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Abstract :For the past decades, numerous works have been dedicated to the development of signal processing methods aimed at measuring 

the degree of association between EEG signals. This interdependency parameter, which may be defined in various ways, is often used to 

characterize a functional coupling between different brain structures or regions during either normal or pathological processes. In this paper we 

focus on the time-frequency characterization of the interdependency between signals. Particularly, we propose a novel estimator of the linear 

relationship between nonstationary signals based on the cross correlation of narrow band filtered signals. This estimator is compared to a more 

classical estimator based on the coherence function. In a simulation framework, results show that it may exhibit better statistical performances 

(bias and variance or mean square error) when a priori knowledge about time delay between signals is available. On real data (intracerebral 

EEG signals), results show that this estimator may also enhance the readability of the time-frequency representation of relationship and thus 

can improve the interpretation of nonstationary interdependencies in EEG signals. Finally, we illustrate the importance of characterizing the 

relationship in both time and frequency domains by comparing with frequency-independent methods (linear and nonlinear).  

 

Keywords: coherence, correlation, EEG, epilepsy, nonstationary, synchronization, time-frequency. 

I. INTRODUCTION 

Electroencephalographic (EEG) signals provide information about cerebral activity with an excellent time resolution (in the order of 1 ms). 

Quantitative analysis of EEG signals is generally performed using signal processing (SP) methods which may substantially complement the 

visual inspection of time series. 

For the past decades, numerous works have been dedicated to the development of SP approaches aimed at evaluating the degree of 

association (in a general sense, i.e. interdependency). Indeed, the statistical relationship between signals acquired from different brain 

structures or regions may be used to characterize the functional coupling between recorded sites during normal (cognitive, for instance) or 

pathological (epileptic, for instance) processes. 

These methods may be divided into two categories depending on whether or not the nonlinear nature of the relationship is taken into 

account. 

Linear methods were developed first. Many estimators based on linear cross-correlation or coherence function were proposed and used to 

study functional couplings between brain regions during cognitive tasks (Chapman et al. [1]) or during epileptic processes like seizures. In this 

latter field, works based on the coherence function were initiated by Brazier [2] who studied the propagation of epileptic activities from 

intracerebral recordings. They were followed by Gotman [3] who studied interhemispheric relations in partial seizures and by Duckrow et al. 

[4] and Franaszczuk et al. [5, 6] who analyzed possible synchronization mechanisms occurring at the seizure onset. 

The development of nonlinear methods is more recent (Pikovsky et al. [7]). A first family of methods based on mutual information (Mars et 

al. [8]) or on nonlinear regression (Pijn et al. [9], Wendling et al. [10]) was first introduced in the EEG field. A second family is currently 

developing, based on works related to the study of nonlinear dynamical systems and chaos (Iasemidis [11], Lehnertz [12]).  

Recently, a comparative study of different synchronization measures in real EEG data was performed by Quian Quiroga et al. [13]. Authors 

first confirmed that linear methods (coherence and cross-correlation) as well as nonlinear methods (mutual information, phase synchrony) are 

useful in EEG analysis and provide information that is not accessible by the visual inspection. They also showed that all these measures 

(except entropy) may give similar results, qualitatively.  

If nonlinear methods have the capability to account for the nonlinearity of relationship, they are generally independent from frequency, a 

key parameter in the EEG analysis that can be related to the oscillatory behavior of recorded neural populations. On the opposite, linear 

methods can not be used to analyze the nonlinear property of relationship but they can characterize its dependence on frequency. However, as 

underlined by Zaveri et al. [14] who give a review on the use of coherence in the EEG field, proposed estimators generally have strong bias 
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and variance which make the interpretation of real data intricate. To alleviate these difficulties, frequency bands may be defined. For instance, 

classical delta, theta, alpha, beta and gamma EEG bands can be used to average the coherence function (Razoumnikova [15]) or to compute the 

cross-correlation of filtered signals (Nikolaev et al. [16], Wendling et al. [17]). Again, this is not entirely satisfactory since the choice of 

frequency bands becomes critical in this case (relevant phenomena may overlap two bands). 

In this paper, we present a novel estimator for characterizing the evolution of linear relationship between signals both in the time and 

frequency domains. This estimator is based on the computation of the Pearson Product-Moment correlation between EEG signals filtered, in 

narrow and overlapping frequency bands, using a continuous filter bank. Asymptotically, it gives the same value as that obtained with the 

classical coherence estimator (squared modulus of coherence function, periodogram method). However, application to simulated nonstationary 

signals shows that its performances (in terms of bias and variance) can be better. In addition, contrary to aforementioned methods, no 

assumption on frequency bands is required. The method has also been applied to real EEG signal intracerebrally recorded in epileptic patients 

candidate to surgery (Stereoelectroencephalography, SEEG). Results show that the method is able to track the evolution of relationship 

between signals in the time-frequency plane with a good resolution. They also show that the method may help to better analyze paroxysmal 

phenomena that occur at the onset of epileptic seizures.  

II. PROBLEM STATEMENT AND METHODS 

We are interested in measuring the degree of statistical time-frequency relationship between real signals. Our reference method is the 

coherence function computed in a sliding window. We compare this method with the linear correlation coefficient computed between 

corresponding outputs of a narrow-band filter bank applied to the two signals of interest. 

We show, in the case of stochastic wide sense stationary signals, that these two kinds of measure correspond asymptotically to the same 

theoretical quantity.  

We compare then these two estimators (in term of bias and variance) in different simulated situations for which the target is either derived 

by mathematical calculation or estimated by Monte-Carlo simulation. To make the two estimators comparable, the lengths of observation 

window and the frequency resolution (the shape and length of weighting functions) have to be the same.  

Two kinds of simulation models are chosen to encompass different physiological situations that may be encountered in real data. In the first 

simulation (model M1), shared information of two analyzed signals has stochastic nature; whilst in the second simulation (model M2), it has 

deterministic nature. 

The delay parameter between channels (generally optimized in correlation method) can be imposed in the case of having a priori 

information about its value (possibly zero); we investigate here the effect of this information on the estimator performances. 

Finally, the application of these measures to real signals recorded during an epileptic seizure with typical signatures are presented and 

commented. 

Problem statement 

We assume an observation vector  where 1( ) { ( ), ..., ( )}; [0, ]MX t x t x t t T= ∈ ( )ix t  is the signal recorded from the ith sensor. The problem is 

to characterize the statistical relationship, both in the time and frequency domains, between nonstationary signals ( )jx t( )ix t  and ,  

for a given pair ; . Indeed, this relationship may be interpreted as a functional coupling between two brain sites recorded 

by sensors i and j. The coupling evolution provides essential information about the organization of epileptic processes during seizures. 

Numerous functionals 

[0, ]t T∈

{ }2
( , ) 1 ...i j M∈ i j≠

,( tP ,tP δ ( , )i jx x)δΨ , where  is the joint probability of over an interval of [ / , can be introduced for 

characterizing the statistical relationship between 

2 , / 2t tδ δ− + [

jx and ix  in the time-frequency plane. In this paper we focus on the comparison of two of 

them: i) the squared modulus of a local coherence function 
2

( , )
ij

t fρ  and ii) a local linear correlation coefficient , computed at the 

outputs of narrow band-pass filter, as the function of frequency and time, which is maximized for time delay. To our knowledge, the 

application of this latter method in the EEG field has never been reported. 

2 ( , )ijR t f
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Coherence function and frequency-dependent correlation coefficient 

The squared modulus of the local coherence function is defined as below (Haykin et al. [18]): 

( )
2

2

,

( , )
( , )

( , ) ( , )
i j

ij

i i j j

x x

t
x x x x

t f
P t f

t f t fρ δ

γ
ρ

γ γ
Ψ = =           (1) 

i jx xγ
j jx xγwhere f is the frequency, , 

i ix xγ , and designate the local power cross-spectral density or power auto-spectral densities during an 

interval  defined as: [ / 2 , / 2t tδ δ− + ]

( ) ( ) ( ) ( ) ( ){ }*
, , ,

i jx x i jt f E FT x t f FT x t fγ = � � ,  

where  is the Fourier transform computed with respect to ( )iFT x� ( ) ( ) ( )0, ,i ix t x h tθ θ θ θ= −� \∈ of locally weighted signal  with θ

( ) [ ]0 , / 2, /h θ θ δ δ∈ − 2

,

 a weighting function (hamming window for example), and * stands for complex conjugate.  

The local linear correlation coefficient  is defined as follows:  2 ( , )ijR t f

( ) 2 2
, ,

m

( , ) ( ( ( ), ( ))maxr t ij i f j f

M

P R t f r x t x tδ τ
τ τ τ

Ψ = = +
≤ ≤

   (2) 

where 

, ,2
, ,

, ,

cov ²[ ( ), ( )]
( ( ), ( ))

var[ ( )]. var [ ( )]
i f j f

i f j f
i f j f

x t x t
r x t x t

x t x t
τ

τ
τ

+
+ =

+
      (3)        

,i fx ,j fx and is the linear correlation coefficient between signals  outputs of a band-pass filter whose impulse response is 

(characterized by a central frequency f). mτ Mτ( ) ( ) ( )1, cos 2 ,h t f h t ft tπ= \∈  and  are respectively minimum and maximum a priori bounds 

for the time delay between signals ,i fx ,j fx mτ Mτ δ and . Since  and are very small relatively to , we can neglect their effects and choose h1 

identical to h0. 
2

( , )
ij

t fρIn theory, both quantities  and  are equal to 0 for 2 ( , )ijR t f jx independent from ix  and increase, up to a maximum value of +1, 

for increasing linear dependence between jx and . ix

In the stationary case, and if δ → ∞  we have: 

2

2 2 ( )
( , ) ( )

( ) ( )
i j

ij ij

i i j j

x x

x x x x

f
t f f

f f

γ
ρ ρ

γ γ
→ =  

where ( )
ij

fρ  is the classical coherence function associated to a pair of stationary random signals (Bendat and Piersol [19]). Furthermore, 

when relaxing the constraint ( ) ( )1 cos 2 ,h t ft tπ ∈\m Mτ τ τ≤ ≤  to  and for τ ∈\ , being the impulse response of a very-narrow band filter, 

(1) and (2) become asymptotically equivalent as demonstrated in appendix A. So, in the following, 
2

( , )
ij

t fρ will be taken as a reference and 

we introduce estimators for (1) and (2) to measure it. 

,
ˆ ( , )t i jx xδΨ ,( )tP δΨ of In practice, to be computed on digital signals sampled at frequency Fs, an estimation  must be introduced in each 

case. For discrete time signals 
2

( , )
ij

t fρ [ ]
2

, ,
ij

t f tρ ∈] [ ]0 sN Fδ=2Sf F< in (1) becomes  and . Estimators use  (where [.] designates 

the integer part of its argument) samples of [ ] ( / ),i i Sx n x n F� [ ]/ / 2,Sn F t tδ δ∈ − + / 2  for i =1, 2, (N0 is thus the length of a discrete 

sliding observation window) 

Typically, the squared modulus of the local coherence function is estimated using the periodogram method over a sliding window (divided 

into Nb overlapped blocks) with the central point at time t:  
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2
*

2 1

2 2

1 1

[ ] [ ]
ˆ [ , ]

[ ] [ ]
ij

Nb
k k
i j

k
Nb Nb

k k
i j

k k

X f X f
t f

X f X f
ρ =

= =

=
∑

∑ ∑
                (4) 

[ ]ix nwhere [ ]k
iX f  is the Discrete Fourier transform (DFT) of  weighted by Hamming window, with length L, in kth block of the sliding 

observation window. 

The estimation of the local linear correlation coefficient  is: 2 ( , )ijR t f

2/ 2

, ,
/ 22

/ 2
2 2

m , ,
/ 2 / 2

[ ]. [ ]
ˆ [ , ] ax

[ ]. [ ]

H

i f j f
k H

ij H H

M i f j f
k H k H

y k y k
R t f m

y k y k

τ

τ τ τ τ

=−

=− =−

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟= ⎜ ⎟

< < +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑ ∑
    (5) 

where ., ., .,[ ] [ ]f f fy t x t k x= − −  and .,x ., fx is the mean of f  over a sliding window of duration H. Here  to ensure using the same 

information from observed signals (it is worth to mention that here also we have neglected the effects of

0H N L= −

andmτ Mτ because they are very small 

compared to L).  

For 0 < f < Fs/2, an appropriate filter bank can be derived using the Short-Time Fourier Transform (STFT), as described in appendix B. To 

ensure to have the same frequency resolution for two estimators, the discrete impulse response of the band-pass filter is set to 

[ ] (cos 2 / Sh n fn Fπ )  where h is the Hamming window used in (4). 

Comparison of the two estimators 

First, we compare the performance of two estimators in terms of bias and MSE (mean square error) through simulations in which the linear 

relationship between simulated signals 2[ , ]t fρjxand  may vary as a function of time. In each simulation, target values for ix  are derived 

mathematically or computed by Monte-Carlo simulation using a large number of realizations. Then, both estimators are evaluated on real 

SEEG signals recorded from internal brain structures during seizure in a case of temporal lobe epilepsy (TLE). 

1) Simulated signals:Comparative analyses of the two estimators are based upon two simulation models M1 and M2. These models are simple 

but rely on some physiological considerations. 

[ ]ix t [ ]jx tjS jPLet  and  be two sensors whose outputs are  and . Furthermore, let  and iS iP  be two neural populations recorded 

respectively by sensor  and jS jP (  and iS iP  belong to two distinct brain structures). Our physiological hypothesis is that we have two 

partitions  and 1i i iP P P= ∪ 2 21j j jP P P= ∪ 1jP where the two subpopulations  and 1iP  are interconnected by long neuronal fibers (the axons 

of pyramidal cells, see Martin [20]) and may synchronize with each other during ictal activities probably with a short mean time delay τ  

between activities of  and 1jP 2jP (Nunez and Cutillo [21]).  and 1iP 2iP  are the neuronal subpopulations corresponding to the background 

activity without statistical relation with activities of  and 1jP . In our simulations, and without loss of generality, we imposed 1iP 0m Mτ τ= = . 

The ictal activity of  and 1jP1iP  may have, in many instances, less complexity (as defined in nonlinear dynamic systems theory; see Kantz 

and Schreiber [22]) than the background activities of  and 2jP . 2iP

1jPThese facts motivated the choice of model M1 and M2. In model M1 activities of  and 1iP  are random (non-deterministic), while in 

model M2 they are quasi-deterministic and may frequently exhibit dynamics similar to nonlinear oscillator's outputs. 

Model M1 is described by the following equations: 

( )

( )
1 1

2 2

1 [ ]

1 [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

x t B

x t B

t t

t t

α α

α α

= − +

= − +

3

3

B

B

t t

t t                   (6) 

where ,  and  are three independent wide sense stationary (IWSS) random signals having power spectral density (PSD) 1B 2B 3B

H
A

L author m
anuscript    inserm

-00130426, version 1



( ) , 1,2,i f iγ = [ ]0 tα≤ ≤3  and 1  represents the time-varying degree of relationship between generated signals. 3B  is interpreted as the shared 

physiological activity whereas  and represent independent background activities. 1B 2B

The second model M2 is proposed to encompass the case in which a deterministic signal influences both  and 1x 2x signals. In M2, 

simulated signals  and  are given by: 1x 2x

1 1 2 2
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ];x t B t t C t x t B t t C tα α= + = +                       (7) 

[ ]C twhere  and  are as before two background activities; 1B 2B  and α[t] are respectively the deterministic signal and the degree of 

relationship.  
2[ , ]t fρ2) Estimation of the bias, variance and MSE: Theoretical values of  are mathematically derived when α[t] is a constant in the model 

M1. For the cases of non-constant α[t] in M1 or M2 model, 2[ , ]t fρ  is computed by Monte-Carlo simulation. They are used as target to 

estimate the bias and mean square error (MSE) of both estimators on signals generated with model M1 and M2. Bias, variance and MSE are 

respectively defined by ( )ˆE θ θ− ( )( ){ }2ˆ ˆE Eθ θ− ( ){ }2ˆE θ θ− 2ˆ ˆ[ , ]t fθ ρ= 2ˆ ˆ [ , ]R t fθ =2[ , ]t fθ ρ=,  and where  and  or . These 

expectations are estimated over a sufficiently large number of realizations (also by Monte-Carlo simulation). 
2

ˆ [ , ]ij t fρ 2ˆ [ , ]ijR t fThe effects of the various parameters used in the estimator  and  were studied: the width of the sliding window, number 

of blocks for calculation of DFT, percentage of overlapping, and the time resolution of the STFT. For comparison purpose, the width of the 

sliding windows as well as the length and shape of the weighting functions were chosen the same for the two estimators. 

3) Real SEEG signals: An illustrative example of nonstationary real EEG signals was chosen for direct comparison of both methods on real 

data. In this example, signals are recorded from two internal limbic structures (anterior hippocampus and amygdala) in a patient suffering from 

mesial TLE during a seizure. These two structures are anatomically interconnected. Several studies already reported that they may play an 

active role in the triggering of seizures in the temporal lobe.  

In the presented case, they were found to be involved at the onset of seizures and to give rise to a characteristic electrophysiological pattern 

(spiking background activity followed by a rapid tonic discharge that gradually slows down, see Maldonado et al. [23]). Recordings were 

performed using multiple lead electrodes (10 to 15 leads, length: 2 mm, diameter: 0.8 mm, 1.5 mm apart) placed intracranially according to 

Talairach's stereotactic method [24]. The positioning of electrodes was determined from available non-invasive information and hypothesis 

about the localization of his epileptogenic zone (defined as the cerebral regions simultaneously discharging at seizure onset). Signals are 

sampled at 256 Hz, digitized with precision of 16 bits/sample and stored on hard disk for further processing. 

 

III. RESULTS 

Model M1, stationary situation 

2[ , ]t fρ and  are stationary and the theoretical value of  can be derived:  In the case where α is not dependent on time, signals 1x 2x

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

3

1 3 2 3

4 2
2

2 22 2
[ , ]

1 1
B

B B B B

f
t f

f f f

α γ
ρ

α γ α γ α γ α γ
=

− + − +

�

� � � � f
 

( )
iB fγ�where is the PSD of product of discrete time signal  and weighting window  in section 2.2. Here, we choose iB 0h

( ) ( ) ( )
1 2 3B B Bf fγ γ γ= = f  and hence: 
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( )( )
4

2 2
22 2

[ , ] [ , ]
1

t f R t f αρ
α α

= =
− +

 

Bias and MSE values (variance is equal to MSE minus squared bias) were computed for different lengths of the sliding window duration N0 

and different coupling parameter α (N0 = 256 x k1 , k 1= 2,...,5 ; α = 0.1 x k , k2 2 = 0,...,10). The length L, of blocks used in (4), was set to 256 

points. Consequently, the frequency resolution of both estimators 2ˆ [ , ]R t f2ˆ[ , ]t fρ  and  is the same. 

2ˆ[ , ]t fρThe overlapping percentage of two successive blocks in the computation of  was chosen by minimizing the mean square error 

(MSE) between theoretical and estimated values. The optimal overlapping rate was found to be equal to 0.8 although the MSE does not 

decrease considerably for percentages beyond 50% (this result corroborates those published in Carter [25] ). 

Bias and MSE values were first computed by Monte-Carlo simulation over the time-frequency plane (1 frequency bin corresponds to 1 Hz) 

and were found to be approximately constant. This result shows that in this case both estimators are independent from frequency and time. 

Thus, bias and MSE values can be averaged over time-frequency. Fig. 1 represents the bias and the MSE of both methods for 4 different values 

of N0 and 11 values of α uniformly distributed between 0 and 1.  

As depicted on this figure. bias and MSE are approximately equal when we use the constraint  and for 5M mτ τ= − = m 0Mτ τ τ= =  

(corresponding to the case where the time delay is known and equal to 2ˆ [ , ]R t f; here = 0 ) the 0 0τ =0τ  has clearly smaller bias and MSE 

than 2ˆ[ , ]t fρ . 

,  and This result was obtained for two different kinds of PSD: similar bias and MSE curves were obtained when 1B 2B 3B  are white 

Gaussian noises or colored Gaussian noises with a 1/f power spectrum distribution similar to that of normal background EEG activity. 

Model M1, nonstationary situation  

1x 2x and Arbitrary profiles of evolutionary relationship were chosen for generating nonstationary signals . A scenario is provided in Fig. 2-

a (dashed line) in which the evolution of α[t] was defined on four successive periods: linear increases from 0 to 1, constant period where α[t] = 

1, constant period where α[t] = 0, linear decreases from 1 to 0. The target curve (Fig. 2-a, solid line) was computed from (Haykin et al. [18]): 

[ ] [ ]

[ ] [ ]

1 2

1 2

2
( ) *( )

2 1

2 2( ) ( )

1 1

, ,
[ , ]

, ,

N
n n

n
N N

n n

n n

X t f X t f
t f

X t f X t f
ρ =

= =

=
∑

∑ ∑
 

[ ]( ) ,i
nX t fwhere  denotes the STFT's of the signal ix , and the superscript (n) denotes the nth of N=10000 realizations of two signals. In the 

computation of STFT we have used Hamming temporal window of length of L=256 to ensure having the same frequency resolution for target 

and for both estimators. 

As in the stationary case, both estimators were found to be frequency independent and thus estimated values of bias and variance were 

obtained by averaging along the frequency axis in order to facilitate their comparison to the target curve. Quantitative results displayed in 

Fig. 2, using boxplots, show that 2ˆ [ , ]R t f 2ˆ[ , ]t fρ has smaller bias and variance values compared to those of  when the time delay is known 

and equal to  (0τ m 0Mτ τ τ= = ; here ) and that the two estimators have similar performances, when the constraint 0 0τ = 5M mτ τ= − =  is used, 

with however a better behavior of 2ˆ [ , ]R t f  around the rupture occurring at 16s and after the time instant 24 s.  

Model M2, multi-component nonstationary situation 

The common part C of  and 1x 2x  in (7) was extracted from a SEEG recording during an ictal period. It corresponds to a reproducible quasi-

deterministic pattern observed during different ictal episodes of a patient.  

 and The independent background activities 1B 2B  of M2 where simulated by surrogating ( randomization of phase in Fourier transform of 

same signal, see Schreiber and Schmitz [26] ) a segment of real background SEEG of patient. 
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[ ]1x k [ ]2x k 2 2/ 1.2BC σ =A large number of realizations ( , ) ,  were simulated with 0 , / 40 , 200S Sk K K F s F Hz≤ ≤ = = 7 , where 

2C
1

2 2 2
2B B Bσ σ σ= =denotes the temporal mean square value of C (estimated over its time support) and  is the variance of the surrogated data.  

2[ , ]t fρThe target  was computed by Monte-Carlo procedure as in M1 for the case of time-varying α[t]. The visual inspection of the 

results, depicted on Fig. 3, reveals that the two estimators have similar behaviors (Fig. 3-b vs. 3-d) for  and for known time delay 5M mτ τ= − =

2ˆ [ , ]R t f 2ˆ[ , ]t fρm 0Mτ τ τ= = (here ) the  seems to exhibit less bias than 0 0τ = . In an attempt at quantifying the differences between the two 

estimators, mean of absolute values of bias, mean of variances and mean of MSE values over the time-frequency plane were calculated. The 

obtained values, reported in Table I, indicate that the 2ˆ [ , ]R t f 2ˆ[ , ]t fρ estimator has better performances than .  

Real EEG signals 

2RResults obtained on simulated signals using relatively short duration analysis windows show that statistical performances of estimator i) 

are equivalent to those of the coherence estimator when 
2R  is maximized with respect to time delay τ and ii) are better (in terms of bias and 

mean square error) than those obtained with the coherence estimator when time delay τ  is known. 

This ability of both estimators to characterize a relationship between signals in the time-frequency plane is of great interest in the analysis of 

intracerebral SEEG signals recorded in epileptic patients candidate to surgery. Indeed, interdependencies between signals can be interpreted in 

terms of functional couplings between brain structures (possibly well localized in frequency) and thus provide essential information about the 

organization of the epileptogenic zone.  

In order to verify if the results obtained on simulations also apply on real SEEG recordings, we chose an example of two SEEG signals 

recorded from temporal lobe brain structures (see section 2.3.3). These signals are representative of an observation that is often made at seizure 

onset. They are displayed in Fig. 4-a: after a period of background activity with sporadic spikes, a higher frequency activity (rapid discharge) 

is observed on both signals. The amplitude of this narrow band activity abruptly decreases and then gradually increases again while its 

frequency slows down. Both signals are nonstationary as depicted on Fig. 4-b that provides their respective spectrogram.  

The time-frequency characterization of the relationship between signals is illustrated in Fig. 4-c when performed with the estimator based 

on the coherence (first rectangle) and on the linear correlation coefficient maximized with respect to time delay τ (second rectangle, ranging 

from -20 ms to 20 ms).  

As observed on simulated signals, both estimators lead to similar results: they reveal a similar signature characterized by a strong 

relationship that takes place over the narrow frequency band activity previously observed on spectrograms (around 30 Hz).  
2ˆ [ , ]R t fHowever, for fixed time delay τ ( ms), m 4Mτ τ= =  provides a time-frequency representation of the relationship with enhanced 

readability when all the other parameters are set to provide identical time and frequency resolution in both methods. This result, displayed in 

Fig. 4-c (third rectangle), shows that the abrupt transition between SEEG dynamics (from background activity to rapid discharge) is also 

associated to an abrupt change of the frequency location of the linear relationship. As also noticed in simulations, the lower MSE of 
2ˆ [ , ]R t f with fixed τ leads to a time-frequency representation less noisy (in the sense of “easier to interpret”) than that obtained with the two 

previous estimators.  

We also noticed that it is crucial to take frequency into account in some cases. Indeed, frequency-independent methods may not be able to 

reveal such a phenomenon of narrow band frequency hypersynchronization at seizure onset. We plotted the curves (Fig. 4-d) obtained with a 

linear estimator (linear correlation coefficient  maximized for the time delay, top) and with a nonlinear estimator (nonlinear correlation 

coefficient  maximized for the time delay, bottom) on the same analyzed signals. For detailed presentation regarding these two 

estimators, the reader may refer to Pijn [27]. One can notice that the two curves (Fig. 4-d) do not show significant changes during the 

transitions in EEG dynamics at seizure onset and are consequently unable to render some relevant information (i.e. the strong relationship 

between signals located on the narrow frequency band - about 30 Hz - and the abrupt jump of the relationship from the low to the higher 

frequency when background spiking activity changes into rapid discharge). 

2 [ ]r t

2 [ ]h t
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IV. DISCUSSION AND CONCLUSION 

In the study of brain activity, the natural question about the functional coupling among cerebral structures or regions that generate EEG 

signals arises in numerous cases. It is addressed here through the characterization of linear interdependencies between SEEG signals in the 

context of epileptic processes. There are three main results in this study. First, characterizing the relationship in both time and frequency 

domains may be essential in some situations where this relationship is circumscribed within a particular region of the time-frequency plane 

(e.g. frequency-independent methods can be blind to relationships establishing on a narrow frequency band). Second, a novel estimator of the 

linear relationship as function of time and frequency which introduces a frequency dependent time delay has been proposed for nonstationary 

signals. On various simulations, this estimator has been shown to exhibit better statistical performances (bias and MSE) in comparison with a 

standard estimator based on the coherence function when a priori information is given about frequency dependent time delay value. Hence the 

user has the possibility to constrain coherence estimation using this information. Third, the proposed estimator has been used on real data and 

has also been found to enhance the readability of the time-frequency representation of the relationship for fixed time delay τ . Thus it can 

improve the interpretation of nonstationary interdependencies between SEEG signals. The choice of the relevant value of τ  in a given time 

interval and in a given frequency band is actually under investigation. The key idea is to make use of a priori anatomical and physiological 

knowledge (neural pathways and their activations) and statistical results about propagation time delays in a data set built from a large number 

of patients: if generic reliable information about possible values of delays is available, this information can be used to improve performances 

of analysis methods of frequency dependent statistical relationship.  
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APPENDIX A 
and be two real zero mean wide sense stationary stochastic process with covariance function: Let 1x 2x

{ }, ( ) ( ( ) ( )),  ; , 1,2
i jx x i jC E x t x t i jτ τ τ= − ∈ ∈\  and corresponding power spectral density: where FT 

stands for the Fourier Transform.  

( ) ( )( ), , ,  
i j i jx x x xf FT C f fγ = ∈\

1x 2xand is defined as: The Coherence function between

1 2

1 2

1 1 2 2
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γ γ
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Property: 
Let us consider the real band-pass filter defined by: 

( ) ( )0 0-G f f f f OR f f f= < Δ + < Δ1 ( ) 1A , where =1  if A is true and otherwise ( ) 0A =1 , whose output is  or  when 
input is respectively 
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( )1z t ( )1z t τ−which is the absolute value of the correlation coefficient between the two zero mean real variables  and , 

maximized relatively to the delay τ  (the maximum is reached when ). Then if  is small and *τ τ= fΔ ,i jx xγ  is a continuous 

function at  we have: 0f f=
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1 2,x xC τ ∈\ ( ) ( )1 21 2

*
,, 0 0{ x xx x }f fγ γ⇒ = −  and since ,i jx xγ  is continuous  at . 0f f=
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θ
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APPENDIX B  
The continuous filter bank used is defined in the time domain as follows:  

0
0( ) ( ).cos2vh t h t v tπ=  

where  has the characteristics of a low-pass filter and is even,  an arbitrary frequency, and  is the real part of 

. Thus for any real signal

0v( )h t
0
( )vh t

0

0

2( ) ( ). i v t
vh t h t e π=� ( )x t , 

0 0
Re( )v vh x h∗ = ∗ � ; hence:  x

( )0 0

0

2 2( )( ) ( ). ( ). .i v u i v t
vx h t x u h t u e du eπ π−

ℜ
∗ = −∫�  

As  is even: h

( )0 0

0

2 2( )( ) ( ). ( ). .i v u i v t
vx h t x u h u t e du eπ π−

ℜ
∗ = −∫�  

0

0
0

2( )( ) ( , ). i v t
v xx h t STFT t v e π∗ =�  

where  is the short term Fourier transform of the  while using  for windowing. x hxSTFT
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TABLE I 
 MEAN OF THE ABSOLUTE VALUES OF BIAS, MEAN OF THE VARIANCES, 
AND MEAN OF MSE VALUES COMPUTED OVER THE TIME-FREQUENCY (TF) 

PLANE, FOR 2ˆ [ , ]R t f2ˆ[ , ]t fρ m 0Mτ τ= = ; AND  (WITH 5M mτ τ= − = ) . 
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2ˆ[ , ]t fρFig. 1: Bias and MSE of both estimators for model M1 (stationary situation, constant α[t]) for different duration N  of the sliding window a) Bias of 0 . b) 

Bias of 2ˆ [ , ]R t f 2ˆ [ , ]R t f 2ˆ [ , ]R t f 2ˆ [ , ]R t f2ˆ[ , ]t fρm 0Mτ τ= = with . c) Bias of  with . d) MSE of . e) MSE of  with . f) MSE of 5M mτ τ= − = 5M mτ τ= − =  

with . These curves are obtained by Monte Carlo simulation for long duration signals and by averaging over time-frequency plane.  m 0Mτ τ= =
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Fig. 2: Performances of both estimators for model M1 (nonstationary situation, time-varying α[t]) for N0 =768. a) Time course of parameter 
α[t]  (dashed line) and target relationship curve (solid line) averaged over frequency axis. Standard boxplots obtained by Monte-Carlo simulation 
for different estimators: b) 2ˆ[ , ]t fρ , c) 2ˆ [ , ]R t f  with 5M mτ τ= − = , d) 2ˆ [ , ]R t f  with m 0Mτ τ= = . 
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Fig. 3: Model M2, nonstationary multi-component situation. a) Target 
time-frequency relationship obtained by Monte-Carlo simulation. 
Different estimations of target: b) 2ˆ[ , ]t fρ , c) 2ˆ [ , ]R t f  with 

m 0Mτ τ= = , d) 2ˆ [ , ]R t f  with 5M mτ τ= − = .  
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Fig. 4: Results obtained on real data. a) Two SEEG signals recorded from hippocampus (top) and amygdala (bottom) in an epileptic 
patient (TLE) and b) corresponding spectrograms. c) Estimated relationship in the time-frequency plane for both methods. (*) Time-
frequency representations of 2ˆ [ , ]R t f  maximized for time delay τ  (middle, range -20 to 20 ms) and for fixed τ  (bottom, m 4Mτ τ= =  

ms). d) Estimated relationship by two frequency-independent methods, one linear ( 2[ ]r t , top) and the other nonlinear ( 2[ ]h t , bottom). 
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