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Abstract 

Rationale: Lung hypoplasia in congenital diaphragmatic hernia (CDH) appears to involve 

impaired alveolar septation. We hypothesized that disturbed deposition of elastin and 

expression of FGF18, an elastogenesis stimulus, occurs in CDH. 

Objectives: To document FGF18 and elastin in human CDH and ovine surgical and rat 

nitrofen models; to use models to evaluate the benefit of treatments. 

Methods: Human CDH and control lungs were collected post-mortem. Diaphragmatic hernia 

was created in sheep at 85d; fetal lungs were collected at 139d (term=145d). Pregnant rats 

received nitrofen at 12d; fetal lungs were collected at 21d (term=22d). Some of the sheep 

fetuses with hernia underwent tracheal occlusion (TO); some of the nitrofen-treated pregnant 

rats received vitamin A. Both treatments are known to promote lung growth.  

Main results: Coincidental with the onset of secondary septation, FGF18 protein increased 

3-fold in control human lungs, which failed to occur in CDH. FGF18 labeling was found in 

interstitial cells of septa. Elastin staining demonstrated poor septation and markedly 

decreased elastin density in CDH lungs. Consistently, lung FGF18 transcripts were 

diminished 60% and 83% by CDH in sheep and rats, respectively, and elastin density and 

expression were also diminished. TO and vitamin A restored FGF18 and elastin expression 

in sheep and rats, respectively. TO restored elastin density. 

Conclusions: Impaired septation in CDH is associated with decreased FGF18 expression 

and elastic fiber deposition. Simultaneous correction of FGF18 and elastin defects by TO and 

vitamin A suggests that defective elastogenesis may result, at least partly, from FGF18 

deficiency.  

Word count: 245 
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INTRODUCTION 

Congenital diaphragmatic hernia (CDH) is a developmental abnormality that is associated 

with high mortality and morbidity because of respiratory insufficiency, due to lung hypoplasia 

and pulmonary hypertension (1). The incidence of CDH is about 1/3,000 live births. Despite 

changing concepts and methodology in treatment (2), mortality rate remains high (3, 4).  

CDH lungs present fewer and smaller airspaces, reduced radial alveolar count, and 

thicker alveolar septa (14). Clearly, this results in part from early impairment of airway 

branching (6), each bronchiolar end giving rise to a limited number of saccules. Changes in 

key control factors involved in branching morphogenesis have been consistently reported. 

The sonic hedgehog system was lowered at early stages in CDH and peaked later in both 

humans and a rat model of CDH induced by the herbicide nitrofen (7). Fibroblast growth 

factor (FGF) 10 was decreased in the nitrofen model (8). The expression of FGF7, known to 

control alveolar epithelial cell proliferation and differentiation, was decreased in the nitrofen 

model (8) and in a model of surgically-induced CDH in sheep (9).  

However, morphogenesis of distal lung, including alveolar septation, also seems to be 

impaired in CDH. This disorder appears as a common feature of hypoplastic lungs, whatever 

the leading cause. Thus, previous studies in human pulmonary hypoplasia of various origins, 

including hydrops fetalis, renal anomalies, oligohydramnios, and CDH, have established 

retarded acinar complexity and maturation (10, 11). Elastic fiber deposition, which is 

essential to build alveolar walls (16-18), was reported to be disturbed in human lung 

hypoplasia in association with oligohydramnios (15-17) or CDH (17), and experimentally, in 

drainage-induced lung hypoplasia in fetal sheep (18). Moreover, in the ovine model, alveolar 

hypoplasia occurred in the absence of reduction in bronchiolar generations, due to late 

creation of hernia (19), and discontinuous, uncondensed elastin aggregates have been 

described in alveolar septa (20). Decreased elastin expression with less elastin deposition 

and disorganized distribution, have also been reported in the nitrofen-model (21). 
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Compared to branching morphogenesis, less is known about mechanisms that control 

saccular and alveolar development. FGF18 is believed to play important role. Thus, lung-

targeted FGF18 overexpression inhibited distal lung development (22), whereas FGF18-null 

mouse fetuses displayed smaller distal airspaces and thickened septa (23). FGF18 

expression markedly increases coincidently with postnatal formation of secondary septa in 

the rat (24), and FGF18 enhances proliferation and elastogenesis in myofibroblasts (24), the 

source of septal elastin. Moreover, FGFR3 is a high-affinity receptor for FGF18 (25), and 

alveolarization is completely abolished in mice devoid of both FGFR3 and FGFR4 (26). Thus 

far, FGF18 has not been documented in the developing human lung, either in normal or 

pathological conditions. 

The potential benefit of two treatments aiming to restore lung development in CDH, 

namely tracheal occlusion and vitamin A administration, have been investigated in the 

surgical ovine model and in the rat nitrofen-model, respectively. In sheep fetuses with hernia 

as well as with lung hypoplasia induced by drainage, tracheal occlusion restored lung growth, 

increased gas exchange surface area (27-29), and ameliorated respiratory function at 

delivery (30, 31). It should be emphasized that this treatment is currently under trial in human 

fetuses with CDH (32). In the nitrofen model, vitamin A decreased the incidence and severity 

of CDH, enhanced lung growth, and restored lung maturation (33, 34).  

The first objective of the present study was to investigate whether CDH had impact 

upon FGF18 expression in the developing human lung and in models. Elastic fiber deposits 

and elastin expression were studied in parallel to further document qualitative and 

quantitative changes. The second objective consisted of using the sheep and rat models of 

CDH to evaluate the effects of tracheal occlusion and vitamin A-treatment, respectively, on 

pulmonary FGF18 expression and elastin deposition. Some of the results of these studies 

have been previously reported in the form of an abstract (35). 

(Word count: 632) 
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MATERIAL AND METHODS 

Human lung tissue 

Human lung samples were collected during the autopsy after medical terminations of 

pregnancy in bad-prognosis fetuses, or following death after delivery. Parents were informed 

about the procedure and issues of post-mortem study, and signed consent was obtained for 

all included patients.  The study received approval from the local Ethics Committee. Detailed 

clinical data are depicted in table 1.  

 

Sheep model of CDH and tracheal occlusion 

Surgical procedures have been extensively described elsewhere (36). Biological samples 

were collected from the same animals as in previous reports (20, 27). 

Nitrofen exposure in rats 

The procedure has been described in detail elsewhere (33). Pregnant Wistar rats were 

gavaged with nitrofen in olive oil on day 12. Control dams received olive oil. Vitamin A was 

gavaged on day 14. Fetuses were retrieved on day 21.  

 

Histochemical elastin staining and quantification 

Because of restrictions in human tissue sampling conditions, and of collection of sheep lung 

samples for multiple purposes (20, 27), lungs were not fixed at constant pressure. Human 

and sheep lungs tissue were fixed 24h after death and at sacrifice, respectively. Sections 

were stained for elastin with Weigert’s stain. Proportion of tissue surface-area occupied by 

elastic fibers was determined with Perfect Image v7.4 software. In each analyzed field, tissue 

area was determined by subtracting airspace surface-area from total surface-area. Stained 

elastic fiber surface-area was measured after exclusion of large vessel and airway elastin. 
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Immunohistochemical FGF18 analyses 

Sections were labeled using a polyclonal antibody raised in rabbit (AbCys S.A., Paris, 

France), and Cy3-conjugated donkey anti-rabbit IgG (Jackson ImmunoResearch, 

Newmarket, UK). 

 

RNA extraction 

Total RNA was extracted using Trizol reagent (Invitrogen, Cergy-Pontoise, France). Quality 

and integrity were confirmed after electrophoresis. 

 

Determination of ovine partial cDNA sequence for FGF18 

cDNAs were reverse-transcribed from sheep lung total RNAs, and partial amplification of 

partial cDNA sequence was performed using sense primer 5’- 

CTGCTGTGCTTCCAGGTTCA -3’ (mouse/rat FGF18-specific sequence, GenBank 

accession numbers NM008005 and NM019199, respectively) and antisense primer: 5’- 

CCGTCGTGTACTTGAAGGGC -3’ (human FGF18-specific sequence, GenBank accession # 

BC006245).  

 

Northern blot analysis 

Rat cDNA probes consisted of a 1,100-bp sequence for tropoelastin (gift from Dr. C. Rich, 

Philadelphia, PA) and a 904-bp sequence for FGF18 (gift from Dr. N. Itoh, Kyoto, Japan). 

Ovine tropoelastin cDNA probe was obtained by RT-PCR from RNA extracted from fetal 

sheep lung tissue, using ovine-specific oligonucleotide primers (37). Blots were exposed to 

X-Omat AR Kodak films, and signals were quantified by densitometry (NIH Image, Bethesda, 

MD). 

Reverse Transcription and Real-time quantitative PCR 
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Real time PCR (∆∆Ct [threshold cycle] method) was carried out to determine amounts of 

FGF18 mRNA, FGFR3 mRNA, and internal reference 18S rRNA in ovine lungs. Primer 

sequences are reported in table 2. All measurements were performed in triplicate.  

 

Western blot analysis  

Membranes were exposed to goat anti-rhFGF18 antibody (R&D Systems, Lille, France) both 

diluted 1:500, washed in TTBS, then to horseradish peroxidase-conjugated donkey anti-goat 

IgG antibody (Santa Cruz Biotechnology, Santa Cruz, USA) and incubated in ECL reagent 

(Amersham Biosciences), before exposure to Kodak BioMax MS film. Signals were 

quantified by densitometry (NIH image). 

 

Statistical analysis 

Data are presented as mean ± se. Multiple group comparisons were made either by ANOVA 

and Fisher’s PLSD, or by non-parametric Kruskall-Wallis analysis, depending on applicability 

as detailed in results. Two-group comparisons were made by Student’s t test or by non-

parametric Man and Whitney’s U test, depending on applicability.  

(Word count: 550) 

 

RESULTS 

FGF18 in human lungs with CDH 

FGF18 protein was studied in human lung samples by western blot analysis. Preservation of 

RNA was not constant enough to perform study at pre-translational level. Because FGF18 

had never been documented in developing human lung, a first step consisted in studying 

changes in FGF18 level during the course of intra-uterine development. FGF18 proportion 

increased with progressing pregnancy between 14 to 37 wk (fetal age) with a particularly 

marked rise around 28 wk (Figure 1A). Densitometry analysis of data corrected for variations 

of protein loading (Figure 1B) indicated significant positive exponential correlation with time (r 

= 0.865; p<0.001). The highest amount observed between 32 and 37 wk (i.e. in early alveolar 
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stage) reached about 20 times those observed at 14-16 wk (pseudoglandular stage) and 

about 10 times those at 19-21 wk (canalicular stage). Interestingly, when densitometric 

values were gathered into 2 groups corresponding to pre-saccular stages (≤ 26wk, n=6) and 

saccular-alveolar stages (age ≥ 27 wk, n=8), mean FGF18 amount increased from 165 ± 69 

arbitrary units (a.U.) in the former to 782 ± 138.5 a.U. in the latter (p<0.01 by t test). Six pairs 

of CDH and age-matched control lungs ranging from 27 to 37 wk (saccular-alveolar stages) 

were then studied comparatively (Figure 2A). All CDH lungs ipsilateral to hernia displayed 

lower FGF18 level than their respective age-matched control, and FGF18 failed to increase 

in CDH samples over the period, whereas control values increased about 3 times (Figure 

2B). 

 

Elastin in human lungs with CDH 

Elastin staining was performed in 5 pairs of control and CDH lungs ranging from 27 to 37 wk.  

In control fetuses, lung parenchyma matured homogeneously during the period, with thinning 

of septal walls, increased proportion of airspaces, and surge of secondary septa as 

illustrated in Figure 3, A and C. Airspaces displayed regular distribution. Elastin staining 

demonstrated bundles beneath the surface of walls, and punctate, dense deposits at the tips 

of growing septa that considerably increased in number with maturation (Figure 3, A’ and C’). 

Consistent with previous reports, CDH lungs displayed thicker walls, and denser tissue 

(Figure 3, B and D). Elastin staining also demonstrated mostly bundles in thick septa with 

extreme paucity of tip deposits (Figure 3, B’ and D’), which illustrates deficient secondary 

septation. Lung vessels strongly stained for elastin and presented no noticeable difference 

between CDH and control lungs. Quantitative evaluation of parenchymal elastic fiber 

deposits was achieved by determination of the proportion of tissue surface-area occupied by 

elastin patches, excluding vessel and airway elastin (Table 3). The elastic fiber density was 

low at 27 and 29 wk with no difference between CDH and control lungs. It was considerably 

higher at 31, 33 and 37 wk in controls, but failed to increase in CDH lungs that all displayed 

much lower value than their respective age-matched controls. 
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FGF18 in sheep lungs with sDH and sDH+TO  

Experimental groups were: surgical diaphragmatic hernia created at 85d (sDH, n=6, 

term=15d), sDH + tracheal occlusion (TO, n=4), and control group (n=5), all retrieved at 139d 

of gestation. The expression level of FGF18 in sheep lungs was determined at pre- and post-

translational levels. Since ovine FGF18 cDNA sequence had not been reported previously, a 

first step consisted of determining it after RT-PCR amplification. Sheep lung mRNAs were 

retro-transcribed and amplified using 2 oligonucleotide primers chosen in the human and 

mouse/rat cDNA sequences in regions proximate to 5’ and 3’ ends and conserved among 

species described thus far. This allowed amplification of a 531 bp product representing a 

partial sequence of ovine FGF18 corresponding to positions 49 through 579 of the 621 

nucleotide coding sequences of human, mouse and rat FGF18 (Figure 4A). Its predicted 

amino-acid sequence shared 99% homology with human, mouse, and rat FGF18 as shown 

by sequence alignment (Figure 4B). The ovine cDNA sequence then served to design 

oligonucleotide primers for use in real-time RT-PCR, to evaluate FGF18 expression level 

among the various experimental groups. We found a 60% reduction of FGF18 transcript in 

the lung ipsilateral to hernia in the sDH group compared to control group (Figure 5A). There 

was a trend toward a decrease of FGF18 mRNA level in contralateral lung as well, but the 

difference was not statistically significant. FGF18 mRNA level was increased to twice the 

control level in both ipsilateral and contralateral lungs in the sDH+TO group (Figure 5A). 

FGF18 was also appraised at the post-translational level through western blot analysis in 

ipsilateral lung. FGF-18 antibody raised against the human peptide recognized ovine FGF18 

at the same apparent molecular weight (Figure 5B). Densitometric analysis normalized for 

gel loading indicated values of 193.4 and 596.5, 23.3 and 70.1, and 1381.0 and 327.5 a.U. in 

controls, sDH, and sDH+TO, respectively. Consistent with mRNA findings, FGF18 protein 

was therefore decreased to very low level in sDH compared to controls, and re-established in 

sDH+TO.. Because FGFR3-FGFR4 double null mutation abolished alveolar septation in the 

mouse (26), and FGFR3 is a putative receptor of FGF18 (25), expression of the transcript of 
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FGFR3 was studied in parallel. By contrast with FGF18, FGFR3 expression was unaffected 

by sDH, and although it tended to increase after TO, the difference was not statistically 

significant (Figure 5C).  

 

Elastin in sheep lungs with sDH and sDH+TO  

Elastin staining on sections from the lung ipsilateral to hernia showed changes in elastin 

deposition quite similar to those in human CDH. Control lungs displayed regularly distributed 

airspaces with thin parenchymal tissue and dense focal elastic fiber deposits localized 

primary at the tips of newly forming septa and lining alveolar walls (Figure 6A, A’). All sDH 

lungs appeared immature with thicker septa. Some presented regularly distributed airspaces 

with evenly distributed elastin fibers, but similar to human CDH lungs, secondary crests with 

typical punctate elastin deposit at the apex were rare (Figure 6B). Other subjects displayed 

zones of dilated airspaces among large zones of dense and thick parenchyma, with elastin 

deposits being confined to dilated airspaces and extremely scarce in dense areas (Figure 

6C). The paucity of elastin staining in dense areas, and its presence at the tip of septa in 

dilated ones indicate that the presence of dilated and non-dilated zones is not an artefactual 

consequence of absence of pressure fixation, but rather an actual feature of these lungs. In 

fetuses with sDH+TO, alveolarization appeared to be restored as indicated by reappearance 

of regular elastin lining and punctate elastin deposits located at the tip of crests, which 

presented an appearance similar to that observed in controls (Figure 6D, D’). Elastin in walls 

of blood vessels and airways did not appear to be altered in sDH and sDH+TO groups. 

Quantification of parenchymal elastic fiber density indicated dramatically reduced amounts in 

sDH lungs that were only one seventh those in control lungs; TO restored the proportion of 

elastin deposits to a level not significantly different from that in control lungs (Table 4). In 

addition, tropoelastin mRNA level was decreased about half in ipsilateral lung in the sDH 

group, but was unchanged in contralateral lung, and TO enhanced the level to twice that in 

controls in both ipsilateral and contralateral lungs (Figure 7), thus abolishing DH effect. 
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Expression of tropoelastin and FGF18 in rat lungs with induced CDH and CDH + vitA 

Nitrofen treatment resulted in lung hypoplasia in all fetuses, associated with a 60 to 70% 

incidence of right-sided CDH. Lung wet weights were 111.1 ± 1.0, 85.5 ± 1.9, and 67.7 ± 1.6 

mg in control fetuses (given olive-oil, the vehicle of nitrofen), nitrofen-treated fetuses without 

CDH, and nitrofen-treated fetuses with CDH, respectively (p<0.001 vs controls for both 

nitrofen-treated groups). Vitamin A increased lung growth without fully restoring control level 

in nitrofen-treated fetuses (97.8 ± 3.0 mg without CDH, and 76.0 ± 1.9 mg with CDH, p<0.05 

as compared with nitrofen-treated fetuses without vitA). Tropoelastin and FGF18 mRNAs 

were deeply decreased to about 13% and 17% of control levels, respectively, in fetuses with 

nitrofen-induced CDH as compared with controls (Figure 8). Similar decreases were 

observed also in nitrofen-treated fetuses without CDH (not shown), suggesting association 

with nitrofen-induced lung hypoplasia, either in the presence or absence of hernia. Vitamin A 

administration 2 days after nitrofen treatment prevented the drop of both tropoelastin and 

FGF18 mRNAs that displayed levels not significantly different from those in controls (Figure 

8). 

 

FGF18 immunolocalization in lung tissues 

This investigation was carried out in control lung tissues of the three species to define cell 

localization of FGF18. Figure 9 shows results obtained with the same anti-FGF18 antibody in 

distal lung tissue. Immunoreactivity appeared in parenchymal cells as a dotted labeling. 

Figure 9A depicts immunofluorescence micrograph of 37-wk fetal human lung tissue, 

indicating presence of FGF18 in septal cells. Epithelial airway cells were slightly labeled, 

whereas smooth muscle cells of small airways or arteries were negative. In bronchial 

cartilagenous plates, chondrocytes, which are known to express FGF18 (37), were also 

labeled (not shown). In 139d fetal sheep lung tissue (Figure 9C), labeling was similarly found 

in septa. Weak labeling was also present in airway epithelial cells (not shown), but was 

absent from airway and vascular smooth muscle cells. In the rat, we choose to study lung 

tissue on postnatal day 4 (Figure 9E), when FGF18 expression has been reported to be 
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elevated (24). FGF18 immunoreactivity was present in cells in the thickness of walls of 

primary as well as secondary septa (left and right inserts in Figure 9E, respectively). 

Distribution of FGF18 labeling appeared similar to that of elastin or alpha smooth muscle 

actin (Figure 9G).  

 

DISCUSSION 

We report that decreases of FGF18 expression and of elastic fiber deposition in alveolar 

septa characterize CDH in humans. The presence of similar features in two animal models 

allowed us to use the latter to evaluate the effects of potential therapeutic approaches on 

these abnormalities. Tracheal occlusion in the surgical model, and vitamin A treatment in the 

nitrofen model allowed nearly normal features to be recovered. The work supports further 

studies to determine the potential benefit of these treatments in promoting lung growth and 

maturation in the presence of diaphragmatic hernia. 

 

Limitations of the study 

Investigations in humans raise the question of control appropriateness. Only lung samples 

from subjects with other, non-pulmonary diseases, can be used as controls. This is clearly an 

unavoidable limitation of the present study that may introduce bias. For instance, FGF18 is 

known to be involved not only in lung development, but also in the formation of heart, bone, 

and central nervous system. Nevertheless, the fact that differences were demonstrated 

between CDH and control lungs, and were observed also in animal models of CDH suggests 

that abnormalities actually result from CDH. This underlines the usefulness of comparing 

human and model data. 

 

Lung expression of FGF18 is deficient in diaphragmatic hernia 

Lung hypoplasia associated with CDH is believed to result from a precocious arrest of 

bronchial branching (6). Development of distal lung, including saccules and alveoli, appears 

to be impaired also. Disturbed alveolar development appears to be a common feature of 
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hypoplastic lungs, including in the instance of CDH (10, 11, 15-17). Altogether, these 

disorders result in histological appearance of less than stated gestational age with less 

acinar complexity (5). Taking into account the recently demonstrated association of FGF18 

with alveolarization process, we investigated whether pulmonary FGF18 expression was 

affected in CDH lung. FGF18 was effectively shown to play a crucial role in development of 

murine distal lung. Similar to features seen in mice deficient in elastin (13), fewer and larger 

air sacs were observed in FGF18-deficient mouse fetuses (23). Although lethality at birth 

prevents one from studying alveolarization in FGF18-deficient mice, the involvement of 

FGF18 in secondary septation is supported by FGF18 up-regulation during the process in the 

rat (24), by elastogenesis-stimulating activity of FGF18 in fibroblasts (24), and by the crucial 

role of FGFR3-FGFR4 signaling for secondary septation (26). 

The expression pattern of FGF18 in the developing human lung had not been 

examined previously. A first step therefore consisted in studying FGF18 expression in the 

course of fetal lung development. A major observation of the present study was the marked 

increase in FGF18 protein, starting from 27-28 wk of gestation to reach elevated level at 36-

37 wk. Although the precise time when secondary alveolar septation begins in humans is a 

matter of debate, in part because of the difficulty in defining an alveolus in microscopic 

sections (12), it is generally accepted that the process starts between 30 and 36 wk. 

Therefore, FGF18 increases in human lung coincidently with starting secondary septation. 

This finding, consistent with studies in rodents, reinforces the assumption of involvement of 

FGF18 in alveologenesis. Moreover, FGF18 localization in interstitial cells of alveolar walls, 

presumably myofibroblasts, at sites and time of alveolarization and elastin deposition 

strongly argues in favor of FGF18 involvement in the process. Previous investigation had 

consistently indicated that FGF18 expression was located principally in interstitial tissue of 

distal lung areas in the mouse (22). Furthermore, FGF18 absence from perivascular or peri-

airway wall tissue where elastin is also abundant, is in favor of specific involvement for 

alveolarization at this stage of lung development. 

In a second step, human CDH lungs were compared to age-matched controls. We 
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found low FGF18 protein level in CDH lungs, with failure to increase in late pregnancy. 

Consistently, lowered FGF18 expression was found also in the ovine sDH model and in the 

nitrofen model in rats. The absence of change in FGFR3 expression in sDH indicates 

impairment of signaling at the ligand level, not the receptor level. Secondary septation was 

begun in humans and advanced in sheep at stages when FGF18 was determined in CDH. 

Impaired expression is therefore likely to be related with impairment of this process. In the 

rat, in contrast, the process of secondary septation was not yet initiated at the stage when 

the study was performed. Nevertheless, both elastin and FGF18 transcripts were decreased 

in the nitrofen model, which suggests disturbance in the prenatal formation of saccular walls. 

In rat lung, FGF18 presents two developmental peaks, a 2-fold prenatal increase between 

fetal days 19 and 21, and a 7-fold increase between postnatal days 2 and 3, separated by a 

transient fall at the time of birth (24). Changes reported here correspond to inhibition of the 

first rise that may therefore be related to the building of saccular walls. 

 

Elastic fiber density is diminished in diaphragmatic hernia 

Deposition of elastin fibers is intrinsic to the process of saccular and alveolar wall formation. 

It has been assumed that septal elastin provides a critical morphogenetic force in 

alveolarization (12). Consistent with previous reports, CDH lungs retained an immature 

appearance, and rare location of elastin at the tip of growing crests supports deficiency in 

secondary septa. Similar observations in the ovine sDH model indicate that lung 

compression by ascended viscera precipitates these disorders. We did not examine elastin 

deposits histologically in rat fetuses with nitrofen-induced CDH, but a previous investigation 

in the same model (21) had demonstrated paucity of elastin staining in the simplified terminal 

airways, similar to our report herein for human and sheep lungs.  

Decreased density of elastin fibers in distal parenchyma of CDH lungs is a novel 

finding of the present investigation. It indicates clearly that defective septation results from 

deficient elastin deposition. Decreased tropoelastin transcripts in the fetal sheep model 

indicated that impairment occurs at the pretranslational level. Reduced lung expansion 
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induced by lung fluid drainage has been reported to decrease tropoelastin mRNA 2.5-fold 

(38). Contradictory observations have been reported in the nitrofen model with either 

decreased (21 and present data) or increased (39) tropoelastin transcripts. The reason for 

the discrepancy between studies is unclear, but may be due to methodological differences 

(21). Moreover, reduced levels of tropoelastin transcripts in the nitrofen model were 

corroborated by reduction of desmosine content (indicative of cross-linked elastin) in the lung 

ipsilateral to hernia (21). Although no quantitative evaluation of elastin synthesis was 

performed in oligohydramnios, the absence of elastin deposits in alveolar septa reported at 

the ultrastuctural level in hypoplastic lungs with this disease (16) also suggests defective 

synthesis. Impaired elastogenesis in pulmonary septa therefore presents as a common 

feature in under-expanded hypoplastic lungs whatever the leading cause, and may therefore 

represent a direct consequence of insufficient lung-tissue tension. Although the present 

investigation does not demonstrate a causal relationship between FGF18 changes and 

impairment or restoration of alveolarization, developmental lung disturbances in prenatal 

mice lacking FGF18 (23), and the coordinated effects of FGF18 upon various proteins 

involved in elastogenesis by neonatal rat lung myofibroblasts (24) strongly argue in favor of 

such a link. The presence of FGF18 transcripts (22) and immunoreactive FGF18 (present 

data) in distal lung parenchyma reinforces this hypothesis. 

 

Treatments restore FGF18 expression and elastin deposition in CDH models 

FGF18 and elastin transcript and protein were restored or enhanced above control level by 

TO in sDH, and by vitamin A in the nitrofen model. It is well established that TO induces cell 

proliferation (40), a process enhanced for all cell types during alveolarization. A variety of 

growth factors have indeed been reported to increase in the lung in response to TO, 

including FGF7, TGFβ2, VEGF, IGFI and IGFII (9, 41-45). The notion that they play a crucial 

role in expansion-induced lung growth is strengthened by the observation that replacement 

of lung fluid, which contains growth factors, by saline, prevents lung growth normally 

observed following TO (46). Our finding of increased FGF18 mRNA and protein after TO 
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indicates stimulation by lung expansion, and adds FGF18 to growth factors listed above. 

With regard to elastin expression, our findings are in agreement with those from Joyce et al 

(38) showing a transient 2.5-fold increase of tropoelastin mRNA in the occluded fetal sheep 

lung. In this study, however, TO was performed on an intact lung, and was not combined with 

diaphragmatic hernia or drainage. Restoration of elastic fiber density and of lung histological 

aspect in sDH lungs indicates that TO not only restored overall lung growth, but also 

secondary septation, consistent with previous observation at the ultrastructural level (20). 

Data from other investigations indicate that this restoration appears sufficient to recover 

normal morphometric parameters, including radial alveolar count (27), gas-exchange surface 

area, and alveolar density (28). 

The second therapeutic approach consisting to use vitamin A in the nitrofen model is 

based on the importance of retinoids, including vitamin A and its active metabolites, in the 

alveolarization process (47). Several studies support the hypothesis that abnormalities within 

the retinoid-signalling pathway contribute to etiology of CDH (48). Moreover, decreased 

plasma retinol and retinol-binding protein levels have been reported in human newborns with 

CDH (49). Restoration of FGF18 and tropoelastin expressions by vitamin A in the lung of 

nitrofen-treated rat fetuses is in keeping with our previous finding that FGF18 and 

tropoelastin expression were both up-regulated subsequently to vitamin A administration to 

normal rat neonates (24). This suggests that the beneficial effect of vitamin A for pulmonary 

hypoplasia (33) might have resulted, among possible changes in other growth factors, from 

promotion of FGF18 expression. However, it should be emphasized that in this model, lung 

hypoplasia and immaturity also occur in pups that do not develop CDH. Although less 

marked, the morphology of lungs of fetuses without hernia was reported to be similar to that 

of CDH lungs, including paucity of elastic fiber deposits in septa (21). In agreement with this 

observation, we found reduced FGF18 and tropoelastin expression in nitrofen-treated fetuses 

devoid of hernia. Disorders could therefore result from pulmonary toxic effect(s) of nitrofen, 

independently of CDH. The transcription factor TTF-1, which is essential to lung 

morphogenesis, was down-regulated by nitrofen in fetal rat lungs independently of the 
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presence of CDH (50), and also in a time- and dose-dependent manner in cultured lung 

epithelial H-441 cells (51). Last, nitrofen is also believed to interfere with vitamin A signaling 

(52, 53). Therefore, it cannot be excluded that vitamin A supplementation counteracted 

pulmonary effects of nitrofen, including FGF18 and elastin changes, that were not direct 

consequences of hernia. Considering the use of vitamin A as a possible treatment of lung 

abnormalities in CDH therefore requires further evaluation of its actual benefits and safety. 

 

In conclusion, changes in FGF18 induced by CDH and treatments are novel and 

significant findings in the present study. Simultaneous correction of FGF18 and elastin 

defects by TO and vitamin A suggests that disordered alveolarization may result, at least in 

part, from FGF18 deficiency. 
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Figure legends 

 

Figure 1. Developmental changes of FGF18 protein in human fetal lung. Western blot 

analysis was performed in the lung of 14 fetuses without lung disease ranging from 14 to 37 

wk of pregnancy (fetal age). (A) Western blot demonstrating an obvious increase of FGF18 in 

late gestation (top); Ponceau S stain as loader control (bottom). (B) Densitometric analysis 

(arbitrary units, a.U.) showing that FGF18 was strongly up-regulated in saccular-alveolar 

stages (≥27 wk) as compared with pseudoglandular-canalicular stages (≤26 wk), and 

correlated exponentially with time (r= 0.865, p<0.001). 

 

Figure 2. FGF18 protein expression in CDH human lungs (ipsilateral lung). Western blot 

analysis was performed in the lung of 6 pairs of age-matched CDH and control fetuses. (A) 

Representative western blot showing FGF18 expression in 3 age-matched control and CDH 

lungs (top); Ponceau S stain as loader control (bottom). (B) densitometric analysis (arbitrary 

units, a.U.); individual values corrected for loading, and linear regression analysis. FGF18 

protein was lower in CDH lungs than corresponding control value for all pairs, and failed to 

increase with time. 

 

Figure 3. Weigert’s stain of elastin in control and CDH human lungs. Representative pictures 

are presented in two fetuses aged 29 wk (A, A’, control, B, B’, CDH) and two fetuses aged 33 

wk (C, C’ control, D, D’ CDH). Higher magnifications are from the same sections, but not 

necessarily from the same field. In controls, increase of the relative portion of airspaces and 

surge of secondary septa were observed with advancing gestation. Elastin, stained in black, 

was found at the tips of secondary crests (arrows), lining the surface (arrowheads), and in 

vessel walls (white arrowheads). CDH lungs ipsilateral to hernia presented thickened walls, 

with lack of changes between stages, but vessel labeling was unaffected. Crests and typical 

location of elastin at their tip were rarely observed. Bar = 200µm in A-D, and 20µm in A’-D’. 

 

H
A

L author m
anuscript    inserm

-00130764, version 1



26 

Figure 4. Determination of partial cDNA sequence of ovine FGF18. (A) Nucleotide sequence 

of the RT-PCR product and deduced amino acid sequence. (B) Alignment and comparison of 

ovine FGF18 amino acid sequence with those of human, mouse, and rat FGF18 proteins. 

Identical amino acyl residues are marked with asterisks. These data are accessible on line 

under GenBank accession # DQ336700. 

 

Figure 5. FGF18 and FGFR3 expression in fetal sheep lung with sDH and sDH+TO. (A) 

Real-time PCR analysis of FGF18 mRNA (mean ± se on 5, 6 and 4 individual samples in 

controls, sDH, and sDH+TO, respectively); FGF18 mRNA level was markedly decreased by 

sDH in ipsilateral lung only, and enhanced to about twice the control level by sDH+TO in both 

lungs. (B) Western blot analysis; ovine lung FGF18 migrated at the same apparent molecular 

weight as human lung FGF18 (hum); it was decreased by sDH and re-established by TO. (C) 

RT followed by real-time PCR analysis of FGFR3 mRNA; no significant difference was 

observed among the different groups. Non-parametric Kruskal-Wallis multiple group 

comparison, and two-group comparisons by Mann-Whitney U test. (a) Significant difference 

with controls for p<0.05; (b) significant difference with sDH for p<0.05. 

 

Figure 6. Weigert’s elastin stain in fetal sheep lung. (A, A’) control, (B, B’, C, C’) sDH, (D, D’) 

sDH+TO. A’, B’, C’ and D’ are enlargements of the dotted boxes in A, B, C and D, 

respectively. In control lungs, elastin regularly lined alveolar walls (black arrowheads) and 

focused at the tip of secondary septa with a punctate appearance (arrows). Although with 

variable morphology (B, B’ vs C,C’), sDH lungs ipsilateral to hernia displayed thickened 

walls, and altered elastin pattern. TO restored both lung parenchymal structure and elastin 

pattern. White arrowheads: blood vessels. Bar = 50µm. 

 

Figure 7. Tropoelastin mRNA expression in fetal sheep lung with sDH and sDH+TO. Semi-

quantitative Northern blot analysis (mean ± sem on 5, 6 and 4 individual samples in controls, 

sDH, and sDH+TO, respectively). Tropoelastin mRNA level was decreased about half by 
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sDH in ipsilateral lung only, and enhanced to twice the control level by sDH+TO in both 

lungs. Non-parametric Kruskal-Wallis multiple group comparison, and two-group 

comparisons by Mann-Whitney U test. (a) Significant difference with controls for p<0.05; (b) 

significant difference with sDH for p <0.05; (c) significant difference with sDH for p <0.01. 

 

Figure 8. Tropoelastin and FGF18 mRNA expression in fetal rat lungs with nitrofen-induced 

CDH and CDH + vitamin A treatment (CDH+vitA). Both lungs were removed en-bloc and 

homogenized together for RNA extraction. Mean ± se of densitometric northern blot analysis 

on 6 individuals (21 day-old) in each group. Both transcripts were considerably reduced in 

CDH, and restored to control levels in CDH+vitA. Multiple group comparison by ANOVA and 

Fisher’s PLSD. (a) Significant difference from control group for p<0.05; (b) significant 

difference from control group for p<0.01; (c) significant difference from CDH+vitA group for 

p<0.001. 

 

Figure 9. Immunofluorescent labeling for FGF18 in distal lung. (A) 37-wk human fetus, (C) 

139d sheep fetus, (E) postnatal day 4 rat. (B, D, F) corresponding nuclear counterstaining. 

Dotted labeling was detected in the cytoplasm of cells with a stellate shape (arrowheads in A 

and C, insert in A, left insert in E), and was present in primary (* and left insert in E) and 

secondary septa (arrows, ** and right insert in E). Perivascular smooth-muscle cells  were 

negative (a : pulmonary artery). Arrows point to the same locations in parallel micrographs. 

Immunolabeling for alpha smooth muscle actin (αSMA) in rat lung (G) displayed similar 

distribution pattern as FGF18. (H) Negative control for FGF18 antibody. Bar = 10µm.  
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Table 1 

Characteristics of control and CDH human fetuses 

Number Fetal Age 

(weeks) 

Sex Syndrome Body weight 

(g) 

Lung weight / 

Body weight ratio 

1 14 M Single ventricle 115 ND 

2 16 F Thanatophoric dwarfism 143 0.026 

3 19 F Micromelic dwarfism 364 0.016 

4 21 M Cardiopathy 550 0.028 

5 22 F Cardiopathy 900 0.029 

6 24 F Hydrocephaly 840 0.031 

7 26 F Tetralogy of Fallot 1020 0.024 

8 27 F Pfeiffer’s syndrome 1300 0.019 

9 28 M Partial trisomy 13 1630 0.021 

10 28 F Achondroplasia 1520 0.021 

11 29 M Bourneville’s disease 1620 0.029 

12 31 F Cardiopathy 1720 0.024 

13 32 F Hydrocephaly 2500 0.022 

14 33 M Schizencepahly 2600 0.023 

15 33 M Trisomy 21 2450 0.026 

16 35 M Hydrocephaly 2000 0.020 

17 36 M Cardiopathy 2540 0.014 

18 37 F Spina-bifida 3140 0.017 

19 27 M CDH, left 1440 0.007 

20 29 M CDH, left 1100 0.003 

21 30 M CDH, left 2120 0.006 

22 31 F CDH, left 1900 0.004 

23 32 F CDH, left 1960 0.006 

24 33 M CDH, left 3300 0.002 

25 37 F CDH, right 3350 0.005 

Lung specimens were obtained from medical terminations of pregnancy except for subjects #23 and #25 

who were born alive and died immediately after birth without possible resuscitation. Lungs from fetuses 

with non-pulmonary diseases (#1 to 18) were used as controls. Fetal age is given as post-conceptional 

weeks. ND: not determined 
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Table 2 

Sequences of oligonucleotide primers used for real-time PCR 

 

Transcript Forward (5’-3’) Reverse (5’-3’) Expected Size 

(bp) 

FGF18    TGAACCGGAAAGGCAAGCT  TGACATCAGGGCTGTGTAGTTGT 100 

FGFR3    GACGGCACGCCCTACGT  CGTCCTCAAAGGTGACATTGC 99 

18S    AAGTCCCTGCCCTTTGTACACA  GATCCGAGGGCCTCACTAAAC 70 

Table 3 

Density of elastic fiber deposits in lung parenchyma of age-matched control 

and CDH human lungs 

 

Stage 
 

27 wk 
 

29 wk 
 

31 wk 
 

33 wk 
 

37 wk 
 

Elastin/Tissue (%) 
Control lungs 

 

0.43 ± 0.05 

 

0.54 ± 0.05 

 

1.80 ± 0.22 

 

0.79 ± 0.07 

 

1.55 ±0.26 

Elastin/Tissue (%) 
CDH lungs 

 

0.44 ± 0.07 

 

0.60 ± 0.07 

 

0.54 ± 0.16 

 

0.03 ± 0.02 

 

0.33 ± 0.10 

CDH/Control ratio 
 

1.02 
 

1.11 
 

0.30 
 

0.04 
 

0.21 
 

The proportion of total lung tissue surface-area represented by elastic fiber deposits was 

determined on tissue sections after Weigert’s stain, using image analysis and excluding 

vessel and airway elastin. Each value represents the average ratio ± se of 8 to 10 

determinations in fields taken at random for one individual lung (magnification x400). 
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Table 4 

Density of elastic fiber deposits in lung parenchyma of control, sDH, 

and sDH+TO sheep fetuses 

 
Groups 

 
Controls (4) 

 
sDH (4) 

 
sDH+TO (4) 

Elastin/Tissue (%) 
 

8.21 ± 1.92 
 

1. 2 ± 0.16 * 
 

11.67 ± 3.23 
¶

The percentage of lung tissue surface-area represented by elastic fiber deposits was 

determined on tissue sections after Weigert’s stain, using image analysis and excluding 

vessel and airway elastin. Each value is the mean ± se of data from 4 fetuses in each 

experimental group; the value in each individual lung was calculated as the average ratio of 5 

determinations in fields taken at random (magnification x200). Statistical comparison by non-

parametric Mann Whitney U test: * p<0.05 as compared with control group; ¶ p<0.05 as 

compared with sDH group; difference between sDH ±TO and control groups is not significant. 
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Figure 1 
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Figure 2 
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Figure 4 
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Figure 5 
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Figure 7 
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Figure 8 
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