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Zernike polynomials have been widely used to describe the aberrations in wave-front 

sensing of the eye. The Zernike coefficients are often computed under different 

aperture sizes. For the sake of comparison, the same aperture diameter is required. 

Since no standard aperture size is available for reporting the results, it is important to 

develop a technique for converting the Zernike coefficients obtained from one 

aperture size to another size. In this paper, by investigating the properties of Zernike 

polynomials, we propose a general method for establishing the relationship between 

two sets of Zernike coefficients computed with different aperture sizes. 

 

OCIS codes: 330.4460, 220.1010, 000.3870 

 

1. Introduction 

In the past decades, interest in wave-front sensing of the human eye has increased 

rapidly in the field of ophthalmic optics. Several techniques have been developed for 

measuring the aberrations of the eye.1, 2 In general, these techniques typically 

represent the aberrations as a wave-front error map at the corneal or pupil plane. 

Zernike polynomials, due to their properties such as orthogonality and rotational 

invariance, have been extensively used for fitting corneal surfaces.3-6 Moreover, the 

lower terms of the Zernike polynomial expansion can be related to known types of 

aberrations such as defocus, astigmatism, coma, and spherical aberration.7 When the 

Zernike coefficients are computed, an aperture radius describing the circular area in 

which the Zernike polynomials are defined must be specified. Such a specification is 
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usually affected by the measurement conditions and by variation in natural aperture 

size across the human population. Since the Zernike coefficients are often obtained 

under different aperture sizes, the values of the expansion coefficients can not be 

directly compared. Unfortunately, this type of comparison is exactly what needs to be 

done in repeatability and epidemiological studies. To solve this problem, a technique 

for converting a set of Zernike coefficients from one aperture size to another is 

required. 

   Recently, Schwiegerling8 proposed a method to derive the relationship between 

the sets of Zernike coefficients for two different aperture sizes, but he did not provide 

a full demonstration for his results. Campbell9 developed an algorithm based on 

matrix representation to find a new set of Zernike coefficients from an original set 

when the aperture size is changed. The advantage of Campbell’s method is its easy 

implementation. In this paper, by investigating the properties of Zernike polynomials, 

we present a general method for establishing the relationship between two sets of 

Zernike coefficients computed with different aperture sizes. An explicit and rigorous 

demonstration of the method is given in detail. It is shown that the results derived 

from the proposed method are much more simple than those obtained by 

Schwiegerling, and moreover, our method can be easily implemented. 

 

2. Background 

Zernike polynomials have been successfully used in many scientific research fields 

such as image analysis,10 pattern recognition,11 astronomical telescope.12 Some 
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efficient algorithms for fast computation of Zernike moments defined by Eq. (7) 

below have also been reported.13-15 Recently, Zernike polynomials have been applied 

to describe the aberrations in the human eye.1 There are several different 

representations of Zernike polynomials in the literature. We adopt standard OSA 

notation. The Zernike polynomial of order n with index m describing the azimuthal 

frequency of the azimuthal component is defined as 
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Here δm, 0 is the Kronecker symbol. 

   Eqs. (2) and (3) show that both the radial polynomial  and the 

normalization factor  are symmetric about m, i.e., , 
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   Since the Zernike polynomials are orthogonal over the unit circle, the polar 

coordinates (r, θ) must be scaled to the normalized polar coordinates (ρ, θ) by setting 

ρ = r/rmax, where rmax denotes the maximum radial extent of the wave-front error 

surface. The wave-front error, W(r, θ), can thus be represented by a finite set of the 

Zernike polynomials as 

                                        (6) ∑∑
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where N denotes the maximum order used in the representation, and an, m are the 

Zernike coefficients given by 
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   The above equation shows clearly that the coefficients an, m depend on the choice 

of rmax. This dependence makes it difficult to compare two wave-front error measures 

obtained under different aperture sizes. To surmount this difficulty, it is necessary to 

develop a method that is capable to compute the Zernike coefficients for a given 

aperture size r2 based on the expansion coefficients for a different aperture size r1. 

Without loss of generality, we assume that r1 takes value 1, and the problem can be 

formulated as follows. 

   Assume that the wave-front error can be expressed as 
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where the coefficients an, m are known. The same wave-front error must be represented 

as 

 5

H
A

L author m
anuscript    inserm

-00130041, version 1



                                          (9) ∑∑
=

=
N

n m

m
nmn rZbrW

0
, ),(),( θλθ

where λ is a parameter taking positive value. We need to find the coefficient 

conversion relationships between two sets of coefficients {bn, m} and {an, m}. 

           

3. Methods and Results 

In this section, we propose a general method that allows a new set of Zernike 

coefficients {bn, m} corresponding to an arbitrary aperture size to be found from an 

original set of coefficients {an, m}. As indicated by Schwiegerling,8 the new 

coefficients bn, m depend only on the coefficients an, m that have the same azimuthal 

frequency m. Thus, we consider a subset of terms in Eq. (8) all of which have the 

same azimuthal frequency m 
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Similarly, the subset of terms in Eq. (9) with the same azimuthal frequency m can be 

expressed as 
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By equating (10) and (12), the sine and cosine dependence immediately cancels, and 
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this leads to the following relation 
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be treated in a similar manner. Let 
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Eq. (13) can be rewritten as 
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    In order to solve Eq. (15), we will use the following basic results. 

Lemma 1. Let a function f(r) be expressed as 
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from which CK = (cn, k), with 0 ≤ k ≤ n ≤ K, is a (K + 1) × (K + 1) lower triangular 

matrix, and DK = (dn, k) is the inverse matrix of CK. 

The proof of Lemma 1 is deferred to Appendix A. 

We are interested in a special case of Lemma 1 for which each polynomial order n 

can be expressed as n = m + qk where m and q are given positive integers, k = 0, 1, …, 

K. The corresponding result is described in the following corollary. 
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Corollary. Given the positive integer numbers m, q and K, let  be a set of 

polynomials defined as 
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from which ( )m
ji

m
K dD ,=  is the inverse matrix of ( )m

ji
m
K cC ,= , both matrices are (K+1) 

× (K+1) lower triangle matrix. 

   Both Lemma 1 and Corollary are valid for any type of polynomials. In order to 

apply them, an essential step consists of finding the inverse matrix DK or  when 

the original matrix C

m
KD

K or  is known. For the purpose of the paper, we are 

particularly interested in the use of Zernike polynomials. For the radial polynomials 

 defined by Eq. (4), we have the following proposition. 
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Proposition 1. For the lower triangular matrix  whose elements  are defined 
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The proof of Proposition 1 is deferred to Appendix A. 

   For the normalized radial polynomials )(2 rR m
km+  defined by Eq. (14), it can be 

rewritten as 
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Since the normalization factor  depends only on m and k, by using the 

Proposition 1, we can easily derive the following result without proof. 
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   We are now ready to establish the relationship between the two set of Zernike 

coefficients {bm, m, bm+2, m, bm+4, m, …, bm+2K, m} and {am, m, am+2, m, am+4, m, …, am+2K, m} 

appeared in Eq. (13). Applying Corollary to the normalized radial polynomials 
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for i = k +1, k +2, …, K, (27) 

   The relationship established in Theorem 1 is explicit, and the coefficient bm+2k, m 

depends only on the set of coefficients {am+2k, m, am+2(k+1), m, …, am+2K, m}, thus, it is 

more simple than that given by Schwiegerling.8 Note also that even though the above 

results were demonstrated for the case m ≥ 0, they remain valid for m < 0 due to the 

symmetry property of the radial polynomials  about m. )(rRm
n

   Table 1 shows the conversion relationship between the coefficients bn, m and an, m 

for Zernike polynomial expansions up to 45 terms (up to order 8). The results are the 

same as those given by Schwiegerling8 except for b1, m. 

   As correctly indicated by Schwiegerling,8 an interesting feature can be observed 

from Table 1: For a given radial polynomial order n, the conversion from the original 

to new coefficients have the same form regardless of the azimuthal frequency m. This 

can be demonstrated as follows. 
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expansion of bm+2k, m given by Eq. (26), and C(m+2l, k–l, i–l) be the coefficient of 

am+2i, m+2l in the expansion of bm+2k, m+2l where l is an integer number less than or equal 

to k, then we have 
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Comparing Eqs. (27) and (29), we obtain the result of theorem.                 � 

   Another interesting feature was also observed which is summarized in the 

following theorem. 

Theorem 3. For a fixed value of N, let KmKmN ′+′=+= 22 , from Theorem 1, we 
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Similarly, 
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Comparison of Eqs. (33) and (34) shows that Eq. (32) is valid.                  � 

   Table 2 shows the case of N = m + 2K = 7 for different values of m and K. 

 

4. Conclusion 

We have developed a method that is suitable to determine a new set of Zernike 

coefficients from an original set when the aperture size is changed. An explicit and 

rigorous demonstration of the proposed approach was given, and some useful features 

have been observed and proved. The new algorithm allows a fair comparison of 

aberrations, described in terms of Zernike expansion coefficients that were computed 

with different aperture sizes. The proposed method is simple, and can be easily 

implemented. 

Note that the formulae derived in this paper are mathematically correct for all 

values of λ = r1/r2 where r1 and r2 represent the original and new aperture sizes. But 

for application purpose, it is still recommended to make r2 less than r1. In the case 

where r2 is greater than r1, the wave-front error data must be extrapolated outside the 

region of the original fit. It is worth mentioning that such a process could produce 

erroneous results since the Zernike polynomials are no longer orthogonal in this 

region and they have high-frequency variations in the peripheries.8  
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Appendix A 

 

Proof of Lemma 1. Eq. (16) can be expressed in matrix form as 

              (A1) ( ) ( )
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⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)(

)(
)(
)(

,...,,,

)(

)(
)(
)(

,...,,,)( 2

1

0

2102

1

0

210

rP

rP
rP
rP

bbbb

rP

rP
rP
rP

aaaarf

K

K

K

K

λ

λ
λ
λ

Using Eq. (17), we have 
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Substitution of Eqs. (A2) and (A3) into (A1) yields 

    ( )    (A4) ( )
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⎟
⎟
⎟
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2
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λλλ        (A5) 
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Eq. (18) can be easily obtained by expanding Eq. (A5).                       � 

 

Proof of Proposition 1. To prove the proposition, we need to demonstrate the 

following relation 

     ,  0 ≤ l ≤ k ≤ K                         (A6) lk

k

ls

m
ls

m
sk dc ,,, δ=∑

=

For k = l, by using Eqs. (5) and (22), we have 

    1
)!12(

)!(!)12(
)!(!
)!2(

,, =
++

+++
×

+
+

=
km

kmkkm
kmk
kmdc m

kk
m

kk               (A7) 

For l < k, we have 

    

∑

∑∑

=

=

−

=

++−=

+++−−
++++−

=

k
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k

k

ls

skk
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m
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m
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lsmskls
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                 (A8) 

where 

    
)!1()!()!(

)!()1(),,,(
+++−−

++−
=

lsmskls
skmslkmF

s

                     (A9) 

Let 

    
)1)((

))(1(
)!()!1()!(

)!()1(),,,(
1

+++−
−−+

++−+−
++−

=
+

lkmlk
lssk

slmskls
skmslkmG

s

     (A10) 

it can be easily verified that 

   ),,,()1,,,(),,,( slkmGslkmGslkmF −+=                      (A11) 

thus 

[ ] 0),,,()1,,,(),,,()1,,,(),,,( =−+=−+=∑∑
==

llkmGklkmGslkmGslkmGslkmF
k

ls

k

ls
 

(A12) 
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We deduce from Eq. (A8) that 

       for l < k.                               (A13) 0,, =∑
=

k

ls

m
ls

m
sk dc

The proof is now complete.                                             � 

Note that the proof of Proposition 1 was inspired by a technique proposed by 

Zeilberger.16 
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Table 1. Coefficient conversion relationships for Zernike polynomial expansions up to 

order 8 

n m New expansion coefficients bn, m

0 0 
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Table 2. Coefficient conversion relationships for different values of m and K where N 

= m + 2K = 7 

m K New expansion coefficients bn, m

5 1 
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1 ab
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