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ABSTRACT 

 

 Wavelet Transform (WT) was used to quantify the Magnetic Resonance 

Spectroscopy (MRS) parameters, chemical shift, apparent relaxation time T , resonance 

amplitude and phase. Wavelet Transform is a time-frequency representation which 

separates each component from the FID, which is then successively quantified and 

substracted from the raw signal. Two iterative procedures were developed. They were 

combined with a nonlinear regression analysis method and tested on both simulated and 

real sets of biomedical MRS data selected with respect to the main problems usually 

encountered in quantifying biomedical MRS, specifically "chemical noise" resulting 

from overlapping resonances and baseline distorsion. The results indicate that the 

Wavelet Transform method can provide efficient and accurate quantification of MRS 

data. 
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INTRODUCTION 

 

 Wavelet Transform (WT), as proposed by Grossmann and Morlet (1), analyzes a 

non-stationary signal by transforming its input time domain into a time-frequency 

domain. Through translation and dilation operations, WT decomposes the signal 

according to a set of functions, all deduced from a unique prototype called wavelet, 

assumed to be well localized both in time and frequency domains. Such a time-

frequency representation could provide a more efficient solution than usual Fourier 

Transform (FT) or other new methods presently available to process MRS data (2-5). 

 WT is presented here as a quantification method in biomedical MRS with 

special attention to the FID signal characteristics. FID signal considered as a sum of 

damped sinusoids is analyzed by WT and decomposed to its different components. The 

components are then successively separated with respect to their time durations and 

resonance frequencies, quantified and substracted from the raw signal. Chemical shift 

and phase values, are estimated from the WT phase information, while the WT modulus 

is used to estimate the values of amplitude resonance A and apparent relaxation time 

. The problems often encountered in biomedical MRS applications, low signal-to-

noise ratio, broad resonances, and "chemical noise", can then be reduced and accurate 

estimation of MRS parameter values may be obtained. 

T2
*

 Two iterative procedures obtained from the application of WT on noise-free 

MRS signals composed of one and two resonances respectively are tested on simulated 

and real biomedical MRS data. The case of noisy signals is considered and a classical 

solution is proposed. 

 

CONTINUOUS WAVELET TRANSFORM 
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 Let L  be the vectorial space of the square integrable functions, i.e signals of 

finite energy. For u(t) and v(t) belonging to L , the scalar product between u and v 

is given by : 

2 (R)

2 (R)

 

< u,v >  = u(t)v*∫ (t)dt                                                                                                  [1] 

 

Asterisk denotes the complex conjugate. 

For any function u(t) of L , 
2 (R) ˆ u (ω)  is the associated Fourier Transform defined by : 

 

ˆ u (ω) = u(t)e-iωtdt
− ∞

+ ∞

∫                                                                                                         [2] 

 

Any function g(t) belonging to L  is called an analyzing wavelet if it complies with 

the so-called admissibility condition (6): 

2 (R)

 

Cg =
ˆ g (ω)

2

ω− ∞

+ ∞

∫ dω < ∞                                                                                                    [3] 

 

With respect to this wavelet, the continunous wavelet transform of a signal s(t) of finite 

energy is given by : 

 

Sa(b) =< s,ga ,b >=
1

a
s(t)g*∫ (

t - b

a
)dt                                                                               [4] 

 

with 
ga, b(t) =

1

a
g(

t - b

a
)
, a > 0, b ∈ R. 
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It maps the signal via a two-dimensional function on the time-scale domain plane (a, b). 

This operation is equivalent to a particular filter bank analysis, whose relative 

frequency band widths are constant and related to the parameters a and b (scale 

parameter and translation parameter) and to the frequential properties of the wavelet g. 

 can indeed be written as : Sa(b)

 

Sa(b) = s(t)˜ g a(b - t)∫  dt                                                                                                   [5] 

 

where 
˜ g a(.) =

1

a
g* (-

.

a
)
 is the impulse response of the filter. 

There is a large set of functions satisfying the required condition of Eq. [3] : not only 

can the analyzing wavelet be selected to the signal features but the parameters a and b 

can be adjusted without, limiting their range values. Transient events, lying in a specific 

frequency domain, can then be easily targeted. In practice, to achieve satisfactory signal 

analysis, regularity and a suitable time-frequency band width product are required for g. 

So far, the most commonly used analyzing wavelet is the so-called Morlet wavelet 

defined by : 

 

g(t) =  e
 
-t 2

2  eiω 0t + c(t)                                                                                                  [6] 

 

where c(t) is a correcting term ensuring the admissibility condition. For ω0  > 5, the 

term c(t) is negligible and g(t) is practically admissible, where ˆ g (ω ) ≈ 0  if ω ≤  (7). 0

In the next section, the concept of wavelet transform, briefly recalled here, is considered 

in MRS signal analysis and quantification. 

 

H
A

L author m
anuscript    inserm

-00130048, version 1



DEVELOPMENT OF A METHOD FOR MRS SIGNAL PROCESSING 

 

 Quantification is a necessary step for clinical implementation of large-scale MRS. 

However, due to specific problems related to biomedical data such as broad spectral 

lines, overlapping resonances and poor signal-to-noise ratio (SNR), absolute 

quantification remains a difficult challenge for currently available data processing 

methods. Wavelet Transform, would appear to be an alternative method to the 

traditional FT for MRS data quantification. The elementary components of the FID 

signal are sucessively separated, quantified and substracted from the raw signal.  

 Referring to (8), the FID signal, considered here as a noise-free signal, is 

composed of a sum of damped complex sinusoids decaying with time and may be 

written as : 

 

s(t) =  Aj
j =  1

N

∑  e
(

-t

T2j
*

)

 e
i (ω j t +  ϕ j )

 =                                                                           [7] 
s j

j =1

N

∑ (t)

 

where 
A j, T2j

* ,  ω j = 2πδ j  and ϕ j  are the resonance amplitude, apparent relaxation time, 

angular frequency (chemical shift δ j ) and phase, respectively, of the component s . N 

denotes the total number of the signal resonances. We assume here, as is generally the 

case, that the damping factor of each component given by 

j

1

πT2j

*

 is very small compared 

with ω j . 

 

Case of signal with one component 
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According to [7], the FID signal may be written as : 

 

s(t) = Ae                                                                                                   [8] 
( -t / T2

* ) ei(ω s t +  ϕ)

 

 Our aim is to estimate the values of the MRS parameters. Due to the causality of 

the FID signal, our conventions for the time-frequency domain display are the same as 

in (9), (a, b ∈ ), (Fig. 1).  R+xR+

According to Eq. [4], the WT of s(t) with respect to the Morlet wavelet is given by : 

 

Sa(b) =
1

a
Ae

(
-t

T2
*

)

0

+∞

∫ ei(ω s t+ ϕ )e
(
-(

t − b

a
)2

2
)

e
− iω 0 (

t −b

a
)

dt                                                              [9] 

 

Substituting u for (t-b)/a, S  becomes : a(b)

 

 
Sa(b) = Ae

(
-b

T2
*

)

ei(ω sb +  ϕ ) e
(
-au

T2
*

)

-b

a

∞

∫  ei(aω s  -  ω 0 )u e
(
-u2

2
)

 du
 = s(b).J                                      [10] 

 

Taking Δ  as : 

 

Δ =  aωs  -  ω0                                                                                                              [11] 

 

one can check that the quantity J given by 
e

(
-au

T2
*

)

-b

a

∞

∫  eiΔu e
(
-u2

2
)

 du
 is equivalent to : 

 

J =  e
1
2

(
a

T2
*

)2

 e
(-iΔ a

T2
*

)

 e
(

-t 2

2
 +  iΔ t )

α

∞

∫  dt = e
1
2

(
a

T2
*

)2

 e
(-iΔ a

T2
*

)

.I                                                       [12] 
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with 
α =  (

a

T2
*  -  

b

a
)
.  

If I is given its value in Appendix 1, the expression of S  becomes : a(b)

 

Sa(b) = s(b)e
1
2

(
a

T2
*

)2

e
(− iΔ a

T2
*

)

B + iC[ ]                                                                                [13] 

 

The terms B and C are the result of board effects of the projection of the signal onto the 

quart plane H along the axis where b = 0. 

If we represent the result of the WT of Eq. [13] in terms of modulus and phase, we 

obtain : 

 

Sa(b) = Sa (b)eiΦ a (b)                                                                                                       [14] 

 

The modulus contains A and T , it is given by : 2
*

 

Sa (b) = Ae
(

a2

2 T2
*2 −

b

T2
* )

B2 + C2 .                                                                                     [15] 

 

The phase of S , containing a(b) ω  and ϕ  of the signal is given by : 

 

Φa(b) = ωs b + ϕ − Δ
a

T2 *
+ Arctg

C

B
                                                                           [16] 

 

Because of the terms B and C in the modulus and the phase, it is difficult to comput the 

values of MRS parameters. 

H
A

L author m
anuscript    inserm

-00130048, version 1



Note that if Δ  = 0, the term C is null (see Appendix 1), the phase Φ  in Eq. [16] 

becomes equal to the phase of the signal. This condition is fulfilled if 

a(b)

ωs  is known. 

Unfortunately this is not the case. One can estimate the value of ωs  and approach Δ  = 0 

by the following procedure. 

Let us take the two first terms of the series U  in Appendix 1. The term B is restricted 

to : 

k

 

B =   
π
2

e
(

-Δ2

2
)

m π
2

1 − e-α 2

                                                                                       [17] 

 

and C becomes : 

 

C = 
±

π
2

e
− Δ2

2 ( eΔ2

−1) − Δ(1− e
− α2

2 )
.                                                                        [18] 

 

The signs   m in Eq. [17] and ±  in Eq. [18] are conditioned by the signs of α  and ∆ 

respectively. 

Consider now 
Ωa(b) =

dΦa (b)

db  as the instantaneous frequency of S . Combining 

Eqs. [16], [17] and [18], Ω  may be written as : 

a(b)

a(b)

 

Ωa(b) =  
dΦa (b)

db
= ωs +

d(Arctg(
C
B

))

db
                                                                         [19] 
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For a given value of the dilation parameter a of the wavelet, noted a , a value of the 

translation parameter b exists, noted b , such that for any b > b , the term 

0

r r

d(Arctg(
C
B

))

db  

in Eq. [19] is negligible (see Appendix 2). A first estimation of ωs   is then obtained 

from : 

 

Ωa 0
(b0 ) ≈ ωs         

b                                                                                              [20] 0 > br

 

The value of the translation parameter b  indicates that 0 ωs  is estimated at the end of the 

FID signal (at the last points of the corresponding sampled signal). 

To have more precision on the estimated value of ωs , Δ  should be closer to zero. In 

practice, this is obtained iteratively by the following, (Fig. 2). 

Substitute Ω  for a 0
(b0 ) ωs  in Eq. [11] and assume Δ  equals zero. The new value a  of 

the dilation parameter is computed by : 

1

 

a1 =
ω 0

Ωa 0
(b0 )

                                                                                                                 [21] 

 

The new calculated value of the instantaneous frequency Ωa1
(b0 ) associated to S  

is closer to 

a1
(b0 )

ωs . The iterative procedure converges within some iterations when the 

following condition is fulfilled : 

 

aj +1 −  a j

a j

 〈 ε                                                                                                                [22] 
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where  is the value of the dilation parameter obtained at the iteration j. a j ε  is an 

arbitrarily small fixed positive number. 

Once this first iterative procedure converges, the value of ωs  is estimated from 

, where a  is the final value of the dilation parameter a at convergence. Ωa r
(b0 )

r Δ  

approaches zero and this automatically implies that C decreases to zero and that B is 

restricted to   
π
2

1 m 1 − e-α2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

. Consequently, S  becomes : a r
(b)

 

  
Sa r

(b) =
π
2

e
1
2

(
a r

T2
*

)2

1 m (1 − e-α 2

)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ Ae

(
-b

T2
*

)

ei (ωs b+ ϕ )                                                        [23] 

 

The phase ϕ  of the FID signal is directly estimated from the phase of S  and a 

simple nonlinear regression algorithm (14-16) applied on the modulus gives the 

estimated values of A and T .  

a r
(b)

2
*

Sa r
(b) is now equal to the signal at every point t = b up to a known function F(b) given 

by : 

 

  
F(b) =

π
2

e
1
2

(
a r

T 2
*

)2

1m (1− e-α 2

)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥                                                                                [24] 

 

This development allows us to generalize the procedure to a noise-free signal composed 

of more than one component. 

 

Case of signal composed of more than one component 

 

Now let s(t) be a FID signal composed of two resonances given by : 
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s(t) = A1e
(

-t

T21
*

)

ei (ω 1t +ϕ 1) + A2e
(

-t

T22
*

)

ei (ω 2t + ϕ 2 ) = s1(t) + s2 (t)                                                [25] 

 

WT of s(t) with respect to the Morlet wavelet, is : 

 

Sa(b) =
1

a
e

(
-(

t -b

a
)2

2
)

0

∞

∫ e
-iω 0 (

t-b

a
)

 A1e
(

-t

T21
*

)

ei (ω1t +ϕ 1 ) + A2e
(

-t

T22
*

)

ei (ω2 t +ϕ 2 )
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ dt                             [26] 

 

Following the same development as in the previous subsection, we obtain : 

 

Sa(b) = S1a(b) eiΦ1a (b) + S2a (b) eiΦ2a (b)                                                                          [27] 

 

This representation of s(t) is considered as a sum of two wavelet transforms each one 

associated to one particular component of the signal and described as in Eq. [14] by its 

modulus and phase. 

WT has to be adapted to this type of signal in order to isolate the components from the 

FID and to estimate their MRS parameter values. 

If we write Eq. [27] according to the WT associated to the first component s , we obtain 

: 

1

 

Sa(b) = S1a(b) eiΦ1a (b) 1 + Za(b)eiΘ a (b)[ ]                                                                         [28] 

 

The interference terms resulting from the interactions between the two components are 

represented by Z , where : a (b)
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Za (b) =
S2a (b)

S1a (b)
                                                                                                            [29] 

 

and Θ  which is equal to : a (b)

 

Θa (b) = Φ2a (b) − Φ1a (b) .                                                                                            [30] 

 

If we substitute Eqs. [15] and [16] for the moduli and phases in Eqs. [29] and [30] 

respectively, we notice that the degree of interactions between the components depends 

particularly on the ratio 
A 2

A1

 and the difference ω2 − ω1 . 

Suppose now that the first component s  decays more slowly than the second one 

(T ), (Fig. 3). For a given translation parameter value b of the wavelet, noted also 

, the remaining component in the signal for any b > b  is the first one. WT of s(t) is 

reduced to : 

1

21

* > T22

*

br r

 

Sa(b) = S1a(b) eiΦ1a (b)         b > b                                                                                  [31] r

 

By comparing Eq. [31] and Eq. [28], the quantity Za (b)eiΘ a ( b)  describing the 

component interactions becomes negligible for b > b . This allows us to use the first 

iterative procedure, to estimate the value of 

r

ω1 and to compute a , i.e the final value of 

the dilation parameter fulfilling Eq. [22]. At the convergence of the iterative procedure, 

the frequency of the component having the greatest apparent relaxation time T  value is 

localized at the wavelet parameter values b > b  and a = a . As a result, the 

corresponding WT according to Eq. [23] is given by : 

r

2
*

r r
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Sa r

(b) =
π
2

e

1

2
(

a r

T21
*

)2

1 m (1 − e-α1
2

)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ A1e

(
-b

T21
*

)

ei (ω 1b+ϕ 1 )           b > b                               [32] r

 

The sign   m is conditioned by the sign of α1  given by 
α1 = (

ar

T21

* −
b

ar

)
.  

Choosing a very large value of the translation parameter b, for example b  (b >b ) 

allows computation of 

0 0 r

ϕ1 value from the phase of Eq. [32]. To estimate the values of 

, the modulus is stored on M points and fitted to its expression in Eq. [32] by 

a nonlinear regression algorithm. Unfortunately, it is difficult to determine the number 

M. M decreases when the value of b  which is connected to the unknown value of T  

increases. Furthemore, to have an accurate estimation, the number M should be as large 

as possible, which is not generally the case if T  is close to T , even if the value of 

 is known. To solve this problem, the first component has to be separated from the 

signal. The interactions between the components are to be investigated from their 

frequency difference or their amplitude ratio. Here we observe the frequency difference 

as it is easier to obtain. Two situations have to be considered. 

A1 and T21

*

r 22

*

22

*
21

*

T22

*

 

1) If the frequencies of the two components are sufficiently far away from each other, 

the fast decay of ˆ g  will allow us to treat the first component independently from the 

second one. The interactions between the components are practically non-existent, their 

corresponding  quantity in Eq. [28] is null. S  of Eq. [32] becomes 

valid to every point b, allowing an estimation of the values of A  from its 

Za (b)eiΘ a ( b)
a r

(b)

1 and T21

*
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modulus and separation of the first component from the signal in order to substract it 

out. 

 

2) If the difference between the two frequencies is small, case of overlapping 

resonances, the quantity Z  is not null. It prevents us from treating the first 

component independently from the second one. The values of A  are estimated 

with respect to the contribution of the second component. The full WT S  of Eq. 

[28] should be computed for a = a . With respect to the a  value involving 

 for the phase Φ  in Eq. [30], 

a (b)eiΘ a ( b)

1 and T21

*

a(b)

r r

Δ1 = 0 and C1 = 0 1a r
(b) Θa r

(b)  becomes : 

 

Θa r
(b) = (ω2 − ω1)b + (ϕ2 − ϕ1) −

ar Δ2

T22
* + Arctg(

C2a r
(b)

B2a r
(b)

)                                          [33] 

 

The dominant term in Eq. [33] is (ω2 − ω1)b. Referring to (17), and due to the small 

difference between ω1 and ω2 , the values of the other terms may be neglected. Θ  

is approximated by : 

a r
(b)

 

Θa r
(b) ≈ (ω2 − ω1 )b                                                                                                      [34] 

 

Substituting Θ  in Eq. [28], S  is approximated by : a r
(b) a r

(b)

 

Sa r
(b) ≈ S1a r

(b) 1 + Za r

2 (b) + 2Za r
(b)cos((ω1 −ω 2 )b).e

i(Φ1a r
(b)+Ψ ar

(b))
                       [35] 
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With 
Ψa r

(b) = Arctg(
Ra r

(b)

Ta r
(b)

)
 where Ra r

(b) = Za r
(b)sin((ω2 − ω1)b) and 

Ta r
(b) = 1+ Za r

(b)cos((ω2 − ω1)b).  

 

The applied nonlinear regression algorithm on the modulus of Eq. [35] allows us to 

estimate not only the values of A  and T , but also the parameter values of A ,  

and 

1 21

*

2
T22

*

ω2  of the contributing second component s  in S . 2 a r
(b)

The estimated value of A  represents here the amount of the contribution of the second 

component in S , and not the total amplitude resonance of s  in the signal s(t). If 

2

a r
(b)

2

ω2  is far from ω1,  contributes little in S  and its A  estimated value is small 

compared with the total amplitude resonance of s . Inversely, if 

s2 a r
(b)

2

2 ω2  is close to ω1 the 

estimated value of A  becomes larger.  2

To separate the first component s  from the signal, the terms Z  and Ψ  should 

be negligible in Eq. [35]. Note that the value of Z , according to Eq. [29] is 

negligible if the value of A  is small compared with the value of A . 

1 a r
(b) a r

(b)

a r
(b)

2 1

By enforcing the resolution of the wavelet in the frequency domain, the wavelet ˆ g  

decays faster. Its frequency band is narrowed and focused around the frequency of the 

first component. S  is smoothed, containing mainly the first component. The 

influence of the second component is reduced. The component s  may be separated and 

filtered from the signal s(t). The more the frequency resolution of the wavelet is 

enhanced, the more the contribution of the second component is attenuated. The 

enhancement of the frequency resolution of the wavelet is limited by the signal 

duration. The support of the wavelet in the time domain becomes wider. 

a r
(b)

1
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It can be practically proceeded as follows, (Fig. 4). Multiply the values of a  and r
ω0  by 

a given positive factor f (f > 1) to enhance the frequency resolution of the wavelet and 

keep its central frequency constant (
Δ1 = 0 ⇒ ω1 =

f.ω0

f.ar ). Compute the smoothed 

. The values of A , T , , T  and Sf.a r
(b)

1 21

*
A 2 22

*
ω2  are estimated from the modulus of Eq. 

[35].  is compared with A . If the condition A1 2

A2

A1

< ε
 is fulfilled, the procedure 

stops. Otherwise, the factor f is increased and a new iteration begins by executing the 

same steps as above. At the convergence of this second procedure, the final estimated 

value of A  is small compared with the value of A . The terms Z  and Ψ  

become negligible in Eq. [35] and S  may be approximated to : 

2 1 f .a r
(b) f.a r

(b)

f.a r
(b)

 

  
Sf.a r

(b) ≈
π
2

A1e
(

a r
2

2(T21
* )2

−
b

T21
*

)

1 m(1 − e-α1
2

)
1

2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

ei(ω 1b +ϕ 1 )                                                  [36] 

 

The WT described by Eq. [36] is equal to the first component s  of the signal at every 

point t = b up to a known function F  similar to Eq. [24]. The separated component 

is substracted from the signal with respect to F  and the second component of the 

signal is quantified using only the first procedure. 

1

1(b)

1(b)

This developement may be extended on a FID signal containing more than two 

components. The proposed solutions are included in a third iterative procedure. The 

number of iterations of this third procedure will be equal to the number of signal 

components. At each iteration, the frequency of the largest time component among the 

remaining components in the signal is detected. The effects of the component 
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interactions are reduced. The isolated component is quantified and extracted from the 

raw signal. 

 

Case of noisy signal 

 

The random noise encountered in the FID signal largely originates from thermal noise 

in the probe and early stages of the receiver during data acquisition. FID decays with 

time, while the noise amplitude remains constant. In some cases the amplitude of noise 

is important and may complicate detection of the resonances.  

An efficient method for increasing the SNR consists in multiplying the data by a 

decreasing exponential function, written as follows : 

 

f(t) =  e
(

-t

T
)

                                                                                                                    [37] 

 

Where T > 0 is the constant time of the window function f(t). The desired reduction in 

the size of the tail of the signal occurs. Sensitivity is enhanced by using this filter. 

Multiplication in this fashion speeds up the apparent decay of the signal, given by : 

 

1

T2
a =

1

T2
* +

1

T
                                                                                                                [38] 

 

The estimation of the frequency components at the end of the signal is still possible by 

using the first iterative procedure, (see Fig. 5 adapted from (18)) and according to the 

frequency difference between the components, the second iterative procedure is used to 

estimate A and T  values. 2
*

To recover the values of the apparent relaxation time, the following relation is used : 
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1

T2
* =

1

T2
a −

1

T
                                                                                                                [39] 

 

APPLICATION TO SIMULATED MRS DATA 

 

 To test the accuracy and the efficiency of the proposed quantification technique, 

FIDs were simulated by a home PC software according to Eq. [7] and quantified by 

WT. The sampling frequency was normalized to 1. Each simulated signal was stored on 

1024 points. To have an accurate estimation of A and T  values, the order of the series 

 of the terms B2 and C2 contained in 

2
*

U k
S2a r

(b)
, was chosen to be equal to 10. The 

start value of the analyzing frequency ω0  of the wavelet was chosen as greater than 5, 

set to 11. The initial values of the dilation parameter a  and the factor f were taken to 

equal 1 and 2 respectively. The precision order of the two iterative procedures was 

supported by the value of 

0

ε  set to 0.001. The estimated and reference MRS parameter 

values, the chosen value of b , the obtained value of a  after convergence of the 

iterative procedures, and the requested number of iterations, noted j, for each signal 

component are reported on tables 1, 2 and 3. 

0 r

 

Case of a signal with one component : The aim of this first simple test was to 

investigate the behavior of the WT quantification method and to check the number of 

requested iterations. Six simulated signals, each containing one component, were 

quantified (Fig. 6A). For each signal, the translation parameter point b  was chosen and 

the first iterative procedure applied. It converged and stopped at the final value a , 

fulfilling Eq. [22]. The frequency of the signal and its phase were estimated. The 

0

r
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nonlinear analysis algorithm was used to fit the modulus to its expression and to give 

the values of A and T  (Fig. 6B). The results obtained are reported on Table 1. 2
*

 

Case of two overlapping resonances : This case is often encountered in biomedical 

MRS, for instance in the in-vitro high resolution 1H MRS of body fluids or in in-vivo 

31P MRS of brain tissue. Three simulated signals (A, B and C) were quantified, each 

one composed of two overlapping resonances. The results obtained are reported on 

Table 2. 

For the first signal (Fig. 7A), the first iterative procedure was applied. The translation 

parameter point b   was chosen to equal 300. We assumed that for b ≥  300, the 

remaining resonance in the signal is the longest one (say the first one). At the 

convergence of the procedure, the linear parameter values 

0

ω1(δ1 )  and ϕ1 of the first 

component were estimated. The second iterative procedure was used to estimate the 

parameter values of A  and T  of the localized first component and to separate it from 

the signal. It stopped when the estimated value of A  reaches 0.08 which satisfies the 

condition 

1 21

*

2

A2

A1

< ε
.The number of iterations of this second procedure depends on the 

degree of the component interactions. For this example, the procedure stopped at the 

twentieth frequency wavelet enhancement (f=20). Note that at each iteration, the 

estimated values of A ,  and T  varied little, whereas the estimated value of A  

decreased. This demonstrates that the contribution of the second component was 

reduced when the frequency resolution of the wavelet was enhanced. The change noted 

in the shape of the modulus of the first component shown in Fig. 7B, after the 

application of the second procedure, is another confirmation of this assumption. The 

1
T21

*
22

*

2
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first separated component was filtered from the signal and the parameter values of the 

second component were estimated using only the first iterative procedure. 

 In signal B (Fig. 7C), the aim was to extract the narrow peak from a broad 

baseline containing a large peak (a short T  value). The same steps as used previously 

were repeated. The translation parameter point b   was chosen equal to 150. The 

longest component (in time) was first quantified and substracted from the raw signal by 

applying the first and second procedure respectively. The second procedure, due to the 

small difference in frequency between the components and the large value of the 

amplitude resonance A , took more time to converge (f=6). After substraction of the 

first component from the signal, the second one was quantified by applying only the 

first iterative procedure (Fig. 7C). 

2
*

0

2

 

 In the last example (Fig. 7D), the  resonances were large and had amplitudes and 

 values close to each other. This test is presented to illustrate the capacity of the WT 

method to separate two large resonances as in the 1H MRS signal of alkyl region of the 

plasma lipoprotein. For this example, the frequency difference between the two 

components was large enough so that the first iterative procedure alone gave 

satisfactory quantification of the two resonances. 

T2
*

 

Case of noisy signal :  The low-pass filter was introduced in this test to obtain a 

satisfactory SNR in order that the quantification procedures would remain valid. 

A noise-free signal, containing two components and three similar signals with additive 

complex noise, with noise variance σ n  equal to 200, 300 and 400 respectively, were 

simulated, (Fig. 8A). The injected noise in the signals is white and uniform. The low-

pass filter was first applied on each signal to enhance the SNR with filter time constant 
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T equal to 145 ms, 80 ms and 50 ms respectively (Fig. 8B). Due to the large difference 

between the frequencies of the two components in signals 1 and 2, only the first 

iterative procedure was used to quantify the components. For signals 3 and 4, the 

components became large and overlapped in the frequency domain. To separate them, 

the second iterative procedure was needed. The MRS parameter values of the two 

components were estimated for each signal and given in Table 3. 

 

 The correlation coefficients between reference values of δ, A and T , and the 

corresponding WT estimations were calculated on the 20 simulated resonances : 6 sets 

of data with one resonances (Table 1, Fig. 6), 3 sets of data with two overlapping 

resonances (Table 2, Fig. 7) and 4 sets of data with two resonances and varying noise 

levels (Table 3, Fig. 8). The correlation coefficients are 0.985, 0.999 and 0.989 for A, δ, 

and  respectively. The noise level appeared to be the most disturbing factor, with 

more effect on A and T  than on δ (Fig. 9). 

2
*

T2
*

2
*

 

APPLICATION TO REAL BIOMEDICAL MRS DATA  

 

 In order to further demonstrate the usefulness of the WT method in biomedical 

MRS, a selected example is presented to illustrate the potential of WT. In this example, 

a set of FIDs resulting from a 31P MRS experiment on perfused working smooth 

muscle was considered. The set contains six peaks: PME, Pi, PCr a common reference 

peak at 0 ppm, γ , α  and β -ATP. The 31P MRS was performed at 202.45 MHz on 

Avance DMX500 Spectrometer (Bruker, Wissenbourg, France). FIDs were acquired 

with 14.5 μ sec pulse, 1200 accumulations, a ±  5000 Hz spectral width and 32K data 
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points. A 20 Hz line broadening was applied before processing data to enhance the 

SNR. Fig. 10 shows the corresponding spectrum. 

 The results obtained by WT (Table 4) were compared to those obtained by a 

Bruker Spectral Fitting Method (UXNMR 1D, Bruker) and a time-domain method 

called Variable Projection Method (VARPRO) (21-22). Only the first 1024 FID points 

were processed by both WT and VARPRO, whereas the Spectral Fitting method fit all 

the data points to a lorentzian model. Unlike the other two methods, WT did not require 

baseline or phase corrections before quantification nor any prior knowledge. 

 

CONCLUSION 

 

 A quantification method based on Wavelet Transform analysis has been proposed. 

Described by two iterative procedures and a nonlinear regression analysis algorithm, the 

technique presented is the combination of linear and nonlinear methods. As an 

alternative method to the Fourier Transform, Wavelet Transform appears efficient in 

obtaining accurate estimation of the values of the MRS parameters δ , T , A and 2
* ϕ  of 

each signal component. 

 We clarified the determining role of the apparent relaxation time T  in estimating 

the chemical shift. The first iterative procedure supported by the information obtained 

from the phase of the wavelet signal representation, achieved this operation 

successfully. Extraction of the components from the signal depended on component 

interactions. We have shown that the amplitude ratio and the frequency difference 

between the components determine their degree of interaction. The second iterative 

procedure proposed manipulates the frequency content of the WT by using the wavelet 

properties and reduces the effect of the component interactions. Moreover, by 

2
*
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investigating the FID signal in the time-frequency domain, the main quantification 

problems in biomedical MRS, such as overlapping resonances are addressed. 

 A poor signal-to-noise ratio may hinder this operation, but since, as shown here, 

the MRS parameter values of a previously known number of components of the FID 

signal can be computed, the proposed classical solution is sufficient to reduce noise in 

the data. The use of the quantification procedures remain valid and the changes on the 

apparent relaxation time values due to the application of the low-pass filter are 

recovered. 

 The practical examples presented show that the method is suitable for different 

kinds of FID signals and their specific problems. Results obtained to date demonstrate 

the estimation accuracy of the WT method. Computation time depends on the 

complexity of the signal, on the number of its components and obviously on the 

computer power. Computation time may be reduced if the components do not overlap. 
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APPENDIX 1 

This appendix provides the computation of the integral I = e
(

-t2

2
+ iΔt )

d
α

∞

∫ t . 
α = (

a

T2
* −

b

a
)
. I 

may be written as : 

 

I =  e
(
-t 2

2
+ iΔt )

dt
0

∞

∫ − e
(
-t 2

2
+iΔ t)

dt
0

α

∫ = I1 − I2   ∀α                                                                  [40] 

 

Considering the following rectangle (OABC) : 

y

 x
o

A (-i   )Δ

C (R)

B(R-i   )Δ  

 

Let f(z) be a complex function under the above rectangle, given by, f(z) =  e
−z 2

2
, where 

z=t - i∆ and t runs from 0 to ∞ . I  may be written as : 1

 

I1 = e
−Δ2

2 e
− z 2

2 dz
− iΔ

∞ − iΔ

∫ .                                                                                                      [41] 

 

The function z → e
(
− z 2

2
)

 is analytical on and inside the rectangle OABCO. Using the 

Cauchy theorem, we have : 
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f(z)dz = e
− z 2

2 dz
OA
∫

OABCO
∫ + e

−z 2

2 dz
AB
∫ + e

− z2

2 dz
BC
∫ + e

−z 2

2 dz
CO
∫ = 0                                        [42] 

 

1) On the segment OA of the rectangle, z = -iy, where y runs from 0 to ∆. With respect 

to the sign of ∆ and using the polar co-ordinates (r ∈ 0, 2Δ[ ] , θ  ∈  0, π
2[ ]), the 

function f(z) on OA is given by : 

 

  
e

−z 2

2 dz = −ie
y2

2 dy
0

Δ

∫
OA
∫ ≈ mi

π
2

eΔ2

−1[ ]⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

1
2

                                                                      [43] 

 

2) On the segment AB we have z = x - i∆, x ∈  0, R[ ]. We may write : 

 

e
−z 2

2 dz =
AB
∫ e

−1

2
(x -  iΔ )2

dx
− iΔ

R -iΔ

∫                                                                                              [44] 

 

Eq. [44] is equal to I  up to the term e1

-Δ2

2 . 

3) On BC segment, z = R - iy and y ∈  Δ,  0[ ]. Thus : 

 

e
(

−z 2

2
)

dz
BC
∫ = −i e

-1

2
( R-iy)2

dy
Δ

0

∫ = −ie
-R 2

2 e
(

y2

2
+ iRy)

Δ

0

∫ dy                                                           [45] 

 

Eq. [45] may be overestimated by : 

 

f(z)dz ≤ − i
BC
∫ e

− R2

2 e
y 2

2 dy
Δ

0

∫ .                                                                                            [46] 
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The integral 
e

y2

2 dy
Δ

0

∫
 has a finite value, hence Eq. [46] decrease to zero when R . →  ∞

4) On segment CO, z = x, with x ∈  R, 0[ ]. Using the polar co-ordinates (r ∈ 0, 2Δ[ ], 

θ  ∈  0, π
2[ ]), we obtain : 

 

e
-z2

2 dz
CO
∫ = − e

-x2

2 dx
0

R

∫ ≈ −
π
2

1 − e-R2[ ]
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
2

                                                                     [47] 

 

Eq. [47] approaches 
−

π
2  when R →  ∞ . 

 

Substituting the values of Eqs. [43], [44], [46] and [47] in Eq. [42], we obtain : 

 

I1 ≈

π
2

e
− Δ2

2 1+ i eΔ2

−1
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  if Δ > 0

π
2

e
− Δ2

2 1− i eΔ 2

−1
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  if Δ < 0

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ 
⎪ 

⎭ 
⎪ 
⎪ 

                                                                       [48] 

 

For I2 equal to 
I2 = e

-t 2

2 eiΔtdt
0

α

∫
, we use the Taylor series expansion of the term e

iΔt
. 

 

I2 =
(iΔt)k

k!k = 0

∞

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

0

α

∫ e
-t2

2 dt =
(iΔ)k

k!k =0

∞

∑ tk e
-t 2

2 dt
0

α

∫ =
(iΔ)k

k!k= 0

∞

∑ Uk                                            [49] 

 

where 
U k = tke

-t 2

2 dt
0

α

∫
. If k = 0, using the polar co-ordinates, it is shown that :  
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U 0 = e
-t 2

2 dt ≈
0

α

∫

π
2

1 − e-α 2

 if α >  0

− π
2

1 − e-α2

 if α <  0

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ 
⎪ 
⎪ 
⎭ 
⎪ 

   

 

If k = 1, by using changing variables, we obtain : 

U1 = te
-t 2

2 dt
0

α

∫ = 1− e
-α 2

2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
.  

The general term for this series for k ≥  2, is given by : 

 

U k = tke
-t 2

2 dt
0

α

∫ = − tk -1(e
-t2

2 )′ dt
0

α

∫ = −α k-1e
-α 2

2 + (k -1) tk-2e
-t 2

2 dt
0

α

∫  

 

     = −α k-1e
-α 2

2 + (k -1)U k-2                                                                                          [50] 

 

The series 

(iΔ)k

k!k=0

∞

∑ Uk

 is recurrent and convergent. Combining Eqs. [40], [48], and [49], 

I is approximated to : 

 

I ≈  
π
2

e
-Δ2

2 (1 ± i eΔ2

−1)
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ −

(iΔ)k

k!k= 0

∞

∑ U k  ∀α                                                           [51] 

 

Eq. [51] may be described by : I = [B + iC], where B is : 

 

  
B =

π
2

e
-Δ2

2 m π
2

1− e-α2

−
(iΔ)k

k!k= 2

∞

∑ U k        (k pair)                                                 [52] 
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and 

 

C = ±
π
2

e
-Δ2

2 ( eΔ2

−1) − Δ(1 − e
-α 2

2 ) −
(iΔ)k

k!k =2

∞

∑ U k        (k odd)                                  [53] 

 

The signs    are conditioned by the signs of m and ± α and Δ  respectively. 

Note that the term C is null, if ∆ = 0. If we restrict k = 1, B and C become : 

 

  2
B =

π
e

-Δ2

2 m π
2

1− e-α2

 and 
C = ±

π
2

e
-Δ2

2 ( eΔ2

−1) − Δ(1 − e
-α 2

2 )
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APPENDIX 2 

 

In this appendix we investigate the term 

d(Arctg(
C
B

))

db . If we restrict the series U  to its 

first two terms (k = 1), we obtain : 

k

 

  

Arctg(
C

B
) =  Arctg

± π
2

e
-Δ 2

2 ( eΔ2

−1) − Δ(1 − e
-α 2

2 )

π
2

e
-Δ2

2 m π
2

1 -  e-α2

 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

                                               [54] 

 

Writing 

d(Arctg(
C
B

))

db  as a function of α , (
α =

a

T2* −
b

a ), we obtain : 

 

d(Arctg(
C
B

))

db
=

e
-α 2

2 Δ
a

αB −  C ± 1
a

π
2

αe
-α2

2 1 − e−α 2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

B2 + C2                                          [55] 

 

The denominator of Eq. [55] is different from zero. 

The term 

Δ
a

αB −  C ±
1

a

π
2

αe
-α 2

2 1− e− α2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 has a finite value, it becomes equal to 

zero if ∆ = 0. The numerator of Eq. [55] approaches zero if the value of α  becomes 

larger. For a large value of b noted b , the factor er

(
-α 2

2
)

  is negligible for b > b  which 

implies that the function in Eq. [55] decreases to zero. 

r
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