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SUMMARY. Cognition is not directly measurable. It is assessed using psy-
chometric tests which can be viewed as quantitative measures of cognition
with error. The aim of this paper is to propose a model to describe the evolu-
tion in continuous time of unobserved cognition in the elderly and assess the
impact of covariates directly on it. The latent cognitive process is defined us-
ing a linear mixed model including a Brownian motion and time-dependent
covariates. The observed psychometric tests are considered as the results
of parametrized nonlinear transformations of it at discrete occasions. Esti-
mation of the parameters contained both in the transformations and in the
linear mixed model is achieved by maximizing the observed likelihood and

graphical methods are performed to assess the goodness-of-fit of the model.
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The method is applied to data from PAQUID, a French prospective cohort

study of ageing.

KEY WORDs: Cognitive ageing; Mixed model; Multiple outcomes; Random

effects

1. Introduction

In cognitive ageing studies, cognition is generally evaluated through a battery
of psychometric tests which are quantitative measures of various dimensions
of cognition. Describing cognitive evolution and assessing the impact of co-
variates on this evolution is an interesting approach to help to understand
the process of cognitive ageing. As the various psychometric tests are highly
correlated, multivariate longitudinal analyses of several psychometric tests
are often performed using multivariate linear mixed models (Sliwinski et al.,
2003; Harvey et al., 2003; Hall et al., 2001). These models highlight both
the differences in the shapes of evolution for each dimension and the strong
correlation between the dimensions.

The idea of a latent cognitive process explaining the cognitive decline in
the elderly is hypothesized in neuropsychology. This latent cognitive process
can be viewed as a common cognitive factor across all the psychometric tests
(Fabrigoule et al., 1998; Salthouse et al., 1996) and is supposed to be a better
predictor of dementia and cognitive decline. As a consequence, it would be of
substantial interest to focus the analysis on this latent process by describing
its evolution and evaluating the impact of covariates directly on it.

In a cross-sectional framework, Sammel and Ryan (1996) proposed a la-
tent variable model in which covariates could affect directly the latent vari-

able, and the multiple outcomes were assumed to be measures of the un-
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derlying latent variable with error. In a longitudinal framework, Gray and
Brookmeyer (1998) proposed a marginal regression model, with estimation
via Generalized Estimating Equations, to assess an overall treatment effect on
several continuous and repeated outcomes. Roy and Lin (2000) also extended
the linear latent variable model of Sammel and Ryan (1996) to repeated mul-
tivariate data. In practice, the assumption of a linear relationship between
the outcomes and a Gaussian latent variable is frequently too strong, because
the psychometric tests often have non Gaussian distributions due to different
metrological properties and different behaviours with ageing (Amieva et al.,
2005; Hall et al., 2001). For instance, some tests may be more sensitive to
changes at high levels of cognition than at low levels of cognition, while others
may have the same sensitivity at high and low levels of cognition. Thus, we
propose to introduce parametrized flexible nonlinear transformations to link
the quantitative tests with the latent process. The latent process is defined
in continuous time by a linear mixed model including a Brownian motion,
and nonlinear transformations of the psychometric tests are noisy measures
of the latent process at discrete occasions, the shapes of the estimated non-
linear transformations giving information on the metrological properties of
each test.

This extension of mixed models to latent variable models is related to
Structural Equation Models (SEM), mainly developed in psychometrics, since
in both approaches the quantity of interest can not be measured directly and
is evaluated instead by a set of outcomes or items (Rabe-Hesketh et al.,
2004; Dunson, 2003; Muthén, 2002). Thus the formulation of the model

has two components, a measurement model which links the latent variables



1duosnuew Joyine yH

=
0
1]
=
2
(]
o
s
W
(=]
o
B
o
<
1]
=
@,
o
=
[EEY

with the observations, and a structural model which explains the latent vari-
able structure. In the last decade, there have been major improvements in
SEM (Sanchez et al., 2005). These include (i) to handle clustered or re-
peated data (Skrondal and Rabe-Hesketh, 2004; Rabe-Hesketh et al., 2004;
Song and Lee, 2004; Dunson, 2003; Longford and Muthén, 1992), (ii) to
allow mixture of count, ordinal and dichotomous outcomes (Rabe-Hesketh
et al., 2004; Lee and Song, 2004; Dunson, 2003), (iii) to relax linearity of
the relationship between the latent variables by using nonlinear structural
models (Song and Lee, 2004; Lee and Song, 2004; Wall and Amemiya, 2000;
Arminger and Muthén, 1998; Joreskog and Yang, 1996) and (iv) to relax
linearity between the continuous responses and the latent variables (Yalcin
and Amemiya, 2001).

Our modelling approach differs in a number of ways. Firstly, we focus on
the change over time of a single common latent process, while the main inter-
est of SEM lies in the relationship between several latent variables. Moreover,
when dealing with quantitative outcomes, SEM generally assumes a Gaussian
or a Poisson distribution for the outcomes. Except for threshold models for
ordinal data (Rabe-Hesketh et al., 2004; Lee and Song, 2004; Dunson, 2003),
when nonlinear transformations link the latent variables and the outcomes,
they do not depend on parameters to be estimated. As threshold models
are not appropriate for quantitative scores with many possible values, we
estimate the shape of the transformations by using parametrized nonlinear
functions. Finally, our model includes a continuous-time latent process, this
gives a description of the evolution of the latent cognitive level for all times

in the range of the observations and furthermore it can easily handle data
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where the number and times of the observations are different for each subject
and for each outcome.

Nonlinearity in SEM either in the structural model or in the relationship
between observed outcomes and latent variables requires the development
of suitable estimation methods. For models including products of latent
variables, Joreskog and Yang (1996) proposed a frequentist approach based
on the maximization of the likelihood, while Arminger and Muthén (1998)
proposed a Bayesian approach using a MCMC algorithm. For models with
nonlinear relationships between the responses and the latent variables, Yalcin
and Amemiya (2001) proposed to compute a quadratic approximation of the
nonlinear transformations, and then maximized the approximate likelihood.
In contrast, to handle the nonlinear relationships between the responses and
the latent process, we propose to maximize the exact likelihood of the ob-
served data, which is a product of the likelihood of the transformed data (the
transformed data are multivariate Gaussian in our model) and the Jacobian
of the nonlinear transformations.

The main characteristics of our methodology can be summarized as fol-
lows :

- it can be applied to multivariate longitudinal non Gaussian quantitative
outcomes;

- it can study the evolution of a continuous-time latent process representing
the common factor across all the outcomes;

- it can estimate the shape of the transformations linking the quantitative
outcomes and the underlying latent process;

- it can handle any type of unbalanced data (number and time of measure-
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ments, covariates,...) and missing at random data;
- it can estimate impact of covariates on both the latent process and the
observed outcomes.

Next section focuses on the formulation of the model for the latent pro-
cess and the outcomes, and on the parametrized nonlinear transformations.
Section 3 is devoted to Maximum Likelihood Estimation. In section 4 we
discuss goodness-of-fit and section 5 focuses on an application of the method
to data from the French prospective cohort study PAQUID (Letenneur et al.,
1994).

2. Methodology
2.1 The latent process : structural model

Consider the continuous-time latent process A; = (A;(t));>0 representing
the common cognitive factor for individual 7 with 7 = 1,...N. A; is defined

at time ¢, ¢ € RT according to a linear mixed model,
A(t) = X ()" B+ Zi(t) us + opwi(t) , t>0 (1)

where X;(t) is the ¢;-vector of time-dependent covariates associated with
the vector of fixed effects 3. The (p+ 1)-vector Z;(t) = (1,t,...,t*)T is a time
polynomial of degree p (or any vector of functions of time) and the vector
of random effects at subject level u; ~ N(u, D), where D is an unstructured
positive definite matrix. The process w; = (w;(t));>o is a standard Brown-
ian motion; w;(t) models local variation and departure from the polynomial
trend while the random effects account for the variability of the trend across
the subjects. No independent error is added because this latent process is
assumed to represent the actual cognition in continuous time. Note that the

linearity in S or in the covariates is not crucial. Any function of time could be
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included in the model, since the model is still linear in the random effects, to
ensure the normality of the latent process. Moreover, the Brownian motion
also adds flexibility to the parametric function of time.
2.2 The measurement model

Now consider K quantitative outcomes. Each outcome could be an in-
dividual psychometric test, or the sum of scores from an itemized test.
For subject ¢ and outcome k, we observe the n;,-vector of measurements
Yikk = (Yitks -y Yijks - Yingk) . Where y;;x is the score of subject 7 at occasion
j for test k. The number and times of measurements may be completely
different for each subject and each outcome. In the spirit of latent growth
curve modelling (Muthén, 2002) and SEM (Yalcin and Amemiya, 2001), we
assume that this measurement y;;;, is related to the latent process at time

tijr through the following flexible model:

9k Wijes M) = Tige = Niltije) + oap + Xoi(tije) v + €ijn (2)
where the function g; comes from a family of nonlinear transformations G de-
pending on a vector of parameters 7, which will be estimated; the random ef-
fects oy, are independently distributed according to a N (0, oik) distribution;

the vectors Xy;(t;x) and v are respectively a go-vector of time-dependent

covariates and the associated vector of contrasts for the test k; €;;, are inde-

2

pendent Gaussian errors with mean zero and variance o7, .

As in Dunson (2003), the random-effect oy, accounts for the fact that
for a same value of the latent process, two subjects can score differently in
the cognitive domain associated with psychometric test k. The contrasts
vr make the relationship between the outcomes and the latent process more

flexible by allowing some covariates to be differently associated with the

7
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various outcomes. The sum of the contrasts over the K tests for a given
covariate equals 0. Thus, parameters 3 in (1) capture the mean association
with the covariates contained both in Xy;(¢) and Xy;(t), while parameters
v, in (2) capture the variability of the association for each test around this
mean value.
2.3 The choice of the family of functions G

For all the outcomes, the transformations gx(y; nx) come from the same
family of functions G. The choice of the family is a key aspect of the model, it
determines the flexibility of the link between the joint outcomes with various
behaviours, and the underlying latent process. The transformations must be
monotonic and increasing functions of y and depend on few parameters to
make the estimation of the model easier. So, the choice of the family G is a
compromise between flexibility and parsimony.

The first transformation considered here is the Beta Cumulative Distribu-
tion Function (CDF) which can take very different shapes, including concave,
convex and sigmoid, according to the parameters, as illustrated in figure 1.

It is defined for y € [0, 1], mx > 0 and 7y > 0 by :

Y pme—1(1 — z)ne—1
9 (Y5 Mgy Tok) = / ( ) dx (3)

0 B(n1k, M2k
As the Beta CDF is defined in [0, 1], for each psychometric test, a pre-

liminary step consists in rescaling the tests to the unit interval.
[Figure 1 about here.]

The main drawback of this transformation is its computational complex-

ity. As a consequence, simpler transformations have also been considered to
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compare the fits of the models : the linear transformation, the logit transfor-
mation combined with a linear transformation and the Weibull Cumulative
Distribution Function (details in Appendix). When using a linear transfor-
mation, the model is a multivariate linear mixed model similar to Roy and
Lin (2000) or Rabe-Hesketh et al. (2004), with an additional Brownian mo-
tion term. In that case, constraints have to be added to make the model
identifiable: we assume the intercept py equals 0 and the variance of the
random intercept ug; equals 1. In constrast, when using a Cumulative Dis-
tribution Function, the requirement that gx(y) is in [0, 1] avoids additional

constraints on the latent process.

3. Estimation

Parameter estimation is achieved using maximum likelihood techniques as-
suming that missing data are missing at random. A non-standard aspect
of the model is the presence of parameters both in the nonlinear transfor-
mation g of the outcome and in the model for the transformed response
Ui = (Git1s > Gings1s <> Gijhos -or Yil ks +-or Yimire k) Where Gijie = gi(yiji). The
log-likelihood of interest is the log-likelihood of the outcomes in their natural

scale, and thus includes the Jacobian of the transformations gx. It is given

by:

N Y (4)

= L(G:0) + ) In(J(y:; )
where 6 is the complete vector of parameters containing the transformation
parameters 0, = (Mg, M2x), k = 1,. .., K, the fixed parameters u, 5, 71, ..., VK

and the variance-covariance parameters vec(D), 0w, Oays - -« Oaxs Ters - - - Tepe -



J(y;0) is the Jacobian of the transformation given the data and the vector

of parameters . For the Beta transformation, the Jacobian is defined by :

K nik , Mmr— 1

J(ys; 0 Hnywk

k=1j=1

— Yyjp) "2

7711;, 772k)

(5)

Formulae of the Jacobian for the other potential transformations are given
in Appendix.
L(g;;0) is the log-likelihood of the transformed data for subject i. Let

1duosnuew Joyine yH
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n, and J,, the matrix of size n where all the elements equal 1. Then, the
density of ¢; is a multivariate Gaussian density of size n; = Zszl ni, with

mean E; = (E], ..., EL)T and covariance matrix V; given by :

Ei = Zfp+ X558 + X (6)
! S 0 0
Vi=| : | D(Z" ... ZEY+V+ 0 . 0 (7)
7K 0 0 Xk
with 3 = 02 Jny, + 02 I,

and V,, the covariance matrix for the Brownian process with argument o2 (min(t;,t,,))
for (I,m) € [1,n;]?. The contribution of subject i to the log-likelihood of the
transformed data L(g;; 0) is the logarithm of this multivariate density taken
at the observation values. The log-likelihood (4) has a closed form (except

for the computation of the Beta CDF's for which standard routines are avail-

10
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able) and is maximized using a modified Marquardt algorithm (Marquardt,
1963), which is a Newton-Raphson like algorithm. The vector of parameters

6 is updated until convergence using :
) = 60 — (F) 7 (L(y; 0) ®

The step d equals 1 by default but can be modified to ensure that the like-
lihood is improved at each iteration. The matrix H is a diagonal-inflated
Hessian to ensure positive-definiteness. V(L(y;#®)) is the gradient of the
log-likelihood (4) at iteration /. First and second derivatives are computed
by finite differences. The program is written in Fortran90 and is available
on the web site : http://www.isped.u-bordeaux2.fr. This algorithm is less
computationally demanding than alternative Monte Carlo approaches such
as in Arminger and Muthén (1998) who proposed a Bayesian approach for
latent variable models with nonlinear relationships between the latent vari-
ables. Nevertheless, it is computationally intensive and for example with a
sample of 563 subjects (8227 observations) and a model with 36 parameters
(the final model in the application), the CPU time is around 15 minutes
using a Bi-Xeon 3.06 GHz 1024 MB RAM.

Moreover, after convergence, standard-error estimates of the parameter
estimates are directly obtained using the inverse of the Hessian. A bootstrap
method using 200 resamples of the N subjects is also performed for obtaining

standard-errors of gx(y, 7x) where y is in the range of the psychometric test

k.

11
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4. Assessment of the fit

An unsolved question in mixed modelling is the assessment of the goodness-
of-fit. In this work, we propose two approaches to evaluate the adequacy of
the model, a residual-based approach and a prediction-based approach. The
residual-based approach consists in evaluating the Gaussian distribution of

the standardized marginal residuals ¢; given by :

&= Uiy — E) 9)
where U; is the upper triangular matrix of the Cholesky transformation of

V.

[

and E; = E;(7;) is obtained by replacing the parameters by their MLE in
(6). A Normal-Quantile plot with the 95% confidence bands computed using
Kendall and Stuart formula (Kendall and Stuart, 1977 page 251) is then
displayed to evaluate whether the empirical distribution of the standardized
residuals €, is close to the theoretical N(0,1) distribution.

To evaluate the fit of the data on the natural scale of the tests, we plot
the observed mean evolution of each test versus the estimated marginal mean
evolution or the conditional mean evolution which includes random-effects
estimates. The marginal estimated means E;(g; ' (7i;x)) and the conditional
estimated means Ej(g; ' (Jijx)|4ii, Gk, ;) are computed by numerical integra-
tion of g; *(fix) over the marginal distribution of g, N(Ei(8); Vi(6)), or over
the conditional distribution N(Ej (é) + Wi 0kl ). Here the marginal ex-
pectation and variance of g, is given by (6) and (7) and Wijk = Zi(tije) i+
W; (%K) + Gk is the empirical Bayes estimate of the subject specific deviation

from the model.

12
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5. Application: Cognitive evolution in the elderly
5.1 The data

The aim of this analysis is to describe the decline with age of the global
cognitive ability measured by several psychometric tests and to evaluate the
association of covariates, especially Apolipoprotein E (apoE) genotype, with
the latent cognitive process. Indeed, the presence of one or two €4 alleles of
apoE is associated with a higher risk of Alzheimer’s disease (Farrer et al.,
1997) but it is not well established whether the €4 allele is more generally
associated with cognitive ageing (Winnock et al., 2002).

The data come from the French prospective cohort study PAQUID, ini-
tiated in 1988 to study normal and pathological ageing (Letenneur et al.,
1994). Subjects included in the cohort were 65 years and older at the initial
visit and were followed 6 times with intervals of 2 or 3 years. At each visit,
a battery of psychometric tests was completed and an evaluation of whether
the person satisfied the criteria for a diagnosis of dementia was carried out.
Measurements at the initial visit were excluded because of a first passing ef-
fect (Jacqmin-Gadda et al., 1997). In the analysis, we included subjects who
were free of dementia at the first follow-up and with at least 1 measurement
for each of four (K = 4) psychometric tests during the follow-up.

The four tests considered are: the Mini Mental State Examination (k =
1), the Isaacs Set Test (k = 2), the Benton Visual Retention Test (k = 3)
and the Digit Symbol Substitution Test of Wechsler (k = 4). The Mini Men-
tal State Examination (MMSE) evaluates various dimensions of cognition
(memory, calculation, orientation in time and space, language and word reg-

istration); it ranges from 0 to 30 and the distribution is strongly skewed to

13
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left with a ceiling effect. The Isaacs Set Test (IST) shortened at 15 seconds
evaluates verbal fluency accounting for speed of execution: subjects have to
give a list of words (with a maximum of 10 words) in four semantic categories.
It ranges from 0 to 40 and the distribution is close to a Gaussian distribution
with a little heavier left tail. The Benton Visual Retention Test (BVRT)
evaluates visual memory: subjects have to recognize 15 geometric figures
among 4 proposals. It ranges from 0 to 15 and the distribution is skewed to
left but the ceiling effect is less strong than for the MMSE. The Digit Symbol
Substitution Test of Wechsler (DSSTW) evaluates attention: given a table
of correspondence between symbols and numbers, subjects have to translate
a sequence of 90 numbers into the right sequence of symbols. In the sample,
it ranges from 0 to 76 and the distribution is approximately Gaussian. For
the four tests, low values indicate a more severe impairment. In the analysis,
rescaled scores computed as the value of the test plus 0.5 divided by 1 plus
the range of the observed values produced values in the open interval (0, 1)
and were considered as continuous. For the DSSTW, the observed range
was 76 while the maximum possible value was 90. An additional analysis
performed using 90 instead of 76 for rescaling led to nearly identical results.
More generally, we think better to use the observed range for rescaling to
avoid interpreting the relationship between the score and the latent process
on a unobserved range of values.

The apoE genotype was collected on a subsample of the PAQUID cohort,
so the sample used in the analysis consisted of 563 subjects having between
1 and 6 measurements per test (median=4). The covariates included in the

analysis were gender, educational level (graduated from primary school versus

14



1duosnuew Joyine yH

=
0
1]
=
2
(]
o
s
W
(=]
o
B
o
<
1]
=
@,
o
=
[EEY

lower level) and the apoE genotype (e4 carrier versus €4 non carrier). The
age — 65

10 )
5.2 Comparison of the fit for the various families of transformations

time scale was the age minus 65 years per 10 years (t =

We first assumed that the latent cognition was a quadratic function of
time without covariates in expression (1) and without any contrast in ex-
pression (2). Using this model, we compared the fit for the Beta CDF, the
linear transformation, the combination of a linear transformation and the
logit transformation and the Weibull CDF. According to Akaike criterion

(see Table 1), the Beta transformation gave a markedly better fit.

[Table 1 about here.]

5.3 Estimations of the model with the Beta transformation

Using the Beta transformation, the best fitting model included a quadratic
function of time with three random coefficients and the three covariates (ed-
ucational level, gender and apoE genotype) in the model for the latent pro-
cess. As it was suspected that ability in visual memory, verbal fluency and
attention could be differently associated with gender and educational level,
we also included contrasts between tests for these covariates. Interactions
between apoE genotype and time variables were also included in the latent
process. Interactions between gender and time and between educational level
and time were found not significant and did not confound the association be-
tween apoE and cognitive evolution. Thus they were excluded from the final
model. Estimates of the fixed effect parameters in the final model are pre-
sented in table 2.

The test-specific random-effects oy improved dramatically the fit (574

increase of the log-likelihood for 4 additional parameters) which means that

15
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for a same value of latent cognition, subjects score differently in cognitive
domains associated with the psychometric tests. Accounting for the within-
subject variability with a Brownian motion was also relevant since it increased

the log-likelihood of 13.8.
[Table 2 about here.]

Gender was not significantly associated with the mean common factor
level, while subjects who graduated from primary school had a significantly
better mean common factor level. Inclusion of contrasts between tests for
gender improved significantly the fit of the model, showing that gender does
not have the same impact on each psychometric test: men tend to perform
better on the BVRT than women, while the trend is reversed for the other
tests. Contrasts between tests for education level are not significant which
suggests that the effect of educational level does not differ from test to test.

The apoE genotype was only included in the latent process evolution
(equation 1) because the hypothesis to evaluate was an association between
the €4 allele and the decline of latent cognitive performance. We had no
hypothesis regarding a link with a specific psychometric measure. We found
no association between the €4 allele and the mean level of the common factor
at 65 years old but a strong association (p = 0.0018) with the change over
time of the common factor: €4 carriers have a steeper decline than €4 non
carriers as shown in figure 4(a). The model including both the interactions
apoE xt and apoE xt? had exactly the same likelihood as the model including
only apoE x t2. Thus we retained the latter.

Figure 2 displays the estimated Beta transformations for the 4 tests with

the 95% pointwise confidence interval computed using a Bootstrap method.

16
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The four estimated transformations are very different, the curve is convex for
the MMSE and the BVRT, concave for the DSSTW and close to linear for
the IST. Moreover, the BVRT and the MMSE scores cover respectively only
80% and 88% of the latent process range while the DSSTW covers around

95% and the IST covers almost the entire range.
[Figure 2 about here.]

These results suggest that the MMSE and the BVRT are not appropriate
to identify small changes in cognition among subjects with a high cognitive
level, since the maximum scores of these tests are reached for a value of the
latent process lower than its maximum. These estimated curves highlight
the ceiling effect of the two tests. More generally, the nonlinear shape of the
MMSE reveals that a decline in the MMSE should be interpreted by taking
the initial level into account : one point lost from a score above 25 represents
a more substantial decrease of cognition (about 0.06) than one point lost
from a score under 15 (about 0.01). For the DSSTW, the curve is close to
linearity above a score of 10 but one point lost under a score of 10 represents
a more substantial decrease of the latent cognition. Subjects with a latent
cognition lower than 0.1 tend to score 0 on the DSSTW, probably because
they do not even understand the instructions. In contrast, IST appears to be
useful to evaluate cognition in an heterogeneous population including high
level and impaired subjects, since it is close to linearity on almost the entire
range of the latent cognition
5.4 Assessment of the fit

Figure 3 contains the Normal-Quantile plots of the standardized marginal

residuals defined in (9) for each of the 4 psychometric tests. The normality
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assumption of the residuals seems to be well satisfied for each of the four
psychometric tests. In contrast, when using a linear transformation, Normal-
Quantile plots showed a poor agreement with the normal assumption (results

not displayed).
[Figure 3 about here.|
[Figure 4 about here.|

Figure 4 (b) shows for each of the 4 tests the estimated marginal and
conditional mean evolutions with age compared with the observed mean evo-
lution and its 95% confidence limits; the sample size used to compute each
mean is also given. The conditional estimated means, which include ran-
dom effect estimates, are very close to the observed means for every test,
showing a good fit of the model. However, the marginal estimated means,
which include only fixed effects, are outside the 95% confidence interval of
the observed means for the IST and BVRT at older ages and for the DSSTW
in most cases. These differences may be explained by the rate of missing
data which is very low for the MMSE, higher for the IST and BVRT par-
ticularly among oldest participants and much higher for the DSSTW at all
ages. Indeed, during the interview, the tests were always completed in the
same order (MMSE, BVRT, IST, DSSTW) and recommendations were given
to the interviewers to avoid missing data for the MMSE, since it is used for
the screening of dementia. Hence almost all subjects completed the MMSE
but subjects with a poor cognitive level tended to refuse the other tests
and particularly the DSSTW, which is more difficult. Missing data are thus

associated with random effects. For instance, the mean of subject specific
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deviations VVijk is -0.0037 for subjects aged 90 or more who completed the
MMSE (N=99), and 0.028, 0.042, and 0.056 respectively for those who com-
pleted the IST (N=80), BVRT (N=57) and DSSTW (N=34). The impact
of missing data on conditional and marginal estimates has previously been
discussed by Molenberghs and Verbeke (2001).

5.5 Multivariate model versus univariates models

For each test, the univariate model detected an association between apoE
genotype and cognition with a larger p-value (p-value from the LR test for
apoE x t? parameter: p = 0.0043 for MMSE, p = 0.018 for IST, p = 0.020
for BVRT, p = 0.054 for the DSSTW) than for the multivariate model (p =
0.0018). By using a multivariate model compared to four univariate models,
we had a gain of power in assessing the association between apoE genotype
and cognition. Moreover, note that interpretation of the association with the
latent process and with each psychometric test is different.

The gain in efficiency can also be evaluated by comparing AIC from the
multivariate model and AIC computed by pooling the likelihoods from the
four univariate models with the total number of parameters in these four
models. In our case, even if we added in the multivariate model the con-
straint that apoE had a common effect on the four tests, the AIC from the
multivariate model was markedly better (39503.1 versus 40203.8 for the four

univariate models).

6. Discussion

We proposed a nonlinear model for multivariate longitudinal non Gaussian
quantitative outcomes when the outcomes are indirect measures of a common

underlying continuous-time process. Such data are very frequent in psycho-
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metrics, but the methodology has many other potential areas of application,
as for instance, the study of the course of chronic illnesses evaluated by sev-
eral biological markers.

In this work, psychometric tests are analysed by considering their sum
scores as quantitative variables. This is the most frequent way to consider
psychometric tests in gerontology : the summary scores are used to evaluate
cognitive level and risk of dementia (Amieva et al., 2005; Sliwinski et al.,
2003; Hall et al., 2001). From a neuropsychological perspective, the alter-
native approach which consists in analysing item responses using SEM or
item response model (Skrondal and Rabe-Hesketh, 2004 chapter 3) could be
useful if the objective was to understand the underlying components of the
tests. This methodology is interesting when the tests consist of a limited
number of items evaluating different cognitive domains (such as the MMSE)
or exhibiting different levels of difficulty (such as the BVRT). On the con-
trary, this methodology would be difficult to apply to IST score which is
the number of words cited by the subjects (except for considering the four
subscores for each semantic categories) and the DSSTW scores which is the
count of symbols correctly assigned to a sequence of numbers.

Given that the summary scores are quantitative discrete variables, we
could either consider them as continuous variables or as ordinal variables.
However, threshold models for ordinal data require estimation of one thresh-
old for each possible value of the scores, which would be very challenging
for multivariate modelling of scores with so many different values. In our
application including four tests, this would have implied estimation of more

than 150 additional parameters. Thus, we decided to analyse the scores as

20



1duosnuew Joyine yH

=
0
1]
=
2
(]
o
s
W
(=]
o
B
o
<
1]
=
@,
o
=
[EEY

continuous variables and to use nonlinear transformations depending on a
limited number of parameters as link functions between the Gaussian latent
process and the observed outcomes. Various link functions have been con-
sidered, but we found that the Beta CDF was flexible enough with only two
parameters. With many fewer parameters than threshold models, the es-
timated curves provide interesting information on the relationship between
evolution of the latent cognitive level and evolution of the observed scores.
Moreover, goodness-of-fit analyses show that the Beta transforms of the four
test scores fitted well a Gaussian distribution. Nevertheless, if necessary for
other applications, it would be easy to include a different family of continu-
ous transformation for each test. This model could also be extended to allow
mixture of continuous, binary and ordinal outcomes with few categories as
in Rabe-Hesketh et al. (2004), Dunson (2003) or Dunson (2000).

Another asset of this model is the way of accounting for covariate effects.
Using fixed contrasts, we were able to distinguish the association with the
latent process and the differential association with the various psychometric
tests. Being able to compare covariate effects over the tests is also an advan-
tage of multivariate modelling. With a large number of tests it may also be
possible and advantageous to have the effects of the covariates on the tests
be random rather than fixed effects.

We assumed the data to be missing at random and thus ignorable using
a maximum likelihood approach. Even if we have shown that missing data
were associated with random effects, this does not preclude missing data from
being ignorable. Indeed, if missing data at the last 3 tests depend on the ob-

served MMSE score or on the observed evolution of the MMSE, this induces
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a dependency on the random effects, but the missing data are ignorable since
missing values may be predicted using observed data. This is an advantage of
multivariate modelling, in that by using more observed information it is more
robust to missing data. Nevertheless, as it is not excluded that missing data
are informative, it could be useful to jointly model time to dropout using a
shared random-effect model as in Roy and Lin (2002). However, this would
increase complexity of the estimation process and estimates would depend
on uncheckable parametric assumptions. Another useful extension would be
to jointly model dementia, defining dementia diagnosis as the time at which

the latent process first reaches an estimated threshold (Hashemi et al., 2003).
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RESUME

La cognition n’est pas directement mesurable. Elle est évaluée a l’aide d’une
batterie de tests psychométriques qui peuvent étre considérés comme des
mesures quantitatives bruitées de la cognition. L’objectif de cet article est
de proposer un modele permettant de décrire la cognition non observée chez
les personnes agées et d’évaluer I'impact de variables explicatives directe-
ment dessus. Le processus latent défini en temps continu et représentant
la cognition est modélisé par un modele linéaire mixte prenant en compte
des variables dépendantes du temps et les tests psychométriques sont ensuite

définis comme des transformations nonlinéaires paramétrées du processus la-
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tent. L’estimation des parametres a la fois dans le modeles mixte et dans
les transformations nonlinéaires est obtenue en maximisant la vraisemblance
observée et des méthodes graphiques sont utilisées pour évaluer ’adéquation
du modele. La méthode est appliquée aux données de la cohorte prospective

francaise PAQUID.
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APPENDIX
E Details on the transformations
e
;5 For subject ¢ and test k, we give the expressions of the function and its
§ Jacobian for the linear transformation, the combination of a linear and a
=
§_ logit transformations and the Weibull CDF.
©

The linear transformation is defined for y € R, n;x € R and o, € R* as
Y—Thk
9k (Y3 Mk, Mok) =
M2k

yza H_

The combination of a linear and a logit transformations is defined for y €

5
o
(0]
-
3
(@]
(@]
|_\
w
o
(@]
I
o
<
(¢)
-~
@,
o
=}
|_\

(07 1)5 Mk € (07 1) and Tk € (07 1) as

In( Y ) — In( Mk

1-— 1-—
9k (Y3 e, Mox) = ly T
n
1 — mog

K mng 1
00) = T ——

k=1j=1n (1 ) Yiik(1 — Yijk)

— M2k

The Weibull CDF is defined for y € (0, 00), m € (0,00) and 79, € (0,00) as

y
9(Y; Mk, ax) = 1 — exp(—(=—)™*)
Tk

y772k

1
Mok Y
T (yi; 0 HH 2 == ™)

k1 j=1 Tk
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=

o

é Family of transformation Number of paramaters Log-likelihood AIC

S Linear transformation 20 -21584.1 43208.2

[ Beta CDF 22 -20387.1 40818.2
Logit + linear transformation 20 -20876.4 41792.8

Weibull CDF 22 -20654.7 41353.4
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Table 2

;Er parameter estimate SE
o intercept : po 0.538 0.013
;3' linear slope : p; -0.0044  0.0098
5 quadratic slope : ug -0.0291  0.0040
= gender ¢ -0.0062  0.0071
§ education® 0.111  0.0088
= apoE° 0.0070  0.0096
= apoE¢ xt? -0.0103  0.0033
=
(%]
% contrasts on gender ¢ (p = 0.027¢)
S on MMSE (k =1) -0.0095  0.0052
2 on IST (k = 2) 0.0052  0.0062
S on BVRT (k = 3) 0.0148  0.0052
5 on DSSTW (k = 4) 0.0001  0.0047
<
o)
g. contrasts on education ® (p = 0.136)
> on MMSE (& = 1) -0.0117  0.0061
on IST (k = 2) 0.0108  0.0070
on BVRT (k = 3) -0.0044  0.0062
on DSSTW (k = 4) 0.0053  0.0058
m1 (MMSE) 1.409  0.097
n21 (MMSE) 0.401  0.018
me (IST) 0.952  0.064
n2 (IST) 0.697  0.041
ms (BVRT) 0.887  0.062
s (BVRT) 0.569  0.032
4 (DSSTW) 0.477 0.027
724 (DSSTW) 0.838  0.057

¢ reference : female

b reference : not graduated from primary school

¢ reference : €4 non carrier

@ Likelihood Ratio Test for the contrast variables (X2 with 3 degrees of freedom)
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