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2 Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France

3INSERM, U593, Bordeaux, F-33076 France

Corresponding author :

Hélène Jacqmin-Gadda, INSERM E0338,
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Summary. We propose a joint model for cognitive decline and risk of de-

mentia to describe the pre-diagnosis phase of dementia. We aim to estimate

the time when the cognitive evolution of subjects in the pre-dementia phase

becomes distinguishable from normal evolution and to study whether the

shape of cognitive decline depends on educational level. The model com-

bines a piecewise polynomial mixed model with a random changepoint for

the evolution of the cognitive test and a log-normal model depending on the

random changepoint for the time to dementia. Parameters are estimated by

maximum likelihood using a Newton-Raphson-like algorithm. The expected

cognitive evolution given age to dementia is then derived and the marginal

distribution of dementia is estimated to check the log-normal assumption.

Key words: Joint model ; Mixed model ; Longitudinal data ; Random ef-

fects
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1. Introduction

Dementia is a progressive disease defined by cognitive impairment in me-

mory and at least one other cognitive function with consequences for the

activities of daily living. Several studies have shown that cognitive impair-

ment is present long before all criteria for dementia diagnosis are fulfilled

(Dartigues et al., 1997 ; Masur et al., 1994). However, little is known about

the shape of this decline and about the time at which cognitive evolution of

subjects who develop dementia becomes distinguishable from that of normal

elderly subjects.

Using a piecewise linear mixed model, Hall et al. (2000) have compa-

red the evolution of a cognitive test for incident cases of dementia in the

years preceding the diagnosis and for subjects free of dementia at their last

follow-up. However, these analyses may be biased by right-censoring of de-

mentia (subjects without dementia at their last visit may be in preclinical

phase of dementia), and by loss of follow-up which may be associated with

poor cognitive functioning and high risk of dementia (Jacqmin-Gadda et al.,

1997). More recently, Hall et al. (2003) have proposed a random changepoint

model to describe the cognitive decline of demented subjects but, as time-

to-dementia was not jointly modelled, parameters were estimated using only

data from subjects diagnosed as demented during the follow-up. This reduces

the power of the study, does not allow the comparison of normal and patho-

logical aging and does not avoid selection biases (subjects must be seen as

demented before the end of the follow-up to be included in the sample).

To deal with the above problems, the aim of this paper is to propose a

joint model for time-to-event and repeated measures of a marker (Wulfsohn
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and Tsiatis, 1997, Henderson, Diggle et Dobson, 2000) to describe the cogni-

tive decline in the pre-diagnosis stage of dementia and, especially, to estimate

the time between the acceleration of the cognitive decline and the diagnosis

of dementia. Another important point is to study whether the shape of the

cognitive decline before dementia depends on the educational level of the sub-

ject. We have previously proposed another joint model for cognitive decline

and dementia using a latent stochastic process which represents the cogni-

tive ability and defining dementia as the crossing of a barrier by the latent

process (Hashemi, Jacqmin-Gadda and Commenges, 2003). However, in this

model, the mean evolution was assumed to be linear and common for future

demented subjects and future non demented subjects ; this is not suitable for

the study of the accelerated cognitive decline in the pre-diagnosis stage of

dementia. In the present work, to take account of non-linearity of the cogni-

tive decline, we combined a piecewise polynomial mixed model with random

changepoint for the evolution of the cognitive test and a log-normal model

depending on the random changepoint for the time to dementia diagnosis.

The model we propose can be viewed as an extension of the joint mo-

del proposed by DeGruttola and Tu (1994) which combined a linear mixed

model for the marker and a log-normal survival model. In another context,

Faucett et al. (2002) and Pauler and Finkelstein (2002) have proposed com-

bining a piecewise linear mixed model with a random changepoint and a Cox

proportional hazards model in a joint model estimated using Markov Chain

Monte-Carlo (MCMC). Both papers focussed on survival analysis because

the main objective was to predict (or impute) failure time using information

given by the marker trajectory. Here we are mainly interested in the longi-
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tudinal trajectory given the failure time which would be difficult to derive

using a semi-parametric survival model. Moreover, we estimate parameters

by a direct likelihood approach rather than MCMC and take left-truncation

of the data into account.

In Section 2 we introduce the joint model, in section 3 the likelihood and

the estimation algorithm and section 4 is devoted to post-fit estimations. In

section 5 we apply the methodology to the Paquid cohort to estimate the

evolution of the Benton Visual Retention Test (BVRT) in the pre-diagnosis

phase of dementia and section 6 concludes with a discussion.

2. Joint Model

Let Yi(t) be the cognitive test score of subject i at age t. This is the

primary time scale in this analysis because this is the greatest risk factor for

dementia. For brevity, we denote Yij = Yi(tij) for j = 1, ..., ni, and i = 1, ..., N

where N is the number of subjects, tij is the age of subject i at measurement

j and Yi is the vector of the ni measurements for subject i. We assume a

segmented mixed model for Yij with a linear trend before the changepoint

and a polynomial trend thereafter. This model has a smooth transition at the

changepoint which agrees with the clinical belief of a progressive decline in

the pre-diagnosis phase of dementia. The linear assumption for normal aging

and the non-linear assumption for pathological aging is supported by previous

analyses from the Paquid cohort (Jacqmin-Gadda et al.,1997, Amieva et al.,

2005). Moreover, the proposed model has the desirable property that the

derivative with respect to each parameter is a continuous function of t (Seber

and Wild, 1989, chap 9) :

Yij = (µ0 + u0i) + (µ1 + u1i)× tij + ΣK
k=2(µk + uki)× {(tij − τi)

+}k + εij (1)
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where z+ = 0 if z ≤ 0 and z+ = z if z > 0. The independent random

error εij is N(0, σ2) and the vector Ui = (u0i, u1i, ..., uKi)
′ of random effects is

N(0, G). The individual random changepoint τi is the age at which cognitive

decline of subject i accelerates : the individual slope before τi is µ1 + u1i

and the individual coefficients of the polynomial curve after τi are µk + uki.

The mean intercept, slope and polynomial coefficients may depend on fixed

covariates : µk = βk + Zkiαk, where the Zki are row vectors of size pk. We

assume that the random changepoint τi is independent from Ui and has a

lognormal distribution with mean depending on a row vector of covariates

Zτi of size pτ :

log(τi) ∼ N
(

Zτiατ , σ
2
τ

)

(2)

Set Xi = log(Ti) the logarithm of age at dementia for subject i and Zxi a

row vector of covariates. The model for age at dementia is :

Xi = log(Ti) = Zxiγ + ηlog(τi) + εi (3)

with εi ∼ N(0, σ2
ε). Thus, given the age at acceleration of cognitive decline

(τi), the median age at dementia diagnosis is :

med(Ti|τi) = τ η
i exp(Zxiγ)

We make the following remarks about this model. First, it does not impose a

pre-diagnosis acceleration of cognitive decline : some subjects may reach the

criteria for dementia diagnosis after a steady linear decline of their cognitive

functions rather than a two-phase decline. Second, the desirable property that

the median age at dementia increases with the age at acceleration of cognitive

decline is satisfied only if η > 0. When η = 1, med(Ti|τi) is proportional to
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τi ; when η < 1 (respectively η > 1), the ratio med(Ti|τi)/τi is a decreasing

(respectively increasing) function of τi.

3. Likelihood

Set X̃i = min(Xi, Ci) with Ci the logarithm of age at the end of follow-

up for subject i and δi = 1{Xi≤Ci}, the failure indicator for dementia. We

assume that the censoring process for time to dementia is non informative

and that missing responses for the cognitive test are ignorable when they are

not due to dementia. More specifically, for a subject in the study at age t,

the probability of dropout from the study and the probability of obtaining

a cognitive test score at this time are both conditionally independent on

the time to dementia, the current value of the score and the random effects

given the past observed values of the marker. Denoting by θ the vector of all

the parameters in (1), (2) and (3), and taking advantage of the conditional

independence of Yi and X̃i given τi, the likelihood for the observed data

(Y, X̃, δ) may be written :

L(Y, X̃, δ; θ) =

N
∏

i=1

∫

fYi|τi
(yi|τ)fXi|τi

(x̃i|τ)δi(1−FXi|τi
(x̃i|τ))1−δiflog(τi)

(log(τ))dlog(τ)

(4)

where fYi|τi
is a multivariate Gaussian density with mean and variance given

by :

E(Yij) = µ0 + µ1 × tij + ΣK
k>1µk × {(tij − τi)

+}k

and

V ar(Yi) = Vi = AiGA
′

i + σ2Ini

and Ai is the ni×(K+1) design matrix with rows (1, tij, {(tij−τi)
+}2, ..., {(tij−

τi)
+}K) ; fXi|τi

and FXi|τi
are the univariate Gaussian density and cumulative
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distribution function defined by (3) and flog(τi)
is the univariate Gaussian

density defined by (2).

Prevalent cases of dementia (subjects already demented at the first visit)

must be excluded from the analysis because of selection problems discussed

below and because their age at diagnosis is unknown and they bring little

information on the period before diagnosis. When excluding prevalent cases,

the data are left-truncated and the likelihood to be maximised is the likeli-

hood conditional on being free of dementia at entry in the study. If we denote

tei the logarithm of age of subject i at the first visit, the contribution to the

likelihood for subject i is :

L(Yi, X̃i, δi|Xi > tei) = L(Yi, X̃i, δi; θ)/SXi
(tei) (5)

where SXi
(.) = 1 − FXi

(.) is the marginal survival function of the logarithm

of time to dementia. Using (2) and (3), we find that the marginal distribution

of Xi is Gaussian with mean E(Xi) = Zxiγ +ηZτiατ and variance Var(Xi) =

η2σ2
τ + σ2

ε .

We implemented a Fortran program to estimate the parameters by maxi-

mising the logarithm of the likelihood (5) using the Maquardt optimisation

algorithm (Maquardt, 1963). When ni = 0, the contribution to the likelihood

for subject i is either fXi
(x̃i) or 1 − FXi

(x̃i) and thus has a closed form. In

the other cases, the integral in (4) is computed by Gauss-Hermite quadra-

ture with 50 points. Derivatives are computed by finite difference. Variance

of parameter estimates are estimated by the inverse of the Hessian matrix

computed at the optimum. A Cholesky decomposition of G is used to satisfy

the constraint that G is positive definite.
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4. Post-fit estimations

When parameters are estimated, we may compute easily the mean curve

for the evolution of the cognitive test given the changepoint (E(Yi|τi)) or the

survival function (or risk function) for the age at dementia given τi, and, using

results of the previous section, the marginal survival function for dementia.

To describe the evolution of cognitive function in the pre-diagnosis phase of

dementia, it is interesting to estimate the mean evolution of the score given

age to dementia :

E(Yi(t)|Xi) = µ0 + µ1 × t + ΣK
k=2µk × E{[(t − τi)

+]k|Xi}

The last term may be decomposed as :

E{[(t − τi)
+]k|Xi} = Σk

l=0(
k
l )t

k−l(−1)lE{τ l
i I{τi<t}|Xi}

where I is the indicator function. With some additional calculations, we find

that :

E{τ l
i I{τi<t}|Xi} = E{τ l

i |Xi}Φ

(

log(t) − µc − lσ2
c

σc

)

where Φ is the standard normal distribution function and µc and σ2
c are the

mean and variance of the Gaussian conditional distribution of log(τi) given

Xi :

µc = E(log(τi)|Xi) = Zτiατ + ησ2
τ (var(Xi))

−1(Xi − E(Xi))

and

σ2
c = V ar(log(τi)|Xi) = σ2

τ

(

1 − η2σ2
τ (var(Xi))

−1
)

and E{τ l
i |Xi} = exp(lµc + l2σ2

c/2).

Formulas for estimating the random effects using E(Ui|Yi, X̃i, δi) and

E(log(τi)|Yi, X̃i, δi) are given in the appendix.
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5. Application

5.1 Data

The Paquid project is an epidemiological study on normal and patholo-

gical aging initiated in 1988 (Letenneur et al., 1994). The cohort consists of

3777 subjects aged 65 years and older and living at home at the beginning

of the study. Subjects were interviewed by a psychologist at 1, 3, 5, 8, and

10 years after the baseline visit. Interviews were performed at home or at

the institution if the subject had been institutionalized after the baseline

visit. At each visit, a battery of neuropsychological tests was completed and

dementia was diagnosed according to a two stage procedure. Subjects who

met the DSM IIIR criteria for dementia (American Psychiatric Association,

1987) A, B and C (impairment of memory and at least one other cognitive

function and interference with daily living) or those presenting a decline of

3 points or more on the MMSE scale since the previous visit were seen by

a senior neurologist who made the final diagnosis. The Benton Visual Re-

tention Test (BVRT) (Benton, 1965) is a visual memory test which consists

in the presentation of geometric figures that subjects are asked to recognize

from an array of four possibilities. Fifteen geometric figures are successively

presented and the possible scores range from 0 to 15.

Subjects demented at baseline were excluded from the analysis because

they are a selected sample of demented subjects : they must be still alive

and non institutionalized at the time of the study and they have accepted to

participate in the study while being already demented. Moreover, they bring

little information on the cognitive course before the diagnosis. Measures of

the BVRT collected at the baseline visit were not used because of the first-
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passing effect previously described for the cognitive tests (Jacqmin-Gadda

et al., 1997) and thus all subjects not followed-up after the baseline visit

where excluded leading to a sample of 2960 subjects. In this sample, 437

subjects were diagnosed as incident cases of dementia during the 10 year

period (333 Alzheimer cases, 51 vascular dementias, 36 Parkinson dementias

and 17 other dementias). Measures of BVRT collected after the diagnosis of

dementia were ignored because our objective was to study the pre-diagnosis

phase of dementia. The age at dementia was estimated as the mean age

between the last visit before diagnosis and the visit of diagnosis because it

has previously been shown that this led to results similar to that obtained

using method for interval censored survival data (Joly et al., 1998). Among

the 2960 subjects, 344 subjects have never completed the BVRT at the 5

follow-up visits, and 649, 493, 403, 528 and 543 subjects have completed the

BVRT at 1, 2, 3, 4 or 5 visits respectively. Among the 437 incident cases, 314

had at least one measure of the BVRT (136 without primary school diploma

and 178 with it).

5.2 Model

Previous analyses performed separately for demented and non-demented

subjects have suggested that subjects without dementia tended to have a

slight linear decline of the BVRT score while subjects in the pre-diagnosis

phase of dementia have a nonlinear decline. Thus, we used a linear-cubic

model that is a model with a linear trend before the changepoint and a cubic

curve thereafter. This model had a better Akaike criterion (AIC=Deviance-

2#parameters=32395) than the linear-quadratic model (AIC=32457). The

educational level (Zi=1 if no education or primary school level without di-
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ploma versus Zi=0 if primary school diploma or higher level) was included as

an explanatory variable in the model for the BVRT score with an interaction

with all the time components, in the survival model for the log of time to

dementia given the changepoint and in the mean of the changepoint. As the

estimate of the variance of the random slope before the changepoint tended

toward 0, this random slope was excluded from the model. The covariance

matrix of the random effects G was left unspecified. The joint model may be

written :

Yij = (β0 + Ziα0 + u0i) + (β1 + Ziα1) × (tij − 65)/10 (6)

+ (β2 + Ziα2 + u2i) × {(tij − τi)
+}2 + (β3 + Ziα3 + u3i) × {(tij − τi)

+}3 + εij

with (u0i, u2i, u3i)
′

∼ N(0, G), log(τi) ∼ N (ατ0 + ατ1Zi, σ
2
τ ) and

Xi = log(Ti) = γ0 + γ1Zi + ηlog(τi) + εi. (7)

The choice of the lognormal distribution for the age at dementia was suppor-

ted by preliminary analyses which showed that this distribution fitted the

observed data much better than a Weibull distribution.

5.3 Results

Estimates for the joint model defined by (6) and (7) are presented in

table 1. Low educated subjects have a lower score at 65 years (-1.85 points,

p<0.01). Before the changepoint, results show a slight decline of the cognitive

score for both educational levels : -0.80 points every 10 years (95% confidence

interval : -0.91 ; -0.68) for subjects with high educational level (HEL) and -

0.28 points (β̂1 + α̂1, 95% CI : -0.61 ; 0.04) for subjects with low educational

level (LEL).
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After the changepoint, the shape of the decline was significantly different

between the two educational levels (Likelihood ratio statistic for α2 and α3,

χ2
2 = 16.7 p < 0.001) with a much more dramatic decline for subjects with

HEL. To illustrate the differential evolution given the educational level, fi-

gure 1 displays the expected BVRT course for a subject with HEL and a

changepoint at 85 years and for a subject with LEL and a changepoint at

70 years. The median age at the change of cognitive trend was very dif-

ferent between the two educational levels (ατ1=-0.26, 95% CI : -0.33 ; -0.19,

p<0.001). This median was estimated to 90.3 years for HEL (95% CI : 89.3 ;

91.4) and 69.7 years for LEL with a much larger confidence interval (95% CI :

65.0 - 74.6) which underlines the difficulty to distinguish early normal and

pathological decline among less educated subjects. As expected, the median

age at dementia is also higher for subjects with HEL (94.1 years versus 87.9

years). However, given the age at the acceleration of the cognitive decline,

the median age at dementia is higher for less educated subjects (γ1=0.13,

95% CI : 0.075 - 0.19, p<0.001), that is the time between the changepoint

and the diagnosis of dementia is longer for LEL. This is enlightened by table

2 which displays estimates of med(T |τ, Z). As expected since η̂ is less than

1 (η̂=0.77, 95% CI : 0.69 - 0.84), table 2 also shows that the time between

the changepoint and the median age at dementia decreases with the age at

changepoint.

Figure 2 displays the estimated curves of the mean BVRT score given

the age at dementia for both educational levels. This curve highlights the

differential evolution of the visual memory according to the educational level

in the years preceding the diagnosis. To evaluate how the model fits the
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evolution of incident cases of dementia, we compare on figure 3, the observed

mean of the BVRT score at each visit among incident cases and the average of

the expected BVRT score given the age at dementia computed for cases with

available measure at the visit. All the fitted means are in the 95% confidence

interval of the observed means.

Finally, to check the log-normal hypothesis for the age at dementia, we

present on figure 4, the risk functions for the marginal distribution of age at

dementia estimated by the joint model and estimated non-parametrically

using a penalized likelihood approach (Joly, Commenges and Letenneur,

1998). This clearly shows that the log-normal model fits the data well.

5.4 Simulation study

We performed a simulation study to evaluate the robustness of the maxi-

mum likelihood estimators assuming normal random effects and normal error

when the outcome has a discrete distribution with only 16 possible values

such as the BVRT score. When the reponses were generated using the es-

timated model for the 2960 subjects of the Paquid sample, only 0.22% of

the simulated data were negative and only 3.10 % were above 15. When the

responses were generated using the same distribution truncated at 0 and 15

and then discretized, the histogram of the simulated data was close to the

observed one. Comparison of MLE based on two series of 200 data sets of

1000 subjects generated using the Gaussian assumptions or using the trun-

cated discrete distribution showed that the bias and the mean square error

for the intercept of both groups and for the first slope of one group increase

when the data are discrete and truncated but they remain small. The impact

on the other parameter is negligible. Detailed presentation of the simulations
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study may be found on the Biometrics web site.

6. Discussion

We have presented a model to jointly describe the evolution of a marker

and a survival time taking into account a change in the trend in the marker

evolution. This model allows the pre-dementia shape of decline to differ ac-

cording to educational level, and the mean cognitive evolution is estimated

given the age at dementia while avoiding selection biases which arise when

two groups are compared following selection according to their status at a

predefined timepoint.

As noted by the Associate Editor, the interpretation of the changepoint as

an acceleration of the cognitive decline is not obvious since it is not possible

to constrain the individual rate of decline to increase after the changepoint.

Thus, we have computed for each subject in the sample the difference between

the rate of change before the changepoint and 1 year after the changepoint

(details given in the appendix). When this difference is positive, the change is

an acceleration of the decline. The difference is negative for only 102 subjects

(3.4%), and for only 62 subjects 3 years after the diagnosis. Moreover, the

mean difference at one year among the negative values is -0.014 (range : -

0.078 ; -0.000020) while the mean difference for subjects with positive value is

0.247 (range : 0.00015 ; 0.426). Thus these negative values, which occur only

for subjects with a low educational level, may be considered as very close

to zero and do not invalidate our interpretation of the changepoint in this

application. These results are in agreement with our conclusion that, among

subjects with low educational level, the cognitive decline is smooth with a

changepoint that is difficult to detect.
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The parametric assumptions may be viewed as a limit of our approach.

We shall examine successively the log-normal survival model, the piecewise

polynomial model and the dependency between the two parts of the model.

Firstly, we have shown that the log-normal assumption for the survival time

may be easily checked and is suitable in our application. A possible extension

of this model would be to assume that a fraction of the population is not

liable to become demented such as in a cure model (Law, Taylor and Sandler,

2002). Secondly, a piecewise polynomial model with a random changepoint

has been chosen to locate the time at which the cognitive decline of subjects

in pre-diagnosis phase of dementia begins to be distinguishable from that

of normal subjects. However, this time may be dependent from the parame-

tric form of the model. For instance, a linear-linear model (Hall et al, 2000)

assuming a non-smooth transition would probably lead to a later estimate

of the age of acceleration of the cognitive decline but the interpretation of

the changepoint would be different. Moreover, the stronger estimated decline

before the changepoint for HEL compared to LEL suggests that the evolu-

tion of highly educated subjects might be better fitted with a three-phase

model : normal evolution, slightly accelerated decline beginning long before

dementia followed by a sharper decline just before diagnosis. However, such a

three-phase model would raise numerical problems. Thirdly, the failure time

depends on the evolution of the marker, only through the random change-

point. A model including dependency between the failure time and every

random effects from the mixed model has been fitted, but it has led to uns-

table results due to numerical problems (increased size of the integral) and

probably to more crucial identifiability problems.
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Our analyses are valid under the assumption that the censoring process

for time to dementia is non informative and the missing responses for the

cognitive test is ignorable when they are not due to dementia. A useful im-

provement would be to jointly model the survival time using a multi-state

model. This would allow estimation of cognitive evolution conditional on

being alive and this would take account of potential informative censoring

due to death. Indeed, in the present work, subjects who died are treated as

dropouts after their last visit while the risk of dementia seems to be higher in

the years preceding the death (Joly et al., 2002). Thus, the assumption that

dropout time and time at dementia are conditionally independent given the

observed values of the cognitive test may be too strong for these subjects. In

other respects, if missing responses to the BVRT score are informative among

demented subjects it is difficult to predict the direction of the bias. Thus,

it could be interesting to extend this model to take informative missingness

into account with different assumptions and perform a sensitivity analysis.

Despite limitations discussed above, joint modeling of cognitive decline

and risk of dementia is appropriate for investigating hypotheses regarding

the association between educational level and the pattern of decline before

dementia. For instance, our results reinforce the hypothesis of a greater “re-

serve capacity” (Stern et al., 1994) in highly educated subjects which could

explain their slight decline in the pre-diagnosis phase of dementia, followed

by a faster decline just before the diagnosis when the mechanism of compen-

sation failed.
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APPENDIX

Random effects estimators :

To estimate the random effects, we must compute their expectations

conditionally on the data :

E(log(τi)|Yi, X̃i, δi) =
1

Li

∫

log(τ)fYi|τi
(yi|τ)fXi|τi

(x̃i|τ)δiSXi|τi
(x̃i|τ)1−δiflog(τi)

(log(τ))dlog(τ)

where Li = L(Yi, X̃i, δi; θ) is the contribution to the likelihood of subject i.

E(Ui|Yi, X̃i, δi)

=

∫

E(Ui|Yi, log(τ))flog(τi)|Yi,X̃i,δi

(log(τ))dlog(τ)

=
1

Li

∫

GA
′

iV
−1
i (Yi − E(Yi|τ))fYi|τi

(yi|τ)fXi|τi
(x̃i|τ)δiSXi|τi

(x̃i|τ)1−δiflog(τi)
(log(τ))dlog(τ)

In both cases, integrals are estimated by Gaussian quadrature and parameters

θ are replaced by their MLE. An estimate of τi is obtained by taking the

exponential of the estimate of log(τi).

Rates of change estimators :

The difference between the individual rates of change during the first

phase and l years after the changepoint is given by −ΣK
k=2k(µk + uki) × lk−1

and is estimated by replacing parameters by their MLE and random effects

by their empirical Bayes estimates.
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Table 1 : Estimates of the joint model for dementia and evolution of the

BVRT score for the Paquid cohort.

Parameter estimates SE 95% CI
Mixed model for the BVRT

β0 12.5 0.08 12.3 ; 12.6
β1 -0.80 0.06 -0.91 ; -0.68
β2 -0.19 0.03 -0.24 ; -0.14
β3 0.012 0.002 0.008 ; 0.017
α0 -1.85 0.19 -2.21 ; -1.48
α1 0.51 0.17 0.18 ; 0.84
α2 0.18 0.03 0.12 ; 0.23
α3 -0.012 0.002 -0.016 ; -0.0075

Model for the changepoint
ατ0 4.50 0.006 4.49 ; 4.51
ατ1 -0.26 0.036 -0.33 ; -0.19

Survival model for dementia
γ0 1.09 0.17 0.76 ; 1.43
γ1 0.13 0.029 0.075 ; 0.187
η 0.77 0.039 0.69 ; 0.84
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Table 2 : Estimated median age at dementia given the age at the

acceleration of cognitive decline (and standard error computed by the delta

method).

HEL LEL

τ m̂ed(T |τ) (SE) m̂ed(T |τ) (SE)
65 73.1 (0.78) 83.4 (2.6)
75 81.6 (0.55) 93.0 (2.8)
85 89.9 (0.49) 102.4 (3.1)
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Figure 1 : Expected BVRT score given the age at acceleration of cognitive

decline (and 95% confidence interval).

plain line : high educational level and changepoint at 85 years

short dashed line : 95% confidence interval

long dashed line : low educational level and changepoint at 70 years

dotted line : 95% confidence interval

Figure 2 : Expected BVRT score in the years before the diagnosis given

age at dementia.

plain line : high educational level, dementia at 75 years

long dashed line : high educational level, dementia at 90 years

short dashed line : low educational level, dementia at 75 years

dotted line : low educational level, dementia at 90 years

Figure 3 : Observed mean of the BVRT score at each visit (and 95%

confidence interval) for incident cases of dementia and average of the expected

BVRT score given the age at dementia computed for cases with available

measure at the visit.

Horizontal bar with plain line : observed means for highly educated cases

Square with dashed line : observed means for less educated cases

Cross : predicted means
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Figure 4 : Risk function for the marginal distribution of the age at de-

mentia estimated by the joint model and non-parametrically.

plain line : high educational level, joint model

short dashed line : high educational level, non parametric estimation (with

confidence bands)

long dashed line : low educational level, joint model

dotted line : low educational level, non parametric estimation (with confi-

dence bands)
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Figure 2
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Figure 3
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Figure 4
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