-box 30	618.5	207678_s_at	chr5q33	NR	
OTX2	orthodenticle homolog 2 (Drosophila)	5022.8	242128_at	chr14q21-q22	NR	
FOXR1	forkhead box R1	344.1	237613_at	chr11q23.3	NR	
Imprinted gene						
MEST	mesoderm specific transcript homolog	39.2	202016_at	chr7q32	۲	(Salpekar <i>et al.</i> , 2001)
<u>Apoptosis</u>						
BNIP1	BCL2/adenovirus E1B 19kDa interacting protein 1	20.8	207829_s_at	chr5q33-q34	NR	
BIRC5	baculoviral IAP repeat-containing 5 (survivin)	23.2	202094_at	chr17q25	NR	
BCL2L10	BCL2-like 10 (apoptosis facilitator)	623.3	236491_at	chr15q21	Е	(Burns <i>et al</i> ., 2003)

(pig); x = Xenopus laevis (frog). NR: not reported: a research in Pubmed with each synonym for this gene (as listed by LocusLink) and one of 1: h = Homo sapiens; m = Mus musculus (mouse); r = Rattus norvegicus (rat); b = Bos Taurus (cow); c = Capra hircus (goat); p = Sus scrofa the following keywords did not retrieve any significant result: oocyte, germ cell, gamete, egg, meiosis. Expression values of all the genes described in this Table can be accessed on our web site (see material and method) or can be downloaded as supplemental data.

~
_
ດາ
<u> </u>
<u> </u>
=
Ŧ
_
\sim
\cup
_
_
-
_
ີ
=
_
<u> </u>
<u> </u>
(A)
~
0
-
<u> </u>
<u> </u>
9
-
_
ິ
~
υ
<u> </u>
_
_
⊇
3
Ę
н Н
Щ-0
m-00
m-00
m-001
m-001;
m-0013
m-0013(
m-00130
m-001308
m-001308
m-0013080
m-0013080
m-00130809
m-00130809.
m-00130809.
m-00130809. v
m-00130809. vi
m-00130809. ve
m-00130809. vei
m-00130809. ver:
m-00130809. vers
m-00130809. versi
m-00130809. versic
m-00130809. versiol
m-00130809. version
m-00130809. version
m-00130809. version '
m-00130809. version 1
m-00130809. version 1

Gene Symbol	Gene Title	Fold ratio	Probeset	Chromosomal Location	Species (1)	References (2)
Hormone and hormone rec	ceptors					
LHCGR	Iuteinizing hormone/choriogonadotropin receptor	47.4	207240_s_at	chr2p21	NR	
PGRMC1	progesterone receptor membrane component 1	13.4	201121_s_at	chrxq22-q24	L	(Park and Mayo, 1991)
PGRMC2	progesterone receptor membrane component 2	7.4	213227_at	chr4q26	ч	(Tokuyama <i>et al.</i> , 2001)
STAR	steroidogenic acute regulator	33.0	204548_at	chr8p11.2	ч	(Devoto <i>et al.</i> , 2001)
GNRH1	Gonadotropin-releasing normone 1 (luternizing-releasing hormone)	26.7	207987_s_at	8p21-p11.2	٩	(Leung <i>et al.</i> , 2003)
Prostaglandins biosynthes	lis					
PTGS1	prostaglandin-endoperoxide synthase 1	5.0	215813_s_at	chr9q32-q33.3	NR	
PTGS2/COX-2	prostaglandin-endoperoxide synthase 2	18.7	204748_at	chr1q25.2-q25.3	<u>ب</u>	(Sirois <i>et al.</i> , 1993; Davis <i>et al.</i> , 1999)
PTGIS	prostaglandin I2 (prostacyclin) synthase	10.8	208131_s_at	chr20q13.11-13	NR	
PTGER2	prostaglandin E receptor 2	5.4	206631_at	chr14q22	۲	(Narko <i>et al.</i> , 2001)
<u>BMP and BMPR superfam</u>	lily					
BAMBI	BMP and activin membrane-bound inhibitor homolog	9.3	203304_at	chr10p12.3-11.2	NR	
BMP1	bone morphogenetic protein 1	10.6	202701_at	chr8p21	NR	
BMP8B	bone morphogenetic protein 8b	19.4	235275_at	chr1p35-p32	NR	
BMPR2	bone morphogenetic protein receptor, type II	7.2	225144_at	chr2q33-q34	<u>ب</u>	(Vitt <i>et al.</i> , 2002)
INHA	inhibin, alpha	5.2	210141_s_at	chr2q33-q36	۲	(Jaatinen <i>et al.</i> , 1994)
INHBA	inhibin, beta A (activin A, activin AB alpha polypeptide)	34.8	210511_s_at	chr7p15-p13	۲	(Rabinovici <i>et al.</i> , 1992)
TNF and TNFR superfamil	Л					
TNFSF11/OPGL/RANKL	tumor necrosis factor (ligand) superfamily, member 11	79.9	210643_at	chr13q14	NR	
TNFRSF1A/ TNF-R	tumor necrosis factor receptor superfamily, member 1A	14.9	207643_s_at	chr12p13.2	NR	
TNFRSF10B/ DR5	tumor necrosis factor receptor superfamily, member 10b	5.9	209295_at	chr8p22-p21	NR	
TNFRSF12A	tumor necrosis factor receptor superfamily, member 12A	4.6	218368_s_at	chr16p13.3	NR	

Table 3 : genes significantly overexpressed in cumulus oophorus cells

N N

chr1q32 chr5p13

105.8 215388_s_at 202992_at

complement factor H-related 1 complement component 7

CFHL1 C7

TNFRSF12A Complement 135.8

T
-
~
യ
<u></u>
5
0
<u> </u>
_
2
<u>ש</u>
\neg
S
õ
Υ.
<u> </u>
Q.
-
=.
ູ
Ω.
D
-
ċ
\simeq
਼
_
ω
Ō
\approx
8
_
ب
പ്പ
0
00 ~
<u>)</u> 9. √€
09. vei
09. vers
)9. versi
09. versio
09. version
09. version

Ľ	former (complete)	7 72	202051 24	chr1c05	AR	
CFH	complement factor H	40.0	2138UU_at	cnr1q3z		
C1S	complement component 1, s subcomponent	28.0	208747_s_at	chr12p13		
C1R	complement component 1, r subcomponent	9.1	212067_s_at	chr12p13	NR	
CLU	clusterin (complement lysis inhibitor)	140.9	208791_at	chr8p21-p12	<u>۔</u>	(Hurwitz <i>et al.</i> , 1996)
Secreted (other)						
CXCL1	chemokine (C-X-C motif) ligand 1	8.0	204470_at	chr4q21	۲	(Karstrom-Encrantz <i>et al.</i> , 1998)
IL1B	interleukin 1, beta	11.7	39402_at	chr2q14	۲	(de los Santos <i>et al.</i> , 1998)
IL8	interleukin 8	12.9	202859 <u>x</u> at	chr4q13-q21	۲	(Runesson <i>et al.</i> , 2000)
	tissue inhibitor of metalloproteinase 1 (erythroid	25.3	201666_at	chrxp11.3-23	۲	(O'Sullivan <i>et al.</i> , 1997)
TIMP3	processing activity consignation mission tissue inhibitor of metaloproteinase 3 (Sorsby fundus destroyable neeridoinflammaforv)	19.9	201150_s_at	chr22q12.3	NR	
PAPPA	pregnancy-associated plasma protein A, pappalysin 1	54.3	224942 at	chr9q33.2	۲	(Stanger <i>et al.</i> , 1985)
PTX3	pentaxin-related gene, rapidly induced by IL-1 beta	25.4		chr3q25	۲	(Zhang <i>et al.</i> , 2005)
CD molecules						
CD24	CD24 antigen	126.9	208650_s_at	chr6q21	۲	(Hourvitz <i>et al.</i> , 2000)
CD44	CD44 antigen	17.0	212063_at	chr11p13	NR	
CD47	CD47 antigen	4.6	213857_s_at	chr3q13.1	NR	
CD58	CD58 antigen / LFA3	18.6	216942_s_at	chr1p13	۲	(Hattori <i>et al.</i> , 1998)
CD59	CD59 antigen p18-20	16.4	228748_at	chr11p13	NR	
CD63	CD63 antigen	7.7	200663_at	chr12q12-q13	<u>ب</u>	(Espey and Richards, 2002)
CD74	CD74 antigen	5.9	209619_at	chr5q32	NR	
CD81	CD81 antigen	6.1	200675_at	chr11p15.5	NR	
CDW92	CDW92 antigen	4.7	224596_at	chr9q31.2	NR	
CD99	CD99 antigen	4.1	201029 s at	chrxp22.32	۲	(Gordon <i>et al</i> ., 1998)
CD151	CD151 antigen	8.4	204306 s at	chr11p15.5	NR	
CD200	CD200 antigen	22.9		chr3q12-q13	NR	
<u>Membrane bound (other)</u>						
ADAMTS1	a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif. 1	58.2	222162 s at	chr21a21.2	E	(Russell <i>et al.</i> , 2003)
CSPG2	chondroitin sulfate proteoglycan 2 (versican)	5.5	 211571 s at	chr5q14.3	E	(Russell <i>et al.</i> , 2003)
SEMA3A	semaphorin 3A	43.2	206805_at	chr7p12.1	NR	
SEMA6A	semaphorin 6A	9.8	225660_at	chr5q23.1	NR	

Т
;
~
E
Ħ
2
4
5
<u> </u>
ЩЩ
2
ົດ
Ô.
<u>-</u> .
<u>ц</u>
ŝ
4
Ę.
ī
2
2
w
õ
00
0
<
ወ_
0
<u>.</u>
4

-
nember 6
imber 8
nber 10
EBP), beta
21, Cip1)
27, Kip1)

(pig); x = Xenopus laevis (frog). NR: not reported: a research in Pubmed with each synonym for this gene (as listed by LocusLink) and one of 1: h = Homo sapiens; m = Mus musculus (mouse); r = Rattus norvegicus (rat); b = Bos Taurus (cow); c = Capra hircus (goat); p = Sus scrofaExpression values of all the genes described in this Table can be accessed on our web site (see material and method) or can be downloaded as the following keywords did not retrieve any significant result: oocyte, germ cell, gamete, egg, cumulus, granulosa.

supplemental data.

Legends to Figures

Figure 1 : Global gene expression variation

(A) Scatter plots. Each sample was plotted against all other samples to visualize the expression variation. Only the 26 662 probes with at least one sample with a "Present" detection call were included. All signal values were floored to 2. Red circles : probes overexpressed in the sample specified on the left side; green circles : probes overexpressed in the sample specified at the bottom of each plot; grey circles : probes whose expression do not vary significantly between the two samples. For each couple of sample, the Pearson correlation coefficient was computed ("r"), based on the signal of probes with at least one sample with a "Present" detection call. GV (germinal vesicle), MI (metaphase I); MII (metaphase II).

(B) Hierarchical clustering. The expression signature of oocyte and cumulus cells were visualized by hierarchical clustering on the 15 000 probesets with the highest variation coefficient. The colors indicate the relative expression levels of each gene, with red indicating an expression above median, green indicating expression under median and black representing median expression. Cluster (a) was a group of genes overexpressed in oocyte (GV-MI-MII), including genes such as DAZL, GDF9, BMP15, ZP1,2,3,4. Cluster (b) was group of genes overexpressed in cumulus cells, including genes such as CD24, Activin A, PAPPA, TNTSF11, LHCGR and INHA.

Figure 2 : Differential Gene Ontology annotations between oocytes and cumulus cells

We compared the frequency of level 3 Gene Ontology (GO) annotations of genes overexpressed in oocytes to those of genes overexpressed in cumulus cells. The statistical analysis was made using the Fatigo web site (<u>http://www.fatigo.org/</u>) using Unigene cluster

ID. Histograms show the percentage of genes with the specified GO annotation in the group of genes overexpressed in oocytes (purple) or in cumulus (green). P : P-value.

Figure 3 : Schematic representation of selected genes involved in meiosis and cumulusoocyte-complex

(A) Meiosis. Actors of meiosis in oocytes: components of the Maturation-Promoting Factor (MPF), components of the spindle checkpoint, components of the Anaphase Promoting Complex (APC/C), the downstream targets such as the securin *PTTG3*, and regulators. Genes in pink are upregulated in oocytes. Genes that are specific to meiosis are highlighted by an orange hexagon. Genes in white did not display a significant modification in gene expression between oocytes and somatic cells (cumulus cells). See table 2 for full name and references.

(B) Cumulus-oocyte-complex. Genes overexpressed in oocytes (pink) or overexpressed in cumulus (green) that are involved in the cumulus-oocyte-complex interactions. Oocytes genes included members of the transforming growth factor-beta superfamily such as Growth Differentiation Factor 9 (GDF9), Fibroblast Growth Factor 9 and 15 (FGF9, 15), Bone Morphogenetic Protein 6 and 15 (BMP6, 15). Conversely, in cumulus cells, the genes overexpressed included hormonal receptors such as Luteinizing Hormone/ Choriogonadotropin Receptor (LHCGR), Progesterone Receptor Membrane Component 1 and 2 (PGRMC1, 2), Interleukin IL1beta, chemokines (IL8) and CD24 antigen, Inhibin Alpha (INHA), Activin A (INHBA). Genes in red are upregulated in the oocytes compared to cumulus cells. Genes in green are upregulated in the cumulus cells compared to oocytes. Genes shown in blue are expressed in oocytes and cumulus cells such as Gap Junction protein Alpha (GJA1). See table 3 for complete list of full names and references.

Figure 4 : Expression histograms of selected genes in oocytes and cumulus cells

Histograms show signal values of 20 genes which are differentially expressed between oocyte (purple) and cumulus cells (green). Gene expression is measured by pan genomic HG-U133 Plus 2.0 Affymetrix oligonucleotides microarrays and the signal intensity for each gene is shown on the Y axis as arbitrary units determined by the GCOS 1.2 software (Affymetrix). GV : germinal vesicle; MI : metaphase I; MII : metaphase II; C : cumulus.

References

- Aaltonen, J, Laitinen MP, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, Seppa L, Louhio H, Tuuri T, Sjoberg J, Butzow R, et al. (1999) Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab 84, 2744-2750.
- Abrieu, A, Kahana JA, Wood KW and Cleveland DW (2000) CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102, 817-826.
- Bachvarova, R, Burns JP, Spiegelman I, Choy J and Chaganti RS (1982) Morphology and transcriptional activity of mouse oocyte chromosomes. Chromosoma 86, 181-196.
- Burns, KH, Owens GE, Ogbonna SC, Nilson JH and Matzuk MM (2003) Expression profiling analyses of gonadotropin responses and tumor development in the absence of inhibins. Endocrinology 144, 4492-4507.
- Carr, DW, Cutler RE, Jr., Cottom JE, Salvador LM, Fraser ID, Scott JD and Hunzicker-Dunn M (1999) Identification of cAMP-dependent protein kinase holoenzymes in preantraland preovulatory-follicle-enriched ovaries, and their association with A-kinaseanchoring proteins. Biochem J 344 Pt 2, 613-623.
- Castrillon, DH, Quade BJ, Wang TY, Quigley C and Crum CP (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci U S A 97, 9585-9590.
- Cauffman, G, Van de Velde H, Liebaers I and Van Steirteghem A (2005) DAZL expression in human oocytes, preimplantation embryos and embryonic stem cells. Mol Hum Reprod 11, 405-411.
- Chang, HY, Levasseur M and Jones KT (2004) Degradation of APCcdc20 and APCcdh1 substrates during the second meiotic division in mouse eggs. J Cell Sci 117, 6289-6296.
- Choi, YL, Kim HS and Ahn G (2000) Immunoexpression of inhibin alpha subunit, inhibin/activin betaA subunit and CD99 in ovarian tumors. Arch Pathol Lab Med 124, 563-569.
- Davis, BJ, Lennard DE, Lee CA, Tiano HF, Morham SG, Wetsel WC and Langenbach R (1999) Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin E2 and interleukin-1beta. Endocrinology 140, 2685-2695.
- De La Fuente, R, Viveiros MM, Burns KH, Adashi EY, Matzuk MM and Eppig JJ (2004) Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol 275, 447-458.
- de los Santos, MJ, Anderson DJ, Racowsky C, Simon C and Hill JA (1998) Expression of interleukin-1 system genes in human gametes. Biol Reprod 59, 1419-1424.
- Dekel, N and Beers WH (1980) Development of the rat oocyte in vitro: inhibition and induction of maturation in the presence or absence of the cumulus oophorus. Dev Biol 75, 247-254.
- Devoto, L, Kohen P, Gonzalez RR, Castro O, Retamales I, Vega M, Carvallo P, Christenson LK and Strauss JF, 3rd (2001) Expression of steroidogenic acute regulatory protein in the human corpus luteum throughout the luteal phase. J Clin Endocrinol Metab 86, 5633-5639.
- Duesbery, NS, Choi T, Brown KD, Wood KW, Resau J, Fukasawa K, Cleveland DW and Vande Woude GF (1997) CENP-E is an essential kinetochore motor in maturing

oocytes and is masked during mos-dependent, cell cycle arrest at metaphase II. Proc Natl Acad Sci U S A 94, 9165-9170.

- Eberspaecher, U, Becker A, Bringmann P, van der Merwe L and Donner P (2001) Immunohistochemical localization of zona pellucida proteins ZPA, ZPB and ZPC in human, cynomolgus monkey and mouse ovaries. Cell Tissue Res 303, 277-287.
- Eisen, MB, Spellman PT, Brown PO and Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 95, 14863-14868.
- Elvin, JA, Clark AT, Wang P, Wolfman NM and Matzuk MM (1999) Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol 13, 1035-1048.
- Espey, LL and Richards JS (2002) Temporal and spatial patterns of ovarian gene transcription following an ovulatory dose of gonadotropin in the rat. Biol Reprod 67, 1662-1670.
- Fair, T, Hyttel P and Greve T (1995) Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol Reprod Dev 42, 437-442.
- Gall, L, Ruffini S, Le Bourhis D and Boulesteix C (2002) Cdc25C expression in meiotically competent and incompetent goat oocytes. Mol Reprod Dev 62, 4-12.
- Geiman, TM, Sankpal UT, Robertson AK, Chen Y, Mazumdar M, Heale JT, Schmiesing JA, Kim W, Yokomori K, Zhao Y, et al. (2004) Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery. Nucleic Acids Res 32, 2716-2729.
- Giet, R, Petretti C and Prigent C (2005) Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 15, 241-250.
- Gillio-Meina, C, Hui YY and LaVoie HA (2005) Expression of CCAAT/enhancer binding proteins alpha and beta in the porcine ovary and regulation in primary cultures of granulosa cells. Biol Reprod 72, 1194-1204.
- Gordon, MD, Corless C, Renshaw AA and Beckstead J (1998) CD99, keratin, and vimentin staining of sex cord-stromal tumors, normal ovary, and testis. Mod Pathol 11, 769-773.
- Grootenhuis, AJ, Philipsen HL, de Breet-Grijsbach JT and van Duin M (1996) Immunocytochemical localization of ZP3 in primordial follicles of rabbit, marmoset, rhesus monkey and human ovaries using antibodies against human ZP3. J Reprod Fertil Suppl 50, 43-54.
- Haffner-Krausz, R, Gorivodsky M, Chen Y and Lonai P (1999) Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development. Mech Dev 85, 167-172.
- Hattori, N, Fujiwara H, Maeda M, Yoshioka S, Higuchi T, Mori T, Ohishi N, Minami M, Fujii S and Ueda M (1998) Human large luteal cells in the menstrual cycle and early pregnancy express leukotriene A4 hydrolase. Mol Hum Reprod 4, 803-810.
- Heikinheimo, O, Lanzendorf SE, Baka SG and Gibbons WE (1995) Cell cycle genes c-mos and cyclin-B1 are expressed in a specific pattern in human oocytes and preimplantation embryos. Hum Reprod 10, 699-707.
- Hinsch, E, Hagele W, van der Ven H, Oehninger S, Schill WB and Hinsch KD (1998) Immunological identification of zona pellucida 2 (ZP2) protein in human oocytes. Andrologia 30, 281-287.
- Horowitz, E, Zhang Z, Jones BH, Moss SB, Ho C, Wood JR, Wang X, Sammel MD and Strauss JF, 3rd (2005) Patterns of expression of sperm flagellar genes: early expression of genes encoding axonemal proteins during the spermatogenic cycle and shared features of promoters of genes encoding central apparatus proteins. Mol Hum Reprod 11, 307-317.

Hourvitz, A, Widger AE, Filho FL, Chang RJ, Adashi EY and Erickson GF (2000) Pregnancy-associated plasma protein-A gene expression in human ovaries is restricted to healthy follicles and corpora lutea. J Clin Endocrinol Metab 85, 4916-4920.

Huntriss, J, Hinkins M, Oliver B, Harris SE, Beazley JC, Rutherford AJ, Gosden RG, Lanzendorf SE and Picton HM (2004) Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells. Mol Reprod Dev 67, 323-336.

Hurwitz, A, Ruutiainen-Altman K, Marzella L, Botero L, Dushnik M and Adashi EY (1996) Follicular atresia as an apoptotic process: atresia-associated increase in the ovarian expression of the putative apoptotic marker sulfated glycoprotein-2. J Soc Gynecol Investig 3, 199-208.

Ingold, K, Zumsteg A, Tardivel A, Huard B, Steiner QG, Cachero TG, Qiang F, Gorelik L, Kalled SL, Acha-Orbea H, et al. (2005) Identification of proteoglycans as the APRILspecific binding partners. J Exp Med 201, 1375-1383.

Irizarry, RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E, Garcia JG, Geoghegan J, Germino G, et al. (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2, 345-350.

Jaatinen, TA, Penttila TL, Kaipia A, Ekfors T, Parvinen M and Toppari J (1994) Expression of inhibin alpha, beta A and beta B messenger ribonucleic acids in the normal human ovary and in polycystic ovarian syndrome. J Endocrinol 143, 127-137.

Jirawatnotai, S, Moons DS, Stocco CO, Franks R, Hales DB, Gibori G and Kiyokawa H (2003) The cyclin-dependent kinase inhibitors p27Kip1 and p21Cip1 cooperate to restrict proliferative life span in differentiating ovarian cells. J Biol Chem 278, 17021-17027.

Kalous, J, Solc P, Baran V, Kubelka M, Schultz RM and Motlik J (2005) PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biol Cell.

Karstrom-Encrantz, L, Runesson E, Bostrom EK and Brannstrom M (1998) Selective presence of the chemokine growth-regulated oncogene alpha (GROalpha) in the human follicle and secretion from cultured granulosa-lutein cells at ovulation. Mol Hum Reprod 4, 1077-1083.

Krebs, DL and Hilton DJ (2000) SOCS: physiological suppressors of cytokine signaling. J Cell Sci 113 (Pt 16), 2813-2819.

Kristiansen, G, Denkert C, Schluns K, Dahl E, Pilarsky C and Hauptmann S (2002) CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol 161, 1215-1221.

Kubota, Y, Mimura S, Nishimoto S, Takisawa H and Nojima H (1995) Identification of the yeast MCM3-related protein as a component of Xenopus DNA replication licensing factor. Cell 81, 601-609.

Larsen, WJ, Wert SE and Brunner GD (1986) A dramatic loss of cumulus cell gap junctions is correlated with germinal vesicle breakdown in rat oocytes. Dev Biol 113, 517-521.

Le Naour, F, Rubinstein E, Jasmin C, Prenant M and Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287, 319-321.

Lefievre, L, Conner SJ, Salpekar A, Olufowobi O, Ashton P, Pavlovic B, Lenton W, Afnan M, Brewis IA, Monk M, et al. (2004) Four zona pellucida glycoproteins are expressed in the human. Hum Reprod 19, 1580-1586.

Leung, PC, Cheng CK and Zhu XM (2003) Multi-factorial role of GnRH-I and GnRH-II in the human ovary. Mol Cell Endocrinol 202, 145-153.

Leyens, G, Knoops B and Donnay I (2004) Expression of peroxiredoxins in bovine oocytes and embryos produced in vitro. Mol Reprod Dev 69, 243-251.

- Lincoln, AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, De Miguel MP, Tessarollo L and Donovan PJ (2002) Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet 30, 446-449.
- Liu, K (2006) Stem cell factor (SCF)-kit mediated phosphatidylinositol 3 (PI3) kinase signaling during mammalian oocyte growth and early follicular development. Front Biosci 11, 126-135.
- Lyons, KM, Pelton RW and Hogan BL (1989) Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev 3, 1657-1668.
- Magier, S, van der Ven HH, Diedrich K and Krebs D (1990) Significance of cumulus oophorus in in-vitro fertilization and oocyte viability and fertility. Hum Reprod 5, 847-852.
- Moor, RM, Dai Y, Lee C and Fulka J, Jr. (1998) Oocyte maturation and embryonic failure. Hum Reprod Update 4, 223-236.
- Narko, K, Saukkonen K, Ketola I, Butzow R, Heikinheimo M and Ristimaki A (2001) Regulated expression of prostaglandin E(2) receptors EP2 and EP4 in human ovarian granulosa-luteal cells. J Clin Endocrinol Metab 86, 1765-1768.
- Nishi, S, Hoshi N, Kasahara M, Ishibashi T and Fujimoto S (1999) Existence of human DAZLA protein in the cytoplasm of human oocytes. Mol Hum Reprod 5, 495-497.
- Oksjoki, S, Soderstrom M, Vuorio E and Anttila L (2001) Differential expression patterns of cathepsins B, H, K, L and S in the mouse ovary. Mol Hum Reprod 7, 27-34.
- Osaki, E, Nishina Y, Inazawa J, Copeland NG, Gilbert DJ, Jenkins NA, Ohsugi M, Tezuka T, Yoshida M and Semba K (1999) Identification of a novel Sry-related gene and its germ cell-specific expression. Nucleic Acids Res 27, 2503-2510.
- O'Sullivan, MJ, Stamouli A, Thomas EJ and Richardson MC (1997) Gonadotrophin regulation of production of tissue inhibitor of metalloproteinases-1 by luteinized human granulosa cells: a potential mechanism for luteal rescue. Mol Hum Reprod 3, 405-410.
- Pal, SK, Torry D, Serta R, Crowell RC, Seibel MM, Cooper GM and Kiessling AA (1994) Expression and potential function of the c-mos proto-oncogene in human eggs. Fertil Steril 61, 496-503.
- Park, OK and Mayo KE (1991) Transient expression of progesterone receptor messenger RNA in ovarian granulosa cells after the preovulatory luteinizing hormone surge. Mol Endocrinol 5, 967-978.
- Paronetto, MP, Giorda E, Carsetti R, Rossi P, Geremia R and Sette C (2004) Functional interaction between p90Rsk2 and Emil contributes to the metaphase arrest of mouse oocytes. Embo J 23, 4649-4659.
- Platteau, P, Smitz J, Albano C, Sorensen P, Arce JC and Devroey P (2004) Exogenous luteinizing hormone activity may influence the treatment outcome in in vitro fertilization but not in intracytoplasmic sperm injection cycles. Fertil Steril 81, 1401-1404.
- Prieto, I, Tease C, Pezzi N, Buesa JM, Ortega S, Kremer L, Martinez A, Martinez AC, Hulten MA and Barbero JL (2004) Cohesin component dynamics during meiotic prophase I in mammalian oocytes. Chromosome Res 12, 197-213.
- Rabinovici, J, Spencer SJ, Doldi N, Goldsmith PC, Schwall R and Jaffe RB (1992) Activin-A as an intraovarian modulator: actions, localization, and regulation of the intact dimer in human ovarian cells. J Clin Invest 89, 1528-1536.
- Robker, RL and Richards JS (1998) Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol 12, 924-940.

- Runesson, E, Ivarsson K, Janson PO and Brannstrom M (2000) Gonadotropin- and cytokineregulated expression of the chemokine interleukin 8 in the human preovulatory follicle of the menstrual cycle. J Clin Endocrinol Metab 85, 4387-4395.
- Russell, DL, Doyle KM, Ochsner SA, Sandy JD and Richards JS (2003) Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. J Biol Chem 278, 42330-42339.
- Saitou, M, Barton SC and Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418, 293-300.
- Salpekar, A, Huntriss J, Bolton V and Monk M (2001) The use of amplified cDNA to investigate the expression of seven imprinted genes in human oocytes and preimplantation embryos. Mol Hum Reprod 7, 839-844.
- Schatten, G, Simerly C, Palmer DK, Margolis RL, Maul G, Andrews BS and Schatten H (1988) Kinetochore appearance during meiosis, fertilization and mitosis in mouse oocytes and zygotes. Chromosoma 96, 341-352.
- Sirois, J, Levy LO, Simmons DL and Richards JS (1993) Characterization and hormonal regulation of the promoter of the rat prostaglandin endoperoxide synthase 2 gene in granulosa cells. Identification of functional and protein-binding regions. J Biol Chem 268, 12199-12206.
- Stanger, JD, Yovich JL, Grudzinskas JG and Bolton AE (1985) Relation between pregnancyassociated plasma protein A (PAPP-A) in human peri-ovulatory follicle fluid and the collection and fertilization of human ova in vitro. Br J Obstet Gynaecol 92, 786-792.
- Steuerwald, N, Cohen J, Herrera RJ, Sandalinas M and Brenner CA (2001) Association between spindle assembly checkpoint expression and maternal age in human oocytes. Mol Hum Reprod 7, 49-55.
- Suzuki, E, Evans T, Lowry J, Truong L, Bell DW, Testa JR and Walsh K (1996) The human GATA-6 gene: structure, chromosomal location, and regulation of expression by tissue-specific and mitogen-responsive signals. Genomics 38, 283-290.
- Tanaka, Y, Kato S, Tanaka M, Kuji N and Yoshimura Y (2003) Structure and expression of the human oocyte-specific histone H1 gene elucidated by direct RT-nested PCR of a single oocyte. Biochem Biophys Res Commun 304, 351-357.
- Tokuyama, O, Nakamura Y, Muso A, Honda K, Ishiko O and Ogita S (2001) Expression and distribution of cyclooxygenase-2 in human periovulatory ovary. Int J Mol Med 8, 603-606.
- Vitt, UA, Mazerbourg S, Klein C and Hsueh AJ (2002) Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol Reprod 67, 473-480.
- Wang, QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW and Zernicka-Goetz M (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6, 133-144.
- Wassmann, K, Niault T and Maro B (2003) Metaphase I arrest upon activation of the Mad2dependent spindle checkpoint in mouse oocytes. Curr Biol 13, 1596-1608.
- Wickramasinghe, D, Becker S, Ernst MK, Resnick JL, Centanni JM, Tessarollo L, Grabel LB and Donovan PJ (1995) Two CDC25 homologues are differentially expressed during mouse development. Development 121, 2047-2056.
- Wu, B, Ignotz G, Currie WB and Yang X (1997) Dynamics of maturation-promoting factor and its constituent proteins during in vitro maturation of bovine oocytes. Biol Reprod 56, 253-259.
- Yan, C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, Prasad SV, Skinner SS, Dunbar BS, Dube JL, et al. (2001) Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol 15, 854-866.

- Yan, X, Cao L, Li Q, Wu Y, Zhang H, Saiyin H, Liu X, Zhang X, Shi Q and Yu L (2005) Aurora C is directly associated with Survivin and required for cytokinesis. Genes Cells 10, 617-626.
- Yao, YQ, Xu JS, Lee WM, Yeung WS and Lee KF (2003) Identification of mRNAs that are up-regulated after fertilization in the murine zygote by suppression subtractive hybridization. Biochem Biophys Res Commun 304, 60-66.
- Zhang, X, Jafari N, Barnes RB, Confino E, Milad M and Kazer RR (2005) Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril 83 Suppl 1, 1169-1179.

Assou et al

Figure 1A

Red circles : probes overexpressed in the sample specified on the left side; green circles : probes overexpressed in the (A) Scatter plots. Each sample was plotted against all other samples to visualize the expression variation. Only the 26 662 probes with at least one sample with a "Present" detection call were included. All signal values were floored to 2. sample specified at the bottom of each plot; grey circles : probes whose expression do not vary significantly between signal of probes with at least one sample with a "Present" detection call. GV (germinal vesicle), MI (metaphase I); MII the two samples. For each couple of sample, the Pearson correlation coefficient was computed (" \dot{r} "), based on the metaphase II).

Figure 1B Assou et al.

group of genes overexpressed in cumulus cells, was a group of genes overexpressed in oocyte ndicating an expression above median, green visualized by hierarchical clustering on the 15 indicating expression under median and black (GV-MI-MII), including genes such as DAZL, GDF9, BMP15, ZP1,2,3,4. Cluster (b) was representing median expression. Cluster (a) (B) Hierarchical clustering. The expression signature of oocyte and cumulus cells were coefficient. The colors indicate the relative ncluding genes such as CD24, Activin A, expression levels of each gene, with red 000 probesets with the highest variation PAPPA, TNTSF11, LHCGR and INHA. Figure 1 B: Global gene expression variationAssou et al.

Figure 2 Assou et al.

(http://www.fatigo.org/) using Unigene cluster ID. Histograms show the percentage of genes with the specified GO We compared the frequency of level 3 Gene Ontology (GO) annotations of genes overexpressed in oocytes to those of genes overexpressed in cumulus cells. The statistical analysis was made using the Fatigo web site annotation in the group of genes overexpressed in oocytes (purple) or in cumulus (green). P: P-value.

cumulus-oocyte-complex

(A) Meiosis. Actors of meiosis in oocytes: components of the Maturation-Promoting Factor (MPF), components of the spindle checkpoint, components of the Anaphase Promoting Complex (APC/C), the downstream targets such as the securin PTTG3, and regulators. Genes in pink are upregulated in oocytes. Genes that are specific to meiosis are highlighted by an orange hexagon. Genes in white did not display a significant modification in gene expression between oocytes and somatic cells (cumulus cells). See table 2 for full name and references.

Figure 3B Assou et al.

as Growth Differentiation Factor 9 (GDF9), Fibroblast Growth Factor 9 and 15 (FGF9, 15), Bone Morphogenetic Protein 6 and 15 (BMP6, 15). Conversely, in cumulus cells, the genes overexpressed included hormonal receptors such as Luteinizing Hormone/ chemokines (IL8) and CD24 antigen, Inhibin Alpha (INHA), Activin A (INHBA). Genes in red are upregulated in the oocytes compared to cumulus cells. Genes in green are upregulated in the cumulus cells compared to oocytes. Genes shown in blue are expressed in Figure 3 (B) Cumulus-oocyte-complex. Genes overexpressed in oocytes (pink) or overexpressed in cumulus (green) that are involved Choriogonadotropin Receptor (LHCGR), Progesterone Receptor Membrane Component 1 and 2 (PGRMC1, 2), Interleukin IL1beta, in the cumulus-oocyte-complex interactions. Oocytes genes included members of the transforming growth factor-beta superfamily such oocytes and cumulus cells such as Gap Junction protein Alpha (GJA1). See table 3 for complete list of full names and references.

2500

2000 1500 1000 500 0

lengis

Figure 4

Assou et al.

Histograms show signal values of 20 genes which are differentially expressed between oocyte (purple) and cumulus cells (green). Gene Figure 4 : Expression histograms of selected genes in oocytes and cumulus cells

expression is measured by pan genomic HG-U133 Plus 2.0 Affymetrix oligonucleotides microarrays and the signal intensity for each gene is shown on the Y axis as arbitrary units determined by the GCOS 1.2 software (Affymetrix). GV : germinal vesicle; MI : metaphase I; MII : metaphase II; C : cumulus.