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Zernike polynomials have been widely used to describe the aberrations in wave-front
sensing of the eye. The Zernike coefficients are often computed under different
aperture sizes. For the sake of comparison, the same aperture diameter is required.
Since no standard aperture size is available for reporting the results, it is important to
develop a technique for converting the Zernike coefficients obtained from one
aperture size to another size. In this paper, by investigating the properties of Zernike
polynomials, we propose a general method for establishing the relationship between

two sets of Zernike coefficients computed with different aperture sizes.

OCIS codes: 330.4460, 220.1010, 000.3870

1. Introduction

In the past decades, interest in wave-front sensing of the human eye has increased
rapidly in the field of ophthalmic optics. Several technigues have been developed for
measuring the aberrations of the eye.™ 2 In general, these techniques typically
represent the aberrations as a wave-front error map at the corneal or pupil plane.
Zernike polynomials, due to their properties such as orthogonality and rotational
invariance, have been extensively used for fitting corneal surfaces.>® Moreover, the
lower terms of the Zernike polynomial expansion can be related to known types of
aberrations such as defocus, astigmatism, coma, and spherical aberration.” When the
Zernike coefficients are computed, an aperture radius describing the circular area in

which the Zernike polynomials are defined must be specified. Such a specification is
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usually affected by the measurement conditions and by variation in natural aperture
size across the human population. Since the Zernike coefficients are often obtained
under different aperture sizes, the values of the expansion coefficients can not be
directly compared. Unfortunately, this type of comparison is exactly what needs to be
done in repeatability and epidemiological studies. To solve this problem, a technique
for converting a set of Zernike coefficients from one aperture size to another is
required.

Recently, Schwiegerling® proposed a method to derive the relationship between
the sets of Zernike coefficients for two different aperture sizes, but he did not provide
a full demonstration for his results. Campbell® developed an algorithm based on
matrix representation to find a new set of Zernike coefficients from an original set
when the aperture size is changed. The advantage of Campbell’s method is its easy
implementation. In this paper, by investigating the properties of Zernike polynomials,
we present a general method for establishing the relationship between two sets of
Zernike coefficients computed with different aperture sizes. An explicit and rigorous
demonstration of the method is given in detail. It is shown that the results derived
from the proposed method are much more simple than those obtained by

Schwiegerling, and moreover, our method can be easily implemented.

2. Background
Zernike polynomials have been successfully used in many scientific research fields

such as image analysis,'® pattern recognition,™* astronomical telescope.** Some
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efficient algorithms for fast computation of Zernike moments defined by Eq. (7)
below have also been reported.”*** Recently, Zernike polynomials have been applied
to describe the aberrations in the human eye.! There are several different
representations of Zernike polynomials in the literature. We adopt standard OSA
notation. The Zernike polynomial of order n with index m describing the azimuthal

frequency of the azimuthal component is defined as

N R (p)cos(m@) form=>0
Z(p.6) = _ , Il <, n—{m| even (1)
- N;"R;" (p)sin(m@) form <0
where the radial polynomial R;"(p) is given by
N (n-{m})/2 ~1)*(n—s)! o
RIp)= D ca 9 P @

= S(n+|m/2-s]'[(n—|m])/2-s]!

and N, is the normalization factor given by

NP = 2(n+1)
1+0,,

®3)
Here Jn o is the Kronecker symbol.

Egs. (2) and (3) show that both the radial polynomial R;"(p) and the
normalization factor N are symmetric about m, i.e., R"(p)=R,"(p),N; =N_",

for m > 0. Thus, for the study of these polynomials, we can only consider the case

where m > 0. Let n =m + 2k with k > 0, Eq. (2) can be rewritten as

( 1) (m+2k S) m+2k-2s

m+2k(p) ZOS' m+k—s)
k—s
Z( L) (m+ K+9)! ™% (makingthechangeof variables’'=k —s)  (4)
= sk —sh(m+ s)
:Zcmspmﬁs
s=0
where
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(m+k+s)
k—sh(m+s)

=T (5)

Since the Zernike polynomials are orthogonal over the unit circle, the polar
coordinates (r, €) must be scaled to the normalized polar coordinates (o, €) by setting
£ = Irmax, Where rpa denotes the maximum radial extent of the wave-front error
surface. The wave-front error, W(r, 6), can thus be represented by a finite set of the

Zernike polynomials as

W(L0) =Y S a,, 20 (r /n,...0 ©

n=0 m

where N denotes the maximum order used in the representation, and a, n are the
Zernike coefficients given by
By = [ [ 20 (0 OW(r, O)rdrde W
The above equation shows clearly that the coefficients a, » depend on the choice
of rmax. This dependence makes it difficult to compare two wave-front error measures
obtained under different aperture sizes. To surmount this difficulty, it is necessary to
develop a method that is capable to compute the Zernike coefficients for a given
aperture size r, based on the expansion coefficients for a different aperture size r;.
Without loss of generality, we assume that r; takes value 1, and the problem can be
formulated as follows.

Assume that the wave-front error can be expressed as

W)=Y Y a,.27(r.0) ®

n=0 m
where the coefficients a, m are known. The same wave-front error must be represented

as
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W(r,0)= 3 b,, 20 (2r.0) ©

n=0 m
where A is a parameter taking positive value. We need to find the coefficient

conversion relationships between two sets of coefficients {bn, m} and {a, m}-

3. Methods and Results

In this section, we propose a general method that allows a new set of Zernike
coefficients {b, m} corresponding to an arbitrary aperture size to be found from an
original set of coefficients {a, m}. As indicated by Schwiegerling® the new
coefficients bn, n depend only on the coefficients a, n, that have the same azimuthal
frequency m. Thus, we consider a subset of terms in Eq. (8) all of which have the

same azimuthal frequency m

(iamzk,m m+2k m+2k (r)JCOS(mQ), form>0
W, (r,6) = 1)

K
(Z a—m+2k m m+2k m+2k (r)Jsm(m 9) fOf m < 0
k=0

where K is given by

{(N —|m[)/2,  if N and m have the same parity )

) (N -1-|m|)/2, otherwise
Similarly, the subset of terms in Eq. (9) with the same azimuthal frequency m can be

expressed as

K
(z bm+2k m m+2k m+2k (ﬂ,r))COS(m 0) fOI" m= 0

k=0

W, (r,0) = (12)

K
(Z b—m+2k,m m+2k m+2k (ﬂ’r)jsm(m 9) for m< 0

By equating (10) and (12), the sine and cosine dependence immediately cancels, and
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this leads to the following relation

K
me+2k m m+2k m+2k (/ﬂ“’) Z am+2k m N m+2k m+2k (r) (13)

k=0
Note that we have taken into account only the case of m > 0; the case where m < 0 can

be treated in a similar manner. Let

m+2k (r) - m+2k m+2k (r) (14)

Eq. (13) can be rewritten as

K
me+2k m m+2k (ﬂ,l’) Zam+2k m m+2k (r) (15)

k=0
In order to solve Eqg. (15), we will use the following basic results.

Lemma 1. Let a function f(r) be expressed as
K K
f(r) =Y a,P,(r) =>_b,P, (4r) (16)
n=0 n=0
where Py(r) is a polynomial of order n given by

P.(r)=> ¢, r*, with ¢, n =0, (17)

k=0
then we have

: andkl

1 K Py ._
bi=E|:ai+Z(Z = jan]u-o,l,z,...,K (18)

n=i+1\_ k=i

from which Cx = (C, k), with 0 <k <n <K, isa (K + 1) x (K + 1) lower triangular
matrix, and Dk = (d, k) is the inverse matrix of Cg.

The proof of Lemma 1 is deferred to Appendix A.

We are interested in a special case of Lemma 1 for which each polynomial order n
can be expressed as n = m + gk where m and q are given positive integers, k=0, 1, ...,

K. The corresponding result is described in the following corollary.

7
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Corollary. Given the positive integer numbers m, q and K, let P"(r) be a set of

polynomials defined as

P"(r) =P (r) = }:cks rm® . k=0,1,2,...,K (19)

s=0

Let f(r) be a function that can be represented as

f (r) = Za‘mmk m m+qk (r) meJqu m m+qk (ﬁ’r) (20)

then we have

1 CI d k
bm+qk = ﬂm+qk |: m-+qk + z (Z /»L(JJ kl)q J m+ql’ k= 0 1, 2 K (21)

i=k+1\ j=k
from which D} = (d.”‘.) is the inverse matrix of C;' = (c{j‘j ) both matrices are (K+1)

]

x (K+1) lower triangle matrix.

Both Lemma 1 and Corollary are valid for any type of polynomials. In order to
apply them, an essential step consists of finding the inverse matrix Dx or D; when
the original matrix Cx or C. is known. For the purpose of the paper, we are
particularly interested in the use of Zernike polynomials. For the radial polynomials

Ry, (r) defined by Eq. (4), we have the following proposition.

Proposition 1. For the lower triangular matrix C; whose elements c,’; are defined

by Eg. (5), the elements of the inverse matrix Dy are given as follows

qr - (m+2s+2)k!I(m+k)!

“ 7 (k—s)I(m+k+s+1)! (22)

The proof of Proposition 1 is deferred to Appendix A.
For the normalized radial polynomials Rrn+2k (r) defined by Eqg. (14), it can be

rewritten as
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2(m+2k +1 K pmezs
m+2k (r) m+2k m+2k() ( )Rm+2k z ? (23)
1+0,, 0
en _ [2(m+2k+1) o - 2(m+ 2k +1) m+k+s)| (24)
“ 1+68,, 1+65,, Sik—sh(m+s)

Since the normalization factor N

m+2k

where

depends only on m and k, by using the

Proposition 1, we can easily derive the following result without proof.

Proposition 2. For the lower triangular matrix C, whose elements ¢, are

defined by Eq. (24), the elements of the inverse matrix D, are given as follows

an o [ 1O g _ \/(1+6mo)(m+2s+1> Ki(m + K)! 5)
' 2(m+2s+1) 2 (k=s)I(m+k+s+1)!

We are now ready to establish the relationship between the two set of Zernike

coefficients {bm ms bm+2, ms bm+4, My =eny bm+2K, m} and {am,m, dAm+2, my Am+4, my -+, Am+2K, m}
appeared in Eq. (13). Applying Corollary to the normalized radial polynomials

(r) with g =2 and using Egs. (24) and (25), we have

m+2k
Theorem 1. For given integers m and K, and real positive number A, let {bm m, bm+2, m,
Pm+a my .-y Dmiok m} and {am, m, @m+2, m» @m+a, m, ..., Ams2k, m} D€ two sets of Zernike

coefficients corresponding to the aperture sizes 1 and A, respectively, we have

1 I CI d k
bm+2k,m = Tomi2k m+2k m + Z Z zj(J Jk) m+2i,m
/1 i=k+1\ j=k l —
k=01, ..., K, (26)

1 —
:W am+?_km + Zc(m k I)aerZIm]

i=k+1

where

(=) (m+i+j)!
22070 G NG — k)Y M+ j+k +1)!

C(m,k,i) = /(m+2i +1)(m + 2k +1)2
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fori=k+1,k+2, ..., K, (27)

The relationship established in Theorem 1 is explicit, and the coefficient bk m
depends only on the set of coefficients {am+ak, m, @m+2c+1), my .-+, 8m2k, m}, thus, it is
more simple than that given by Schwiegerling.® Note also that even though the above
results were demonstrated for the case m > 0, they remain valid for m < 0 due to the
symmetry property of the radial polynomials R (r) about m.

Table 1 shows the conversion relationship between the coefficients b, m and an m
for Zernike polynomial expansions up to 45 terms (up to order 8). The results are the
same as those given by Schwiegerling® except for by .

As correctly indicated by Schwiegerling,® an interesting feature can be observed
from Table 1: For a given radial polynomial order n, the conversion from the original
to new coefficients have the same form regardless of the azimuthal frequency m. This
can be demonstrated as follows.

Theorem 2. Let C(m, k, i) defined by Eq. (27) be the coefficient of ami m in the
expansion of by.ok m given by Eq. (26), and C(m+2l, k-I, i-l) be the coefficient of
am+2i, m+21 IN the expansion of b2k m+21 Where | is an integer number less than or equal
to k, then we have

C(m,k,i)=C(m+2lL,k-1,i—1) (28)

Proof. From Eq. (27), we have
C(m+2L,k—-1i-I)

B . cL(-pt (Mm+1+i+j)!
‘J(m”'”)(m”k”)jzk‘:. I G i -k +ima i+ ke &

) _ (=) (m+i+ j)!
—J(m+2|+1)(m+2k+1)jZMzuk) (- )(j—K)m+ j+k+1)!

10



1duosnuew Joyine vH

5
)
)
=
3
o
o
|_\
w
o
o
=
=
<
()
-
v,
o
S
|_\

Comparing Egs. (27) and (29), we obtain the result of theorem. 0
Another interesting feature was also observed which is summarized in the

following theorem.

Theorem 3. For a fixed value of N, let N =m+ 2K =m’+2K’, from Theorem 1, we

have

1 K .
bm+2(K—I),m = W|:am+2(K—l),m + ZC(m, K- Iyl)am+2i,mj|

i=K-1+1

. o , 1=01..,K (30)
= W[amﬂ(K—l),m + Z;,C(m' K-1Li+K-I +1)aN+2i—2|+2,m}
and
1 K .
bm'+2(K'—I),m :W[amurz(w-l),m' +_ Zc(m’, K’_Ill)am'+2i,m':|
. 3 K , 1=01,..K'(31)
= W[am'+2(K’—l),m’ + ;C(m" K'—1Li+K'-I +1)aN+2i—2I+2|m’:|
then
CmK-Li+K-I+)=C(m',K'=Li+K'=1+1) (32)
for i=01...,1-1,1=01,...,min(K,K")
Proof. From Eq. (27), we have
C(mK-Li+K-1+1)
= J(M+2i + 2K — 2 + 3)(m + 2K — 2| +1)
i+K=1+1 (_ q)i+K+1-1-j . _ . I
y Z (-1 (m+i+K-=1+j+1! (33)

S AU i+ K=+ 1= PG -K+DY(m+ j+ K =1 +1)!

i - - i+1 (_1)i+1—J' (N+i-2l+j+D)!
= J(N+2i—21+3)(N 2|+1)JZ_(; A5 i+1= )N+ -1+

Similarly,

11
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C(m, K'=1Li+K'=1+1)
= (M +2i + 2K’ =21 + 3)(m + 2K ' - 2 +1)

y ‘*KZ":'” (—1)i_+K'+1"‘j (M +i+K' =+ j+1)! (34)
TR K - (- K+ Dm K 1+ D)!

) - — i+1 (_1)i+1*i (N+i-21+ j+1)!
=J(N +2i - 21 +3)(N 2|+1)§ 2 41— DN+ j—1+1)

Comparison of Egs. (33) and (34) shows that Eq. (32) is valid. 0

Table 2 shows the case of N = m + 2K = 7 for different values of m and K.

4. Conclusion

We have developed a method that is suitable to determine a new set of Zernike
coefficients from an original set when the aperture size is changed. An explicit and
rigorous demonstration of the proposed approach was given, and some useful features
have been observed and proved. The new algorithm allows a fair comparison of
aberrations, described in terms of Zernike expansion coefficients that were computed
with different aperture sizes. The proposed method is simple, and can be easily
implemented.

Note that the formulae derived in this paper are mathematically correct for all
values of A4 = ri/r, where ry and r;, represent the original and new aperture sizes. But
for application purpose, it is still recommended to make r, less than r;. In the case
where r; is greater than ry, the wave-front error data must be extrapolated outside the
region of the original fit. It is worth mentioning that such a process could produce
erroneous results since the Zernike polynomials are no longer orthogonal in this

region and they have high-frequency variations in the peripheries.?

12



Appendix A

I-;E Proof of Lemma 1. Eq. (16) can be expressed in matrix form as
QD
§ (1) Py (4r)
= R.(r) P, (4r)
% f(r)=(a,,a,,a,,..,a, ) P,(r) |=(by,b,,b,,....b, )} P,(Ar) (A1)
% : :
> Py (r) P (4r)
=J
(72}
3 Using Eq. (17), we have
3
E R (r) 1
B R(1) r
] P,(r) [=Cy|r’ (A2)
S : :
- PK (r) r K
and
Py (4r) 1 1
P, (4r) Ar r
P,(Ar) |=C,| A°r* |=C,diag(, A, 4%,...,A")| r? (A3)
Py (4r) AKrK rK

Substitution of Egs. (A2) and (A3) into (Al) yields

(ay,8,,8,,...,a, )Cy | r* |=(0,,b,,b,,....b )C diag(L, A, 22,..., AX)| r? (A4)

thus

(by,by,b, ... b ) = (85, 8,,8, ..., 2 )C (diag (L, 2, 22,..., 2¥)) " C ¢

(AS5)
=(ay,a,,8,,..,a, JCcdiag(L, A", 172,..,A7™)Dy

13
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Eq. (18) can be easily obtained by expanding Eq. (A5). O

Proof of Proposition 1. To prove the proposition, we need to demonstrate the

following relation

k

Y ocpddi =6, 0<I<k<K (A6)
s=I

For k = 1, by using Egs. (5) and (22), we have

m_ (m+2k)! y (m+ 2k +DK!(m + k)! _

Ckk k,k — (A7)
S kI (m+k)! (m+2k +1)!
For | <k, we have
k D (m+2l+D(m+k +5s)!
;C“ ! Z (s—1)I(k - s)'(m+s+|+1)' A8)
=(—1)k(m+2l+1)ZF(m,k,I,s)
where
F(m.K.1s) = -D°(m+k+s)! (A9)
T (s=DI(k=s)(m+s+1+1)!
Let
G(m.k.I,s) = (=D (Mm+kK +s)! (k+1-s)(s-1) (A10)
(s—=DWk+1=s)(m+1+s)I(k=D(m+k+I1+1)
it can be easily verified that
F(m,k,I,s) =G(m,k,I,s+1) —G(m,k,I,s) (Al1)

thus
Zk:F(m,k,I,s) =Zk:[G(m,k,I,s+1)—G(m,k,l,s)]=G(m,k,I,k+1)—G(m,k,|,|)=O

(Al12)

14
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We deduce from Eq. (A8) that

M~

c,d, =0 forl<k. (A13)

7]
]

The proof is now complete. O
Note that the proof of Proposition 1 was inspired by a technique proposed by

Zeilberger.'®
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Table 1. Coefficient conversion relationships for Zernike polynomial expansions up to

order 8
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Table 2. Coefficient conversion relationships for different values of m and K where N

=m+2K=7
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