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Abstract : The aim of this paper is to propose an algorithm to estimate linear
mixed model when random effect distribution is a mixture of Gaussians. This he-
terogeneous linear mixed model relaxes the classical Gaussian assumption for the
random effects and, when used for longitudinal data, can highlight distinct patterns
of evolution. The observed likelihood is maximized using a Marquardt algorithm ins-
tead of the EM algorithm which is frequently used for mixture models. Indeed, the
EM algorithm is computationally expensive and does not provide good convergence
criteria nor direct estimates of the variance of the parameters. The proposed method
also allows to classify subjects according to the estimated profiles by computing pos-
terior probabilities of belonging to each component. The use of heterogeneous linear
mixed model is illustrated through a study of the different patterns of cognitive

evolution in the elderly. HETMIXLIN is a free Fortran90 program available on the




web site : http ://www.isped.u-bordeaux2.fr.
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1 Introduction

Many longitudinal studies consist in assessing the changes over the time of a
marker measured repeatedly on each participant. These analyses are generally per-
formed with mixed models [1] which allow to take into account the within-subject
correlation and the variability of the marker course between the subjects. However
such a model is based on the strong assumption that the random effects are sam-
pled from a single multivariate Gaussian distribution which means that the marker
course is homogeneous among all the subjects.

To assess this assumption, Verbeke and Lesaffre [2] have proposed a mixed model
with a mixture of multivariate Gaussians on the random effects. This heterogeneous
linear mixed model allows to relax the normality assumption for the random effects
and also allows to highlight distinct evolutions of the marker and classify the subjects
according to these different patterns of evolution.

In the Verbeke and Lesaffre’s work as in more recent papers [3,4], the mixed
models with a mixture on the random effects distribution were estimated using an
EM algorithm [5]. For instance, Spiessens and Verbeke [3] recently proposed a free
SAS-macro (HETNLMIXED) using the EM algorithm and the NLMIXED procedure
for the optimization in the M step. This SAS-macro is an extension of the SAS-
macro HETMIXED which was developed earlier for estimating heterogeneous linear
mixed models using the MIXED procedure [6]. To our knowledge, HETNLMIXED
and its first version HETMIXED are the only free available programs developed for
estimating heterogeneous mixed models. The first version HETMIXED was proved
to be very slow and limited to small samples due to very large matrices handling
and prohibitive computation ; it will not be expanded in this work. HETNLMIXED

was developed to reduce these computational problems and to allow estimation of
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both linear and generalized linear models. However, in the linear case, this SAS-
macro has the drawback of computing numerically an integral across the random
effects while it has a closed form, and thus the macro is limited to a small number of
random-effects. We have also observed convergence problems when using the macro
with large samples except for very simple models.

Moreover, the EM algorithm, which is used in these macros, has some gene-
ral drawbacks. In particular it does not have any good convergence criteria; the
convergence is only built on a lack of progression of the likelihood or the parameter
estimates [7]. Furthermore, the convergence is slow [8] and the EM algorithm does
not provide direct estimates of the variance of the parameters. In the particular case
of an heterogeneous mixed model, the M step also requires the estimation of an
homogeneous mixed model which is computationally expensive.

Therefore the first aim of this paper is to propose a program for estimating more
general heterogeneous linear mixed models suitable for large samples. The proposed
program HETMIXLIN is written in Fortran90 and uses a direct maximization of
the likelihood via a Marquardt optimization algorithm. The second objective of this
paper is to illustrate the use of heterogeneous linear mixed model through a study

of the different patterns of evolution in cognitive ageing.

2 Computational methods and theory

2.1 The heterogeneous linear mixed model

Let Y; = (Y, ..., Yi,,) be the response vector for the n; measurements of the
subject ¢ with ¢ = 1, ..., N. The linear mixed model [1] for the response vector Y; is
defined as :

Yi=XiB+ Ziu; + ¢ (1)
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X; is a n; x p design matrix for the p-vector of fixed effects £, and Z; is a n; x ¢
design matrix associated to the g-vector of random effects u; which represents the
subject specific regression coefficients. The errors ¢; are assumed to be normally
distributed with mean zero and covariance matrix o2l , and are assumed to be
independent from the vector of random effects u;.

In an homogeneous mixed model [1], u; is normally distributed with mean u and

covariance matrix D i.e.

u; ~ N (u, D) (2)

In the heterogeneous mixed model [2-4], u; is assumed to follow a mixture of
G multivariate Gaussians with different means (u,)4-1,¢ and a common covariance

matrix D 1.e.
G

Ug ~ Zﬂ'gN (Uga D) (3)

g=1

Each component g of the mixture has a probability 7, and the (my),—1,c verify

the following conditions :

e}
0<m<1Vg=1Gand Y m =1 (4)

g=1
In this work, we propose a slightly more general formulation of the model des-
cribed in (1) in which the effect of some covariates may depend on the components
of mixture and some of the random effects may have a common mean whatever the
component of mixture. Thus, the X, design matrix is split in Xy; associated with
the vector [ of fixed effects which are common to all the components and X5; as-
sociated with the vectors 7, of fixed effects which are specific to the components.
The Z; design matrix is also splitted in Z;; associated with the vector v; of random

effects following a single Gaussian distribution and Zy; associated with the vector u;

of random effects following a mixture of Gaussian distributions. The model is then
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written as :
G

Y;' = Xlzﬁ -+ Zﬂ'ngiég + Zlivi -+ Zgiui =+ €; (5)

g=1
where v; ~ N(0, D,) and u; ~ Zle 7gN (g, Dy,) ; given the component g, the condi-

V; 0 Dv Dvu
tional distribution of the vector is N ,D | with D =

U; Hg Duv Du
2.2 Likelihood

Following the previous works [3,4], we define w;, the unobserved variable indi-
cating if the subject ¢ belongs to the component g. We have P(w;; = 1) = m,. The

density for the vector y; can then be written as :

filyi) = Zﬂ'gf(yﬂwig =1) (6)

Given wjg, y; follows a linear mixed model, and the density f(y;|w;, = 1) denoted
by ¢4 is the multivariate Gaussian density with mean F;, and covariance matrix V;

given by :

Eiy = E(Yi|wig = 1) = X1;8 + X2i0g + Zaifty
and (7)

Vi =Var(Y;|lwiy = 1) = Z;DZ} + 0°1,,

Let now 6 be the vector of the m parameters of the model. § contains ¢ with ¢’ =
(B', (0g)y=1.6> (Hg)y=1,c> Vee(D)',0%) and 7 the vector of the G — 1 first component
G-1

probabilities (74)4-1,c—1. Note that 7 is entirely determined by 7 as 1 — )" g1 Tg-

Vec(D) represents the vector of the upper triangular elements of D. The estimates
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of 9 are obtained as the vector § that maximizes the observed log-likelihood :
N
L(Y;0) = Zln(fi(yi))
i=1

= Z ln(z ToPig(Yi)) (8)

G
1 1 —
=Y~ n(2m) = SIn([Vi]) + In(Ymye 20 V0 )

i=1 g=1

2.3 Estimation procedure

We propose to maximize directly the observed log-likelihood (8) using a modified
Marquardt optimization algorithm [9], a Newton-Raphson like algorithm [10]. The
diagonal of the Hessian at iteration &, H*), is inflated to obtain a positive definite
matrix as : H*®) = (H;j(k)) with H;® = H® 1 A1 - n)|HP| + ntr(H)] and

H™® = ¥ if ; + j. Initial values for A and n are A = 0.01 and 7 = 0.01. They

i i
are reduced when H* is positive definite and increased if not. The estimates 6

(k+1)

are then updated to 6 using the current modified Hessian H*®*) and the current

gradient of the parameters g(#*)) according to the formula :
g+ = gk) _ o B)=1 g (g(®)) (9)

where, if necessary, « is modified to ensure that the log-likelihood is improved at
each iteration.

To ensure that the covariance matrix D is positive, we maximize the log-likelihood
on the non zero elements of U, the Cholesky factor of D (i.e. U'U = D) [7]. Fur-

thermore, to deal with the constraints on 7 (4) we use the transformed parameters

('79)9:1,071 with :
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) (10)

=1
Vg n(WG

Standard errors of the elements of D and (7y),=1,¢—1 are computed by the A-
method [11] while standard errors of the other parameters are directly computed
using the inverse of the observed Hessian matrix.

The convergence is reached when the three following convergence criteria are
satisfied : 37, (04 =0 ")2 < ¢y, [LW—LED| < ¢ and g(0% Y HB 1 g(6®) < ¢,
The default values are ¢, = 10 °, ¢, = 1075 and ¢; = 10 8.

As the log-likelihood of a mixture model may have several maxima [8], we use
a grid of initial values to find the global maximum. The multimodality of the log-
likelihood in mixture models has been often discussed and some authors proposed
different strategies to choose the set of initial values [12]. However, none of them
seems to be optimal in a general way. We have observed, in our experience, that
the results were mainly sensitive to initial values of (7my),=1,6—1 and (pg)g=1,¢ and
less sensitive to the other parameters (Vec(U), S and o) for which estimates of the
homogeneous mixed models were good initial values.

A mixture model is estimated with a fixed number of components G, otherwise
the number of parameters in the model is unknown. To choose the right number
of components, one has to estimate models with different values for G and select
the best model according to a test or a criterion. Some works favor a bootstrap
approach to approximate the asymptotic distribution of the likelihood ratio test
between models with different number of components [13] but this approach is very
heavy in particular for mixture models with random effects. Criteria such as Akaike’s
Information Criterion (AIC) [14] or Bayesian Information Criterion (BIC) [15] are
often preferred. We use these selection criteria to select the optimal number of

components.
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2.4 A posteriori classification

After parameter estimation, mixture models allow to classify subjects accor-
ding to the G components. The classification is based on the posterior probabilities
(Tig)g=1,c that the subject i follows each of the G components. Using 6= (4!, 7,
these probabilities are obtained by the Bayes theorem [2-4] as :

ﬁg(big('@z, Y:Z)
Z_f:l 7’i-ggzsig(lba sz)

Trig = P(wiy = 1Y;,0) = (11)

We then assign to each subject 7 the component to which he has the highest proba-

bility (m;g)g=1,¢ to belong.

3 Program description

The program requires two distinct input files : the data file described in appendix
1 and the parameter file named HETMIXLIN.inf which contains the information
needed for the estimation of the model : the names of the data file and output
files, the number of subjects, the description of the model (number of components
G, dimension of the random effects, covariates X, X,, Z; and Z; and covariance
structure of D) and the initial values of the parameters. An example of the parameter
file is given in appendix 2.

The main output file gives the final log-likelihood, the AIC, the BIC, the conver-
gence criteria, the number of iterations and the parameter estimates with the stan-
dard errors, the Wald statistics and the 95% confidence interval. The number of
subjects classified in each component is also given.

Finally, another output file contains the posterior probabilities for each subject

to belong to each class and the final class membership.
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4 Applications

4.1 The height of schoolgirls

We consider the sample of 20 preadolescent schoolgirls introduced by Goldstein
[16]. Verbeke et al [2] and Komérek et al [6] modelled the growth curves of their
height according to age from 6 to 10. They showed in the homogeneous mixed model
that the height course of girls differed significantly according to the category of
height of their mother (small, medium and tall). Thus they used the heterogeneous
linear mixed model without introducing the height of the mother in the model to
try to highlight clusters with distinct growth curves among the girls. In this work,
we compare the results obtained using our program to those obtained with the
HETNLMIXED SAS-macro which uses the EM algorithm. The model is written
as :

Heightij = Ug; + U1 X age;; + €; (12)

where u; = (ug;, u1;)" ~ Zle 7y N (pg, D) with pg = (tog, 1)’ and €;5 ~iq N (0, 0?)

We fitted the heterogeneous linear mixed model for two and three components.
An extract of the data file and the parameter file for the model with two components
are presented in appendices 1 and 2. The results for the model with two components
of mixture obtained with our program HETMIXLIN and the SAS-macro HETNL-
MIXED are shown in Table 1. The estimates obtained using the two methods are
the same but a difference is observed in the standard error estimates; the standard
errors estimates from HETNLMIXED seem bigger than those from HETMIXLIN.
This difference in the standard error estimates from the two algorithms was also ob-
served in the homogeneous case comparing HETNLMIXED, the MIXED procedure,

the NLMIXED procedure and HETMIXLIN program. In the three latter programs,

10
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standard errors are estimated by the inverse of the Hessian matrix which estimates
the Fisher Information matrix [11] and led to the same standard error estimates.
By contrast, HETNLMIXED uses an approximation of the Louis’s method based on
the product of the expectations of the gradient of the complete likelihood [17], the
Louis’s method [18] being itself an approximation of the observed Hessian matrix.
This method appeared to overestimate standard errors in this small sample. Howe-
ver, in our experience, this approximation of the observed Hessian matrix seemed
to be improved when the sample size increased. For instance, using a linear mixed
model estimated on the 1,392 subjects of the PAQUID sample from section 4.2, the
discrepancy was lower.

As the convergence of the two algorithms depends on the choice of the initial
values, we fitted the model by the two approaches with the same grid of 32 sets
of initial values. The sets differed on all kinds of parameters. HETNLMIXED pro-
vided the global maximum 11 times out of the 32 tries and our program found
the global maximum 23 times. HETMIXLIN was also faster than the HETNL-
MIXED SAS-macro (several seconds compared with at least several minutes using

a Bi-Xeon 3,06 GHz 1024 MB RAM).

The results for the model with three components of mixture are also shown in
Table 1, but we cannot compare our results with those given by HETNLMIXED
since it converges toward a non-positive definite D matrix. Indeed, HETNLMIXED

uses the NLMIXED procedure which does not constrain D to be positive definite.

4.2 Cognitive decline in the elderly

The second example illustrates the use of heterogeneous linear mixed models with
our estimation method on a large data set as it can be encountered in epidemiological

studies. The aim of this analysis is to describe, in a cohort of elderly subjects, the

11
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heterogeneity of the evolution of the Mini Mental State Examination (MMSE), the
most important psychometric test to evaluate dementia and cognitive impairment,
and to compare the classification of subjects stemmed from the mixture model with
the dementia diagnosis. The MMSE score ranges from 0 to a maximum of 30 points.

Data come from the French prospective cohort study PAQUID initiated in 1988
to study normal and pathological ageing [19]. The cohort includes 3,777 subjects of
65 years and older who lived at home in southwestern France at baseline. Subjects
were interviewed at baseline and were seen again 1 (T1), 3 (T3), 5 (T5), 8 (T8) and
10 (T10) years after the baseline visit (T0). At each visit, a battery of psychometric
tests was completed and a diagnosis of dementia was carried out. In this analysis,
we excluded data from T0 because of a learning effect previously described for
the cognitive tests between T0 and T1 [20]. We studied the evolution of the MMSE
between T1 and T8 for subjects free of dementia till TH and compared the estimated
classification with the dementia diagnosis at T8 and then with the health status at
T10. We excluded subjects not seen at T8 to ensure that we had their diagnosis at
this visit. This leads to a sample of 1,392 subjects having between 1 and 4 measures
of the MMSE between T1 and T8.

The model is a quadratic function of time adjusted on covariates associated with
cognitive evolution in order to exclude heterogeneity introduced by known factors.
The time (t;; for subject 7 at visit j) is the negative time between the measurement
and the visit at T8 (time is zero for diagnosis time at T8). We model the square
root of the number of errors to satisfy the normality assumption of the error terms.

The model is written as :

Y;j = 4/ 30 — MMSEU = ﬂXij =+ ug; + Ulitij + Ugit?j + €ij (13)

where Xj;; is the vector of covariates for subject ¢ at visit j including age, occupation,

12
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educational level, living place and interactions with time for age and educational
level ; u; = (uos, Uns, Ugi)' ~ Zle mgIN (,Ug,D) with p, = (MOgangaN?g), and €;; ~jiq
N (0, 02).

We fitted the heterogeneous linear mixed model with two components of mix-
ture. The Akaike Information Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) were largely improved compared with the homogeneous mixed model
(AAIC =98.7; ABIC = 77.8). Table 2 displays the parameter estimates for the ho-
mogeneous and the heterogeneous linear mixed models obtained with HETMIXLIN.
The heterogeneous linear mixed model distinguished two different MMSE courses
(Figure 1). First, a large class including 98% of the sample follows a linear evolution
with a slight decline of 0.42 points (o = 0.15) per year. The second class including
2% of the sample follows a nonlinear evolution which speeds to fell down from the
second follow-up to the end.

Then, we tried to evaluate if the cognitive profiles highlighted by the model
were associated with dementia diagnosis. Among the 1,392 subjects, 26 (1.9%) are
classified in the second component with the nonlinear decline (Table 3). Among
them, 21 have a positive dementia diagnosis at T8. The predictive positive value
(81%) and the specificity (99.6%) of this classification are high but the sensitivity is
poor (31%) : 47 subjects among the 68 subjects diagnosed as demented at T8 are not
detected by the model. These subjects are significantly less disabled (p < 0.0001)
than the other demented subjects (23% of disabled people vs. 76%) and have a
significantly lower educational level (p = 0.001) : 51% have no education or no
diploma from primary school vs. 9.5% in the demented group detected in the model.
All of the 5 subjects without dementia but classified in the declining group are
disabled, 2 die in the two years and 1 has a positive dementia diagnosis at T10.

The association between cognitive ageing and educational level is an important

13
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issue [21] : educational level could have a different effect on normal cognitive ageing
and on the decline before dementia. As HETMIXLIN allows to specify distinct para-
meters for the covariates per component, we fitted the model where the interactions
between educational level and time (educational level x¢ and educational level x?)
were different according to the components. The log-likelihood was not improved
enough for significance (A(—2L) = 3.4; p = 0.17). Thus the association between
educational level and cognitive evolution appears to be similar in the two subpo-
pulations. Moreover, the discrimination of demented people was not improved with
this model.

Due to limitations of HETNLMIXED explained in section 1, we did not compare
our approach with this program on the PAQUID data set. However, as Newton-
Raphson algorithms have been criticized on their global convergence behavior com-
pared with the EM algorithm [8], we compared the convergence performances of our
program with those of an EM algorithm we developed in Fortran90. Thus the com-
parison was free from the limitations due to SAS environment and to the use of the
NLMIXED procedure. The EM algorithm we developed uses a Marquardt optimi-
zation in the M-step (convergence criteria : ¢, = 1072, ¢, = 1072 and ¢; = 1073) and
the global convergence is reached when two successive calculations of the likelihood
differ less than 10~%. This algorithm was tested using the schoolgirls data. It was
faster and converged more often than HETNLMIXED : the global maximum was
reached 22 times out of the 32 tries with a mean computional time around 30 seconds
(versus 11 times out of the 32 tries in at least several minutes for HETNLMIXED).
On the PAQUID data set, HETMIXLIN and the EM algorithm we implemented
led to the same parameter estimates. Among the 15 sets of initial values, the two
programs provided the global maximum an equivalent number of times (9 times

for HETMIXLIN vs. 10 times for the EM algorithm) but HETMIXLIN was much

14
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faster : the CPU time was less than 10 minutes for HETMIXLIN and more than 2

hours for the EM algorithm.

5 Availability of the program and hardware spe-
cification

The program HETMIXLIN is written in Fortran90 and all the subroutines needed
in the program are provided. The Fortran source code HETMIXLIN.f, an example
of HETMIXLIN.inf, a documentation HETMIXLIN.pdf and the example data file
for the schoolgirls are available at no charge on the web site : http ://www.isped.u-
bordeaux2.fr.

Two versions are provided on the web site : one for Unix and one for Windows.
The version for Windows includes an executable file (a DOS application) and does
not need any Fortran90 compiler whereas the version for Unix needs to be compi-
led. The Unix version has been tested using an Intel Fortran Compiler for Linux
version 7 or 8, a Fortran90 Compaq compiler for Alpha and a Forte Developer 6
update 2 on Solaris SPARC. Examples of the compilation command are given in the

documentation HETMIXLIN.pdf.

6 Conclusion

We proposed in this paper a Newton-Raphson like algorithm to estimate he-
terogeneous linear mixed models. The main advantages of Newton-Raphson like
algorithms are the speed of convergence, the availability of good convergence crite-
ria based on the derivatives of the likelihood and direct estimates of the variance of

the parameters via the inverse of the Hessian matrix. Moreover, using a simple mo-

15



1duosnuew Joyine yH

=
0
1]
=
2
(]
o
s
W
(=]
o
w
il
<
1]
=
@,
o
=
[EEY

dification of the Marquardt algorithm, we ensure the monotonicity of the algorithm
which is considered as a main advantage of the EM algorithm [8].

We compared our program HETMIXLIN with a SAS-macro developed by Spies-
sens et al using an EM algorithm. This SAS-macro allows to estimate heterogeneous
generalized linear mixed models, but when the model is linear, this macro has the
drawback of computing numerically an integral across the random effects while it
has a closed form. Our algorithm HETMIXLIN allows to estimate more complex li-
near models (models with a larger number of mixture components, a larger number
of random effects and more covariate effects depending on the mixture components)
and is suitable for much larger samples. Moreover, it converges faster.

This paper also illustrates the usefulness of heterogeneous linear mixed models
on a study about cognitive ageing. These models allow to highlight various evolution
profiles taking covariates into account. The cross-classification of the groups defined
by the model and clinical events in the next years enables to evaluate whether the
cognitive profiles are associated with different clinical evolutions.

As a conclusion, we hope this work will improve the availability and the use of

heterogeneous linear mixed models.

16
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Appendix 1 : Extract of the Schoolgirl data file

(two first subjects)

1 <+ identification number of the unit (subject)
T 5 < number of measures
2
g 111 116.4 121.7 126.3 130.5 < raw vector of the n; responses
=5
o
3 11111 < raw vector of the first covariate
: |
@ 6789 10 <+ raw vector of the second covariate
%.
~ 2 + identification number of the next unit (subject)
=
(%]
% 5 + number of measures
o
g 110 115.8 121.5 126.6 131.4 < raw vector of the n; responses
o
o
e 11111 <+ raw vector of the first covariate
o :
3. 6789 10 < raw vector of the second covariate
o
=
= 3 < identification number of the next unit (subject)

Appendix 2 : Example of the parameter file

An example of HETMIXLIN.inf used in the application about the height of
schoolgirls is given below. The user should notice that each asked piece of informa-

tion is preceded by a line summing it up.

-> Filename for the data
schoolgirls.txt

-> Filename for the output
girls.out

-> Title of the procedure (in inverted commas)

20




’G=2 : school girls ’
-> Number of units (subjects)
20

-> Number of mixture components (G) and, if and only if G>1, the initial

% values for the G-1 first component probabilities below and the filename
P
Q
=) for the posterior probabilities below again
3
3 2
=
@
o} 0.5
=
5 p.out
®
3 -> Number of explanatory variables (including the intercept) in the data
S .
e file
o
a
N 2
<
D)
g -> Indicator that the explanatory variable is in the model (1 if present
=
P .

0 if not)

11

-> Indicator of random effect for each variable in the model (variables
included in Z1 or Z2)

11

-> Indicator of mixture for each variable in the model (variables included
in X2 or Z2)

11

-> Initial values for fixed effects. First, initial values for common
fixed effects (without mixture) in the same order as in the datafile, then
initial values for the covariates with a mixture (G values per covariate).
ex : bl b3 b21 b22 b23 b4l b42 b43 for a mixture on the second and the

fourth covariate and G=3

21




86 80 5 7

-> Indicator of the random-effect covariance matrix structure (0 if unstructured
matrix / 1 if diagonal matrix)

0

-> Initial values for the variance-covariance parameters of the random

effects (1/2 superior matrix column by column)

311

-> Initial value for the variance of the independent Gaussian errors
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Table 1 : Estimates and standard-errors of the heterogeneous linear mixed model
with two components of mixture for the height of schoolgirls using HETMIXLIN
(the proposed direct maximisation using a Marquardt algorithm) and
HETNLMIXED (Spiessens et al SAS-macro using an EM algorithm) and
estimates of the heterogeneous linear mixed model with three components of

mixture using HETMIXLIN
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G=2 G=2 G=3
HETNLMIXED HETMIXLIN HETMIXLIN

Parameter Estimate SE* Estimate SE** Estimate SE**

™ 0.68 0.14 0.68 0.12 0.50 0.18
o 0.32 0.32 0.30 0.11
T3 0.20
[o1 82.8 1.12 82.8 0.91 84.2 1.18
f11 538  0.091  5.38 0.086 5.32 0.10
1102 81.9 2.01 81.9 1.52 81.7 1.12
[h12 6.44 0.18 6.44 0.15 6.47 0.12
1103 79.4 2.19
1113 5.60 0.20
var(ug;) 6.47 4.94 6.47 3.13 3.50 2.39
cov(ugi, uy;)  0.13 0.40 0.13 0.35 0.32 0.13
var(uy;) 0.034 0.056 0.034  0.030  0.030 0.024
o 0.69 0.10 0.69 0.063 0.68 0.06
2L 166.67 165.94
AIC 351.35 355.87
BIC 360.32 367.82

* Standard Errors obtained using Louis’s method
** Standard Errors obtained using the inverse of the Hessian matrix and

the A-method for the component probabilities and the variance parameters
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Table 2 : Estimates of the homogeneous linear mixed model and the heterogeneous
linear mixed model with two components of mixture obtained with HETMIXLIN
program for the MMSE evolution adjusted on age, occupation, educational level,

living place and interaction with time for age and educational level.

I

>

—

o Homogeneous Heterogeneous

=

= model (G=1)  model (G = 2)

QO

g Parameter Estimate SE  Estimate  SE

__a".

= m 1 0.98 0.005

=

Q o 002

=

o

= o1 -1.92 0.32 -1.51 0.31

w

o

8 fia1 057 016  -042  0.16

<

= Lot -0.042  0.018  -0.028  0.024

&

=

e o2 0.89 0.36
H12 0.46 0.19
22 0.055 0.028
var(ue;) 0.43 0.025 0.32 0.024

cov(uo;, U1;) 0.074 0.010 0.034 0.0095

var(uy)  0.066  0.014  0.029  0.013
cov(uo;, Ug;) 0.042 0.0073 0.028 0.0069
cov(u1;, Ug;) 0.052 0.010 0.038 0.010

var(ug;) 0.073 0.016 0.060 0.016

o 0.45 0.009 0.45 0.009
-L 4662.9 4609.5
AIC 9367.7 9269.0
BIC 9477.8 9400.0
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Table 3 : Relationship between classification stemmed from the heterogeneous

linear mixed model with two components and dementia diagnosis at T8.

Classification

Dementia diagnosis at T8 Linear class Nonlinear class Total

Positive 47 21 68
Negative 1319 5 1324
Total 1366 26 1392
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Figure 1 : Mean curves of the MMSE between T1 and T8 for the heterogeneous
linear mixed model with two components of mixture for a 70-year-old worker
subject with no education and living in Dordogne.

Solid line : first component with a probability of 98%

Dashed line : second component with a probability of 2%
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