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BACKGROUND: The understanding of the mechanisms regulating human oocyte 

maturation is still rudimentary. We have identified transcripts differentially expressed 

between immature and mature oocytes, and cumulus cells. 

METHODS: Using oligonucleotides microarrays, genome wide gene expression was studied 

in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF.  

RESULTS: In addition to known genes such as DAZL, BMP15 or GDF9, oocytes 

upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and 

the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes 

overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, 

FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, 

cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-to-

cell signaling genes including TNFSF11/RANKL, numerous complement components, 

semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also 

identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A 

and SOCS7. 

CONCLUSION: The identification of genes up and down regulated during oocyte maturation 

greatly improves our understanding of oocyte biology and will provide new markers that 

signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are 

potential markers of granulosa cell tumors. 
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Introduction 

The quality of oocytes obtained under controlled ovarian stimulation (COS) for assisted 

reproductive technology (ART) varies considerably. While most oocytes are amenable to 

fertilization, only half of those fertilized complete preimplantation development and even 

fewer implant. During follicle growth, the oocyte obtains the complement of cytoplasmic 

organelles and accumulates mRNAs and proteins that will enable it to be fertilized and to 

progress through the first cleavage divisions until embryonic genes start to be expressed. 

Transcriptional activity decreases as the oocyte reaches maximal size (Fair et al., 1995) and 

later on the oocyte depends on stored RNAs for normal function during maturation, 

fertilization and early embryonic development (Moor et al., 1998). After oocyte retrieval, the 

mature oocyte (MII) and some still immature oocytes (GV and MI) are surrounded by the 

cumulus oophorus. Several layers of cumulus cells surround the oocyte in antral follicle and 

play an important support and regulation role in oocyte maturation (Dekel and Beers, 1980; 

Larsen et al., 1986). 

Analysis of the oocyte maturation using microarray analysis techniques could detail the genes 

involved in this process and the specific checkpoints regulating acquisition of full competence 

for ovulation and fertilization. The understanding of the molecular processes involved in the 

development of a competent oocyte under COS conditions could guide the choice of ovarian 

hyperstimulation protocols and lead to improvements in oocyte quality, oocyte culture and 

manipulation. Some studies demonstrate that changes in gene expression during COS, such as 

GDF9 or Bone Morphogenic Protein-15 (BMP15) in oocyte, or Pentraxin 3 (PTX3) in 

cumulus cell, can be monitored for selecting oocytes for fertilization and embryos for 

replacement (Elvin et al., 1999; Yan et al., 2001; Zhang et al., 2005). Therefore, 

transcriptome studies in human oocytes and cumulus cells could contribute not only to 

elucidate the mechanisms of oocyte maturation, but could also provide valuables molecular 
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markers of abnormal gene expression in oocytes with reduced competence. The aims of the 

present study were to establish: (1) whole genome transcriptome of human immature and 

matures oocytes and cumulus cells, (2) specific gene expression signatures of immature and 

mature oocytes and cumulus cells and (3) genes whose expression progressively increase 

during oocyte maturation. 
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Materials and Methods 

Oocytes and cumulus cells 
 
Oocytes and cumulus cells were collected from patients consulting in our center for 

conventional in vitro fertilization (cIVF) or for intracytoplasmic sperm injection (ICSI). This 

study has received institutional review board approval. Patients were stimulated with a 

combination of gonadotropin-releasing hormone agonist (GnRH-a) (Decapeptyl PL 3; Ipsen, 

Paris, France) and recombinant FSH (Puregon and Gonal F; Organon and Serono 

respectively) or Menopur (Ferring). Ovarian response was evaluated by serum estradiol level 

and daily ultrasound examination to observe follicle development. Retrieval of oocytes 

occurred 36 hours after hCG administration and was performed under ultrasound guidance. 

Cumulus cells were removed from a mature oocyte (MII) 21 hours post insemination. 

Immature oocytes (GV and MI) and unfertilized MII oocytes were collected 21 hours or 44 

hours post insemination or post microinjection by ICSI. Cumulus cells and oocytes were 

frozen at -80°C in RLT buffer (RNeasy kit, Qiagen, Valencia, CA, USA) before RNA 

extraction. Pools of 20 GV (7 patients, age 30 years ±4.6), 20 MI (6 patients, age 30.1 years 

±6.7) and 16 MII oocytes (6 patients, age 34 years ±4.5) were analyzed by DNA microarrays. 

All these oocytes were from couples referred to our center for cIVF (tubal infertility) or for 

ICSI (male infertility). 

 
Complementary RNA (cRNA) preparation and microarray hybridization 

RNA was extracted using the micro RNeasy Kit (Qiagen) and the RNA integrity was assessed 

by using an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA). RNA quantity was also 

assessed for some samples using the Nanodrop ND-1000 spectrophotometer (Nanodrop 

Technologies Inc., DE, USA). cRNA was prepared according to the manufacturer’s protocol 

“small sample protocol II” starting from total RNA (ranging from ~4 ng pooled oocytes to 

100 ng cumulus cells), and hybridized to HG-U133 plus 2.0 GeneChip pangenomic 

H
A

L author m
anuscript    inserm

-00130809, version 1



 6 /37

oligonucleotide arrays (Affymetrix, Santa Clara, CA, USA). HG-U133 plus 2.0 arrays contain 

54 675 sets of oligonucleotide probes (“probeset”) which correspond to ≈ 39 000 unique 

human genes or predicted genes. The GeneChip system is a robust microarray system with 

more than 3000 publications using this technology 

(http://www.affymetrix.com/community/publications/index.affx), little lab-to-lab variability 

and a good accuracy and precision (Irizarry et al., 2005). Primary image analysis of the arrays 

was performed by using GeneChip Operating Software 1.2 (GCOS) (Affymetrix), resulting in 

a single value for each probe set (“signal”). Data from each different array experiment were 

scaled to a target value of 100 by GCOS using the “global scaling” method. The dataset was 

floored to 2, i.e. each signal value under 2 was given the value 2. 

 

Statistical analysis 

Samples were analyzed using a pair wise comparison using the GCOS 1.2 software 

(Affymetrix). Of interest, this algorithm provides the information of whether a gene is 

expressed with a defined confidence level or not (“detection call”). This “call” can either be 

“present”, when the perfect match probes are significantly more hybridized than the mismatch 

probes, “absent” when both perfect match and mismatch probes display a similar fluorescent 

signal, or “marginal” when the probeset does neither comply to the “present” nor to the 

“absent” call criteria. A gene was denoted as exclusively expressed in one category when this 

gene displayed a detection call “Present” in this given category and “Absent” or “Marginal” 

in all other three categories. A gene was considered as over- or underexpressed in a category 

when all three possible pair wise comparisons showed a significant change p-value (P ≤ 0.01) 

according to the GCOS 1.2 software and a ratio ≥ 3 or ≤ 0.333 for the genes increased and 

decreased respectively. We also determined a list of genes whose expression progressively 

increased during oocyte maturation by selecting the probesets with a significant increase 
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according to the GCOS 1.2 algorithm and matching the following ratio constraints: cumulus < 

GV (with GV/Cumulus ≥3), GV < MI (MI/GV ≥ 1.73) and MI < MII (MII/MI ≥ 1.73), where 

cumulus, GV, MI and MII stands for signals values in these samples. Note that 1.73 x 1.73 = 

3. Gene annotation was based on Unigene Build 176. 

For hierarchical clustering, data were filtered (15 000 genes with a significant expression 

(“present” detection call) in at least one sample and with the highest variation coefficient), log 

transformed, median centered, and processed with the CLUSTER and TREEVIEW software 

packages with the average linkage method and an uncentered correlation (Eisen et al., 1998). 

Gene Ontology (GO) annotations (http://www.geneontology.org/) were obtained and analyzed 

via the FATIGO web site tool (http://www.fatigo.org/) using level three annotations. In some 

cases we used the GO annotations downloaded from the Affymetrix NetAffx database. Genes 

with a role in cell-to-cell communication function were obtained by filtering the genes on the 

following criteria: cellular component comprising the terms “membrane” or “extracellular”. 

Bibliographical search was carried out in Pubmed using Boolean logic. For each gene G 

present in table 2 and 3, using its Hugo approved abbreviation or any of its aliases, we looked 

for publication matching the query « gene G AND (gamete or "germ cell" or “germ cells” or 

egg or eggs or oocytes or oocyte or meiosis) » for genes found preferentially expressed in 

oocytes, and the query « gene G AND (gamete or "germ cell" or “germ cells” or egg or eggs 

or oocytes or oocyte or cumulus or granulosa) » for genes overexpressed in cumulus cells. 

The expression, including signal values, of all genes cited in Tables 2 and 3 can be examined 

on our web site as online supplemental data : 

http://amazonia.montp.inserm.fr/the_human_oocyte_transcriptome.html. Expression of these 

genes in various normal tissues transcriptome datasets, including ovarian and testis samples, 

is provided through the Amazonia! database web page (Manuscript in preparation). 
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Results 

Identification of genes expressed in human oocytes and cumulus cells 

Total cRNA was synthetized from pools of GV, MI or MII stage oocytes, or cumulus cells, 

then labeled and hybridized to pan-genomic oligonucleotide microarrays. We analyzed the 

detection call (GCOS 1.2 software) of all 54 675 probes in oocytes and cumulus samples. 

Oocytes express in average 8728 genes. The lowest number of genes expressed was found in 

MII oocytes (n = 5 633) and highest in GV oocytes (n = 10 892) (Table 1). We found that 

expression variations between MI, MII or GV samples was low as illustrated by tight scatter 

plots and high correlation coefficients (0.63 – 0.92), as opposed to a marked difference of 

expression between the cumulus sample and the oocytes samples as illustrated by dispersed 

scatter plots and low correlation coefficients (0.39 – 0.50) (Figure 1A). 

We visualized the respective gene expression across all samples using hierarchical clustering. 

Average linkage hierarchical clustering on 15 000 genes showed that oocytes cluster together, 

demonstrating a common gene expression, but are only distantly related to cumulus cells 

(Figure 1B). These results highlight that feminine germ cells and their nourishing neighbor 

cumulus cells display very different expression profile, in agreement with a very different but 

complementary biological function and with cell lineage disparity. 

Specific transcription program in each sample type 

We next examined which genes were specific to each sample category, using two different 

approaches. First we determined the genes that were only detected in one sample and not in 

the three other samples. These genes were called “exclusively expressed” (Table 1). As 

expected, cumulus cells have the largest number of exclusively expressed genes (n = 1829), 

likely because they display a very different transcriptome as compared to oocytes (n = 234 - 

739). Second, we considered the probes that were overexpressed or underexpressed in one 

sample compared to all three other samples, with a fold ratio of at least three. Again, cumulus 
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cells show the largest lists of genes, overexpressing 2600 and underexpressing 1514 genes as 

compared to oocytes. Using this rather stringent criteria (fold change of at least 3 between a 

given sample and the three other samples), we found very few genes over or under expressed 

in GV and MI oocytes. This shows that very few genes modify their expression between GV 

and MI oocytes, as opposed to MII oocytes that overexpress more than 400 genes and 

underexpress more than 800.  

We compared functional Gene Ontology annotations of overexpressed genes versus under 

expressed genes in oocytes and cumulus cells. We observed that certain functional 

annotations were more represented in either oocytes or cumulus cells (Figure 2). There were 

significantly more genes involved in “Response to stimulus”, “Secretion”, “Extracellular 

matrix” in cumulus cells, suggesting that cumulus cells are more active in cell-to-cell 

communication processes. Conversely, genes annotated “Reproduction”, “Ubiquitin ligase 

complex”, “Microtubule associated complex”, “Microtubule motor activity”, “Nucleic acid 

binding”, “Ligase activity” were significantly more frequently associated with genes 

overexpressed in oocytes, in agreement with the major processes involved in meiosis and 

implying microtubules attachement to chromosomes and the ubiquitin ligase complex APC/C 

regulation.  

 

Whole genome transcriptome of oocytes  

We observed that 1514 genes were expressed with at least a 3-fold increase in oocytes, i.e.  

underexpressed in cumulus cells when compared to oocytes. Selected genes are highlighted in 

Table 2, which is also available as web supplemental data including the expression histogram 

for each gene (http://amazonia.montp.inserm.fr/the_human_oocyte_transcriptome.html). This 

list includes genes already recognized as specifically expressed in male and female germinal 

cells in mammals such as DAZL, the RNA helicase DDX4/VASA or DPPA3/STELLA (full 
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names are listed in Table 2). Numerous well recognized actors of meiosis were highly 

expressed in oocytes: the components of the maturation-promoting factor (MPF) 

(CDC2/CDK1, CCNB1, CCNB2), CDC25 phosphatases (CDC25A, CDC25B and CDC25C), 

components of the spindle checkpoint (BUB1, BUBR1, MAD2L1/MAD2, CENP-A, CENP-E), 

CDC20 which is a components of the anaphase promoting complex (APC/C), and a 

downstream target, the meiosis specific sister chromatid arm cohesin STAG3 (Figure 3A). As 

expected, we observed the overexpression of genes known to be specific of oocytes such as 

the Zona Pellucida genes (ZP 1, 2, 3 and 4), members of the transforming growth factor-beta 

superfamily such as Growth differentiation factor 9 (GDF9), Bone morphogenetic protein 6 

and 15 (BMP6 and BMP15), FGFR2, the chromatin remodeling molecules histone 

deacetylase HDAC9 and the oocyte-specific H1 histone H1FOO (Figure 3B). Thus, the data 

are in complete agreement with published studies. Interestingly, we show here that many 

genes, previously found expressed in oocytes in various animal models, are indeed highly 

expressed in human oocytes. Hence, our microarray data are of sufficient scope and accuracy 

to pave the way to a systematic gene expression exploration of oocyte and cumulus 

transcriptome. 

We observed that several genes previously reported to be expressed in male germ cells are 

also highly expressed in human oocytes, in all maturation stages, such as Aurora Kinase C 

(AURKC), SOX30, or Sperm Associated Antigen 16 (SPAG16/PF20). Still, the majority of the 

genes we found overexpressed in oocytes were not yet reported to be associated with gamete 

biology. Some of these previously unrecognized “oocytes genes” are listed in Table 2 and 

comprise several functional categories. After fertilization, the spindle checkpoint inhibition is 

released and the APC/C complex degrades the securins, resulting in entry into anaphase. We 

found that genes of the centromere protein CENPH that interacts with the spindle checkpoint, 

the anaphase promoting complex subunits ANAPC1 and ANPC10 are highly expressed in 
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oocytes. Moreover, the securing genes PTTG1 and 3 are 58 and 50 times more expressed in 

oocytes than in cumulus cells, respectively. We found several growth factors and growth 

factor receptors significantly overexpressed in oocytes (IL-4, FGF9, FGF14, 

TNFSF13/APRIL), transcription factors (SOX15, OTX2, FOXR1), three anti-apoptosis 

molecules (BCL2L10, BNIP1, BIRC5/Survivin), and the glucose transporter SLC5A11. 

Whole genome transcriptome of cumulus cells  

Conversely, we observed that 2600 genes are overexpressed in cumulus cells compared to all 

three oocytes samples. The cumulus sample we studied was obtained from a MII oocyte 

during ovulation. First, we observed a marked expression of the LH receptor LHCGR in 

cumulus cells, which primes these cells to respond to the LH surge. Second, we observed that 

genes overexpressed in MII cumulus cells comprise the main genes that are induced by the 

LH surge during ovulation (Table 3). We observed a very high expression of the progesterone 

receptors PGRMC1 and 2, and the steroidogenic acute regulatory (STAR) that are induced by 

LH. Similarly we found that eicosanoids biosynthesis enzymes such as the two Prostaglandin 

Endoperoxyde Synthetase PTGS1 and PTGS2/COX2 and the Prostaglandin I2 (Prostacyclin) 

Synthase PTGIS, the Prostaglandin Receptor PTGER2, and two downstream effector of this 

signalling pathway, Interleukin IL1beta and Pentaxin-Related 3 (PTX3), are also 

overexpressed in cumulus cells. These genes were mostly described in animal models, and we 

show here for the first time that the RNA expression of these genes is also highly induced in 

human cumulus cells obtained after ovulation. Two chemokines are highly produced by 

cumulus cells, CXCL1/GRO-alpha and IL8, in agreement with the invasion of the granulosa 

by leucocytes during ovulation. Interestingly, the metalloprotease ADAMTS1, as well as its 

target Versican whose cleavage has been shown to contribute to the proteolytic disintegration 

of the cumulus matrix, were also highly induced. The transcription factor CEBPB, induced 

after the gonadotrophin surge and mediating the upregulation of inhibin alpha (INHA), is 
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found overexpressed in our post stimulation cumulus cells. Accordingly, INHA, as well as 

INHBA/Activin A, are 5 and 34 times more expressed in cumulus cells than in oocytes 

respectively. Another transcription factor characteristic of granulosa cells, GATA6, is also 

highly overexpressed in comparison to oocytes. We observed the upregulation of 

peroxiredoxins (PRDX2, 4, 5 and 6) that are part of a family of peroxidases involved in 

antioxidant protection and cell signaling and recently reported in bovine ovaries (Leyens et 

al., 2004), as well as a lysosomal cysteine proteinase, cathepsin K (CTSK). Genes coding for 

protein found in follicular fluid such as PAPPA are also found overexpressed in cumulus 

cells. Thus, genes found overexpressed in cumulus cells by our whole genome transcriptome 

analysis recapitulates previous expression studies on post-LH surge granulosa cells carried out 

in various species. 

 Considering that cell-to-cell communication genes are a functional category that plays 

an essential role in the maturation of the cumulus-oocyte complex, we focused on genes 

filtered on the Gene Ontology cellular localization annotations “membrane” or “extracellular” 

(see material and method): 615 genes passed this filter. The most noticeable genes from this 

list were ligands (BMP1, BMP8B) or receptors (BAMBI, BMPR2) from the TGF superfamily, 

ligands (TNFSF11/OPGL/RANKL) or receptors from the TNFR superfamily 

(TNFRSF1A/TNF-R, TNFRSF10B/DR5, TNFRSF12A), components of the complement 

(CFHL1, C7, IF, CFH, C1S, C1R) and one inhibitor of the complement system (CLU), 

semaphorins (SEMA3A, SEMA6A, SEMA6D), tetraspanins (TM4SF1, TM4SF6, TM4SF8, 

TM4SF10) and various CD members (CD24, CD44, CD47, CD58, CD59, CD63, CD74, 

CD81, CDW92, CD99, CD151, CD200). Table 3 lists these genes, references key publications 

relevant for feminine reproduction biology. Furthermore, components of the cumulus-oocyte 

complex signalling pathways were retrieved such as connexin 43. We found that this connexin 

was expressed at a high signal in both cumulus cells and in all oocytes categories, in line with 
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its extracellular domains that provide strong and specific homophilic adhesion properties. 

Most interestingly, many of these genes were never before highlighted as expressed in 

granulosa cells. 

 

Differences in genes expression variation during oocyte maturation 

An important feature of our work is that we established a transcriptome for each of the three 

stages of oocyte maturation: GV, MI and MII. We were thus able to identify genes whose 

expression gradually increased during oocyte maturation (see material and method). Fifty two 

probesets were retrieved, including the phosphatase CDC25A, PCNA and SOCS7. However, 

most of the resulting genes are poorly characterized or only predicted coding sequences. All 

these genes are candidate marker for oocyte cytoplasmic and/or nuclear maturation. 

 

Discussion 

We undertook to establish the molecular transcriptome phenotype of the human oocyte and its 

surrounding cumulus cells by using oligonucleotide microarrays covering most of the genes 

identified in human. Relying on a recently developed technique of double in vitro 

transcription, that amplifies more than 100 000 times the initial RNA input, we were able to 

establish the expression profile of pooled oocytes from distinct maturation stages, and from 

cumulus cells of MII oocytes. Thus, for the first time, we report in human samples, the 

variation of gene expression during oocyte nuclear maturation, and that of their neighboring 

cumulus cells, at whole genome scale. A global analysis of the number of genes detected in 

each sample category showed a progressive decrease of the number of genes expressed during 

oocyte nuclear maturation, with the lowest number of genes expressed found in MII oocytes 

compared with GV or MI oocytes. This is in agreement with the significant decrease, both in 

quantity and in diversity, of maternal RNAs observed in mouse oocytes (Bachvarova et al., 
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1982)(Wang et al., 2004). Indeed, GV and MI oocytes over or under expressed few genes 

compared with the other samples (Table 1), reflecting a very similar expression profile. By 

contrast, MII oocytes differed markedly, underexpressing specifically many genes (n = 803), 

which may be explained by the RNA content decrease. In addition, MII oocytes overexpress 

444 genes, which may be due to a specific expression pattern related to the near completion of 

meiosis, or to the longer in vitro incubation time secondary to the IVF procedure (21 or 44 

hours post-insemination).  

Hierarchical clustering demonstrated that oocytes expression profiles where markedly 

different from cumulus cells (Figure 1). We compared the oocytes samples to the cumulus 

cells and we found that 1514 genes were upregulated in oocytes whereas 2600 genes were 

upregulated in cumulus cells. Analyzing these lists of genes, we observed that oocyte 

markedly overexpressed genes involved in meiosis process such as MPF, APC/C and spindle 

checkpoint complexes. Full completion of meiosis is only accomplished after fecundation 

because metaphase exit is prevented by the activity of cytostatic factor (CSF) that will only be 

relieved by gamete fusion. As expected, EMI1, which was recently found to be part of CSF, is 

highly expressed in all oocytes samples, as well as MOS. We also found that the two major 

cyclin-dependent kinase inhibitors CDKN1A/p21 and CDKN1B/p27, acting at the G1-S 

transition, were found markedly downregulated in oocytes as compared to cumulus cells (see 

Table 3). The separation of sister chromatids at the metaphase-to-anaphase transition is 

activated by proteases called separases that are activated by the destruction of the inhibitory 

chaperone securins. Interestingly, we found two securins highly expressed in all oocytes 

pools: PTTG1 and 3. These securins are expressed at least 15 times more in oocytes than in 

cumulus cells, CD34+ sorted bone marrow cells, B lymphocytes or mesenchymal stem cells 

(data not shown). PTTG1 expression was reported in mice oocytes, but not human oocytes, 

whereas PTTG3 marked expression in oocytes was not previously noted. Considering that 
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post-ovulation oocytes are germinal cells that have just escaped the very long meiosis I arrest 

and are due to the second meiosis arrest, securins, that are crucial to these processes, must be 

expressed at a high level. We propose that PTTG1 and 3 play this role in oocytes (Figure 3). 

The metaphase-to-anaphase transition is associated with a rapid drop of securin protein level 

mediated by the proteases of the separase family. Degradation of securins leads to the 

destruction of cohesins, a ring structure formed by a multisubunit complex that holds sister 

chromatids together. We confirm the specific upregulation of the meiosis-specific cohesin 

subunit STAG3 in human oocytes, whereas the mitotic cohesin STAG2 is markedly 

downregulated in oocytes compared to cumulus cells or other somatic cells (data not shown). 

Thus, as for the securins, two homologs of an essential component of the cell division 

machinery are differentially expressed between human oocytes and somatic cells, implying 

that one homolog (the cohesin STAG2) is operating during mitosis, whereas the other 

homolog (the cohesin STAG3) is replacing the first one during the very specialized cell 

division process of meiosis. 

The high conservation of many of the molecular determinants of gametogenesis in the animal 

kingdom, sometimes from yeast to mammals, suggests that genes found in mammals oocytes 

should be expressed in human oocytes. We provide here the unambiguous demonstration for 

many genes that they are indeed strongly overexpressed in the three pools of oocytes (Table 

2). These genes include CENPA, CENPE, PTTG1, FBXO5/EMI1 or BMP6. These results 

underscore the consistency of our approach. Furthermore, the inventory of human genes 

essential for nuclear and cytoplasmic oocyte maturation is an important step toward the 

comprehensive understanding of oocyte biology. 

Although female and male gametes differ in many aspects, they share a common meiosis 

machinery. Indeed, we see here that genes reported to be expressed specifically in 

spermatozoa are also highly overexpressed in oocytes in comparison with somatic cumulus 

H
A

L author m
anuscript    inserm

-00130809, version 1



 17 /37

cells. This is the case for Aurora Kinase C (AURKC), Sperm Associated Antigen 16 

(SPAG16/PF20) and SOX30 (Osaki et al., 1999; Horowitz et al., 2005; Yan et al., 2005). 

Three aurora kinases have been identified (AURA/STK6, AURKB and AURKC) that share a 

conserved catalytic domain and play a role in centrosome separation and maturation, spindle 

assembly and segregation, and cytokinesis (Giet et al., 2005). Whereas AURA and AURKB are 

involved in mitosis in somatic cells, AURKC was only found highly expressed in testis, 

suggesting a tissue specific role in meiosis. It is therefore of special interest to observe that 

AURKC is also 49 times more expressed in pure oocytes samples than in somatic cells. Since 

AURKB and AURKC have a similar cellular localization and a similar biological activity such 

as SURVIVIN/BIRC5 binding, we propose that AURKC is replacing AURKB during meiosis in 

both male and female gametes. In line with this proposition, our data shows that in oocytes 

samples, AURKB expression is close to background whereas survivin/BIRC5, a known 

partner of the AURKC complex (Yan et al., 2005) is also strongly overexpressed. 

We found the specific upregulation in oocytes of two methyltransferase enzymes (DNMT1 

and 3B), one histone deacetylase (HDAC9) and an oocyte specific histone (H1FOO). 

Interestingly, the Chromosome Condensation Protein G (HCAP-G) which is a components of 

the condensin complex that mediates genome-wide chromosome condensation at the onset of 

mitosis and directly interacts with DNMT3B (Geiman et al., 2004) is also found preferentially 

expressed in oocytes, suggesting that this condensin is essential to the nuclear maturation of 

oocytes. Keeping in line with epigenetic modifications of the genome, we screened our list of 

oocytes genes for imprinted genes. Of note, one paternally imprinted gene, MEST, was highly 

overexpressed in all three oocytes samples as compared to cumulus cells, while other 

paternally imprinted gene such as IGF2 or NNAT were not.  

We noted the overexpression of two pro-apopototic genes in oocytes (BNIP1 and BCL2L10). 

These findings strongly argue in favor of a model where the survival of oocytes is mediated 

H
A

L author m
anuscript    inserm

-00130809, version 1



 18 /37

by external signals provided by surrounding cumulus cells rather than by intrinsic cues such 

as overexpression of anti-apoptotic factors. Accordingly, we found many receptors for growth 

factors overexpressed on oocytes, including a BMP receptor (BMPR2), the receptor for the 

stem cell factor (KIT), a member of the EGF receptor familiy (ERBB4), and a frizzled 

receptors (FZD3) member of the WNT pathway. In addition we observed 6 poorly 

characterized G protein-coupled receptors in oocytes (GPR37, GPR39, GPR51, GPR126, 

GPR143, GPR160). The fact that oocytes overexpress these growth factors receptors strongly 

suggests that the ligands of these receptors are involved in conveying surviving and 

maturation cues from the oophorus cumulus to the oocytes. Conversely, oocytes express many 

growth factors. Among the genes, we noted the remarkable overexpression of a ligand from 

the TNF superfamily, TNFSF13/APRIL that we found 131 times more expressed in oocytes 

than in cumulus cells. We did not see a significant expression of the two TNF receptors for 

APRIL, TNFRSF13B/TACI and TNFRSF17/BCMA (data not shown). But it was recently 

described that APRIL’s binding to proteoglycan was necessary for the survival signal 

conveyed by this cytokine to targets cells (Ingold et al., 2005). Since cumulus cells 

overexpress several proteoglycan such as CSPG2/VERSICAN (Table 3) and SYNDECAN4 

(data not shown), APRIL could mediate a comparable trophic signal from the oocyte to the 

surrounding cumulus cells.  

We also focused our analysis on genes which expression increased progressively during 

oocyte meiosis. We postulate that they could be interesting candidate genes for oocyte 

maturation. Indeed, if these genes fail to be upregulated in MII-stage oocytes, it is likely that 

the maturation process was defective. Genes increasing progressively during oocyte 

maturation comprise SOCS7. This gene is part of a family of proteins negatively regulating 

intracellular signal transduction cascades (Krebs and Hilton, 2000). Its overexpression in MII-

stage oocytes may indicate the shutting down of specific cytokine signalling. For this 
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category, it must also be noted that many genes are still not characterized and remain without 

any hint about their function (20 out of 48 genes, = 42%). It is not a surprise if so many genes 

from this list have escaped bioinformatics or biological functional investigations to date, 

because (i) MII-stage oocytes are a very rare cell type, (ii) it is a very specialized cell type 

expressing numerous genes that may not be found in any other tissue type, including genes 

devoided of any molecular motif found in other tissues, and (iii) we used here pangenomic 

microarray to study here for the first time gene expression of this cell type without any 

selection bias. It will be essential to describe in detail the function of these genes to obtain 

further insights in oocyte biology. 

 

In order to decipher the tight relationship weaved between the oocyte and its surrounding 

follicle cells, we also analyzed the transcriptome profile of cumulus cells. Indeed, 24% of the 

2600 genes overexpressed in cumulus cells are annotated either “membrane” or 

“extracellular”, demonstrating a strong bias towards genes involved in cell-to-cell 

communication processes. The signalling pathways involved comprise the progesterone and 

its receptors, eicosanoids and several enzymes involved in their biosynthesis and chemokines. 

We showed in this study that cumulus cells up regulated hormonal receptors and hormones 

such as LHCGR, Inhibin alpha, Inhibin beta A, GNRH1 and progesterone receptor membrane 

component1 and 2.  

Interestingly, cumulus cells overexpress BMPR2 which is the receptor for GDF9 which is 

overexpressed by oocytes, demonstrating a typical intercellular communication process. In 

addition to the inhibins INHA and INHBA, we also observed the overexpression of BMP1 and 

BMP8B, as well as the pseudoreceptor BAMBI, lacking an intracellular serine/threonine 

kinase domain and thus negatively regulating TGF-beta signalling. Another important growth 

factor superfamily found to be overexpressed in cumulus is the TNF superfamily. The marked 
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overexpression of TNFSF11/OPGL/RANKL (80 times more expressed in cumulus cells than 

in oocytes) is intriguing and awaits further investigations. Magier et al. suggested a positive 

effect of cumulus cells on fertilization, a protective effect and a possible beneficial effect on 

further embryo development (Magier et al., 1990). In addition, Platteau et al. (Platteau et al., 

2004) suggested that the exogenous luteinizing hormone activity may influence treatment 

outcome in IVF but not in ICSI. We provide here molecular evidence for cumulus cells 

expression by of hormones and growth factors that could mediate these functions. 

Another puzzling observation is the increased expression of seven complement factors or 

closely related genes. Whether this overexpression is involved in the cellular destruction 

process taking place in the antrum during ovulation needs to be considered. Finally, cumulus 

cells express several other cell surface gene families such as semaphorins, first identified for 

their role in neuron guidance, tetraspanins, with one member, CD9, directly involved in 

fertilization (Le Naour et al., 2000), and many other CD molecules with various function 

(Table 3). Very interestingly, some genes overexpressed in granulosa cells are also found 

expressed in ovarian tumors. We found for example a high expression in cumulus cells of 

CD24 and CD99 which are expressed in ovarian tumors and have been proposed as either 

diagnostic tools (Choi et al., 2000) or as prognostic tools (Kristiansen et al., 2002). These 

findings suggest that many of the genes overexpressed in cumulus samples, including the cell 

surface markers of cumulus cells listed in Table 3, could provide ovarian cancer markers.  

We pooled oocytes according to their maturation stage for this first, exploratory, whole 

genome transcriptome analysis. This strategy leveled down differences that would be 

associated with different IVF settings such as maternal age, sperm exposure or in vitro 

incubation time length. In order to describe the expression modifications that may be related 

to specific conditions, we are currently analyzing the transcriptome of oocytes pooled 

according to the hormonal profile at day 3, maternal age or ovarian hyperstimulation protocol. 
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Nevertheless, to appreciate variations in gene expression according to each patients 

idiosyncrasy, we will need to achieve reliable transcriptome analysis from single oocytes. 

In conclusion, DNA microarray provided us with the opportunity to analyze human oocytes 

and cumulus cells expression profiles on a genome scale and permitted a significant progress 

to understand the molecular events involved in the process governing oocyte maturation. 

Many of the genes described here may well provide markers to monitor health, viability and 

competence of oocytes. In addition, underpinning oocyte growth factors receptors should help 

to design optimal in vitro culture conditions for oocyte and early embryo development. 
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Tables 

Table 1 : genes expressed in oocytes and cumulus cells 

 GV MI MII Cumulus 

Expressed genes (1) 10 869 9 682 5 633 10 610 

Exclusive genes (2) 739 326 234 1 829 

Genes overexpressed (3) 104 4 444 2600 

Genes underexpressed (4) 6 5 803 1514 

1: genes (based on Unigene Build 176) that had at least one probe with a detection call 

“Present”. 

2: genes (based on Unigene Build 176) that had a detection call “Present” only in one sample 

category. 

3: genes significantly overexpressed in one sample compared to all other samples, with a fold 

ratio of at least three. 

4: genes significantly underexpressed in one sample compared to all other samples, with a 

fold ratio of at least 0.333. 
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Legends to Figures 

Figure 1 : Global gene expression variation 

(A) Scatter plots. Each sample was plotted against all other samples to visualize the 

expression variation. Only the 26 662 probes with at least one sample with a “Present” 

detection call were included. All signal values were floored to 2. Red circles : probes 

overexpressed in the sample specified on the left side; green circles : probes overexpressed in 

the sample specified at the bottom of each plot; grey circles : probes whose expression do not 

vary significantly between the two samples. For each couple of sample, the Pearson 

correlation coefficient was computed (“r”), based on the signal of probes with at least one 

sample with a “Present” detection call. GV (germinal vesicle), MI (metaphase I); MII 

(metaphase II). 

 (B) Hierarchical clustering. The expression signature of oocyte and cumulus cells were 

visualized by hierarchical clustering on the 15 000 probesets with the highest variation 

coefficient. The colors indicate the relative expression levels of each gene, with red indicating 

an expression above median, green indicating expression under median and black 

representing median expression. Cluster (a) was a group of genes overexpressed in oocyte 

(GV-MI-MII), including genes such as DAZL, GDF9, BMP15, ZP1,2,3,4. Cluster (b) was 

group of genes overexpressed in cumulus cells, including genes such as CD24, Activin A, 

PAPPA, TNTSF11, LHCGR and INHA. 

 

Figure 2 : Differential Gene Ontology annotations between oocytes and cumulus cells 

We compared the frequency of level 3 Gene Ontology (GO) annotations of genes 

overexpressed in oocytes to those of genes overexpressed in cumulus cells. The statistical 

analysis was made using the Fatigo web site (http://www.fatigo.org/) using Unigene cluster 
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ID. Histograms show the percentage of genes with the specified GO annotation in the group 

of genes overexpressed in oocytes (purple) or in cumulus (green). P : P-value. 

 

Figure 3 : Schematic representation of selected genes involved in meiosis and cumulus-

oocyte-complex 

(A) Meiosis. Actors of meiosis in oocytes: components of the Maturation-Promoting Factor 

(MPF), components of the spindle checkpoint, components of the Anaphase Promoting 

Complex (APC/C), the downstream targets such as the securin PTTG3, and regulators. Genes 

in pink are upregulated in oocytes. Genes that are specific to meiosis are highlighted by an 

orange hexagon. Genes in white did not display a significant modification in gene expression 

between oocytes and somatic cells (cumulus cells). See table 2 for full name and references. 

 

(B) Cumulus-oocyte-complex. Genes overexpressed in oocytes (pink) or overexpressed in 

cumulus (green) that are involved in the cumulus-oocyte-complex interactions. Oocytes genes 

included members of the transforming growth factor-beta superfamily such as Growth 

Differentiation Factor 9 (GDF9), Fibroblast Growth Factor 9 and 15 (FGF9, 15), Bone 

Morphogenetic Protein 6 and 15 (BMP6, 15). Conversely, in cumulus cells, the genes 

overexpressed included hormonal receptors such as Luteinizing Hormone/ 

Choriogonadotropin Receptor (LHCGR), Progesterone Receptor Membrane Component 1 

and 2 (PGRMC1, 2), Interleukin IL1beta, chemokines (IL8) and CD24 antigen, Inhibin Alpha 

(INHA), Activin A (INHBA). Genes in red are upregulated in the oocytes compared to cumulus 

cells. Genes in green are upregulated in the cumulus cells compared to oocytes. Genes shown 

in blue are expressed in oocytes and cumulus cells such as Gap Junction protein Alpha 

(GJA1). See table 3 for complete list of full names and references. 
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Figure 4 : Expression histograms of selected genes in oocytes and cumulus cells 

Histograms show signal values of 20 genes which are differentially expressed between oocyte 

(purple) and cumulus cells (green). Gene expression is measured by pan genomic HG-U133 

Plus 2.0 Affymetrix oligonucleotides microarrays and the signal intensity for each gene is 

shown on the Y axis as arbitrary units determined by the GCOS 1.2 software (Affymetrix). 

GV : germinal vesicle; MI : metaphase I; MII : metaphase II; C : cumulus. 
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