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Markov Random Field Modeling for

Three-dimensional Reconstruction of the Left

Ventricle in Cardiac Angiography
Rubén Medina,Member, IEEE, Mireille Garreau*, Javier Toro, Herv´e Le Breton, Jean-Louis Coatrieux,

Fellow, IEEE, and Diego Jugo

Abstract

This paper reports on a method for left ventricle three-dimensional reconstruction from two orthogonal ventriculo-

grams. The proposed algorithm is voxel-based and takes into account the conical projection geometry associated with

the biplane image acquisition equipment. The reconstruction process starts with an initial ellipsoidal approximation

derived from the input ventriculograms. This model is subsequently deformed in such a way as to match the input

projections. To this end, the object is modeled as a three-dimensional Markov-Gibbs random field, and an energy

function is defined so that it includes one term that models the projections compatibility and another one that includes

the space–time regularity constraints. The performance of this reconstruction method is evaluated by considering the

reconstruction of mathematically synthesized phantoms and two 3-D binary databases from two orthogonal synthesized

projections. The method is also tested using real biplane ventriculograms. In this case, the performance of the

reconstruction is expressed in terms of the projection error, which attains values between 9.50 % and 11.78 % for two

biplane sequences including a total of 55 images.

Index Terms

Three-dimensional reconstruction, Markov Random Fields, Ventriculographic images, Reconstruction from pro-

jections, Simulated annealing

I. I NTRODUCTION

The three-dimensional reconstruction of the ventricular shape is useful for diagnosis and for guiding interventional

procedures. Information about the patient-specific three-dimensional ventricular shape improves the precision of
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assessment of the ventricular function, the extraction of the 3-D ventricle motion during the cardiac cycle, as well

as the visualization of the observed structure from any arbitrary orientation or slicing.

Even when several imaging modalities are used in cardiological studies, up to now, X-ray angiography has been

the gold standard in clinical cardiac work. This imaging modality enables real time cardiac imaging as required in

interventional procedures where single plane or biplane image sequences are acquired. The acquisition is performed

after guiding a catheter into the chambers of the heart or vessels and injecting a contrast agent.

Three-dimensional object reconstruction from two-dimensional projections can be considered as a particular

case of the classical reconstruction problem found in tomography [1]. However, this problem is ill-posed and a

robust solution is only reached by considering prior knowledge, appropriate shape primitives and assumptions.

The 3-D reconstruction problem from two projections has been tackled by several research groups by assuming

a homogeneous mixture of blood and contrast agent in the cavity, and by decomposing the problem into several

2-D slice reconstruction sub-problems [2]–[8]. The 3-D reconstructed object is then assembled by stacking the

2-D reconstructed binary slices. These approaches work under the assumption of a parallel projection geometry.

The slice-based reconstruction approach has the disadvantage of requiring additional pre-processing stages such as

projection alignment between both views. The accuracy of the results is affected by the magnification associated

with the actual conical projection geometry. The method proposed by Prause and Onnash [9] considers the real

oblique projection geometry but performs the reconstruction on a slice basis. Recently, Moriyamaet al. [10] and

Satoet al. [11] proposed an approach that recovers the left ventricle shape from multi-view X-ray cineangiograms.

This approach is based on the recovery of shape from occluding contours. However, the gray-level values of acquired

ventriculograms, which provide valuable information on depth, are not exploited in the reconstruction process. Kehl

et al. [12] have also proposed a method that performs the 3-D reconstruction of cardiac chambers from multi-

view rotational biplane angiographic sequences. The reconstruction is based on a tomography analytical cone-beam

back-projection approach from views acquired at the same cardiac phase. The approach is voxel-driven and has the

advantage of performing the 3-D reconstruction without requiring prior segmentation of the cardiac structures. Yet,

it requires a large number of views to accomplish the computerized tomographic reconstruction. As a consequence,

it can be affected by patient motion and contrast dye dilution.

This work is part of a project [13], [14], where a slice based reconstruction method [15], a fuzzy and evidential

approach [16] as well as an evolutionary reconstruction method [17] have been explored. In [14], the first devel-

opments of the Markov Random Field based reconstruction approach are presented. However, only a 3-D Markov

model is used and results are limited to the reconstruction of a binary database and a single pair of angiograms.

In [16] a method for performing the binary reconstruction from two views is reported. The method is based on the

fuzzy set theory and the Dempster–Shafer combination rules in order to cope with the imprecision and ambiguity

of the reconstruction process. In this paper, we propose a voxel-based left ventricle 3-D reconstruction approach

from two projections that considers the real conical acquisition geometry (see Fig. 1). The proposed reconstruction

algorithm starts with an ellipsoidal approximation of the left ventricle shape which is subsequently deformed to

reach a final 3-D shape. The algorithm uses a Markov Random Field (MRF) framework for defining a cost function
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Fig. 1. Three-dimensional reconstruction of the left ventricle from two views.

involving the difference between the input images (the conventional Left Anterior Oblique (LAO)60 ◦ and Right

Anterior Oblique (RAO)30◦ views) and computed projections as well as the space-time connexity of the ventricular

cavity. This energy function is then minimized by using a stochastic optimization procedure based on the Metropolis

algorithm and simulated annealing [18].

The MRF theory provides a convenient and consistent way for modeling content dependent entities such as

image pixels or voxels and correlated features [19]–[21]. This theory has been used for modeling and solving

several problems in image processing such as image segmentation [18], texture modeling and classification [22],

3-D reconstruction of coronary sections [23], surface reconstruction [20] and motion estimation and segmentation

[24]. More precisely, the MRF model takes into account non-linear interactions between the site labels and the

observation process to represent an energy function term.

II. M ETHODS

The proposed left ventricle reconstruction method is composed of two stages. First, an approximate ellipsoidal

shape is obtained by considering several geometrical features of the input images. Next, this approximation is

progressively improved by considering the constraints involved in the reconstruction problem. These constraints are

coded in an energy function associated with a Gibbs probability distribution of a MRF. The minimization of this

energy function guides the reconstruction procedure.

A. Preprocessing Input Images

The angiograms are corrected for geometric distortion using the following procedure: a) the images of a 2–D grid

are acquired using the gantry settings that will be used for the patient image acquisition; b) a dewarping polynomial

is estimated using the actual and measured coordinates of the grid interception points, and c) the angiograms

are corrected using the dewarping polynomial. Logarithmic subtraction is performed on ventriculograms acquired

before and after the injection of a contrast agent. This is aimed at obtaining an image whose intensity value, at each

pixel location, is proportional to depth in the left ventricle. In the proposed method, it is assumed that subtracted

vetriculograms display only information about the left ventricle. This can be ensured by segmenting out any other
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structure that may be present in the acquired images. Input images are represented byN 4×N5 arrays, denoted asd1

andd2 respectively. The conical projection is considered in order to model the ventriculograms acquisition geometry

(pinhole model). Such a model is represented by a3×4 projection matrix denoted asM. The projection is modeled

as the composition of two transformations: the first one is related to the perspective projection and performs the

transformation between a 3-D point expressed in the camera coordinate system and a 2-D point expressed in the

image coordinate system. The second one performs the transformation between a 3-D point expressed in the object

coordinate system and the camera coordinate system. The composition of both transformations is represented by

matrix M. The relation in homogeneous coordinates between an image point(u, v) and an object point(x, y, z) is

expressed as:

λ · [ u v 1 ]T = M · [ x y z 1 ]T (1)

whereλ is any non-zero scalar. As we are dealing with two views acquired with a biplane system, each source-

detector of this system is modeled by a projection matrix, denoted asM 1 andM2. The elements of these matrices

are estimated according to a calibration procedure [25] that involves imaging a plexiglass cube that includes a set

of L lead markers. The 3–D locationsPi(x, y, z) (i = 1, ..., L) of the lead markers are known as well as their

corresponding 2–D projectionsp i(u, v). An equation system of2L equations with 11 unknowns corresponding to

the elements of matrixM is obtained by explicit evaluation of (1) (one of the elements of this matrix ism 34 = 1).

This system of equations can be solved when at least 6 markers are located in the cube. In this way, the relation

between actual 3-D locations and pixels in the projected image is established.

B. Images Synthesis

During the reconstruction procedure it is necessary to establish a comparison between the ventriculograms and

the projections of the object in reconstruction denoted ash 1 andh2, each one represented by anN4 × N5 array.

These projections are synthesized by using the pinhole model and an adaptation of a ray-tracing algorithm [26]. In

this case, for each ray cast the intensity assigned in the image is the length of the interception between the ray and

the binary object [27].

C. Approximate Reconstruction

The objective of the first stage is to obtain an approximate reconstructed shape. This 3-D object is an ellipsoid

whose size and placement are derived from the input projections. The following assumptions are made:

1) The parameters defining the projection geometry are given.

2) The LV has been segmented on both input images.

3) The conical projection of the inertial center of the 3-D object matches at least approximately the inertial

center estimated from the 2-D projections.

The last assumption is based on the invariance property of geometric moments in relation to translation, rotation

and scale modification, which are building blocks of the projective geometry [28]. The approximate reconstruction
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Fig. 2. The inertial axes overlaid to the segmented images. (a) RAO Projection. (b) LAO Projection.

is obtained by determining in both projections a set of points associated with the size and orientation of the 2-D

shape. Using an approximate matching between points in both projections, the 3-D reconstruction is performed.

The centered moment matrix for the reconstructed 3-D points is obtained and an ellipsoid is derived from this

information [29].

1) The inertial moments: The geometrical moment is a mathematical tool that enables the recovery of features

associated with size, position and orientation of the LV in the 3-D space and in the projection spaces [30]. Any

object can be approximated by its mass, the gravity center position and the inertia matrix expressed in relation to

the gravity center. Considering a projection imaged, the elements of the moment matrix are given according to:

mpq =
N4∑
i=1

N5∑
j=1

ipjqdij (2)

wherep, q represent the order of the inertial moment andd ij is the intensity of each pixel in the image. The

estimation of the coordinates of the gravity centerigc andjgc on each projection are given by:

igc =
m10

m00
, jgc =

m01

m00
. (3)

This point is the origin of a coordinate system that allows the description of the object represented in the image.

The moment matrix elements, estimated by taking as the reference the coordinate system positioned at the gravity

center, can be obtained by using the following expression:

mgh =
N4∑
i=1

N5∑
j=1

(i − igc)g(j − jgc)hdij , (4)

whereg, h represent the order of the inertial moment. By evaluating (4) consideringg, h ∈ {0, 1}, a2×2 moments

matrix denoted asH can be obtained whose eigenvectors define the object orientation in the image. MatrixH is

evaluated from the segmented and smoothed version of the input images in order to reduce the inaccuracy related

to intensity variations inside the object. In Fig. 2 the inertia axes are shown overlapped on the ventriculographic

RAO image and denoted as the line segments (AC) and (BD) (see Fig. 2a). The inertia axes overlapped on the

ventriculographic LAO projection are denoted as (A’C’) and (B’D’) (see Fig. 2b). The intersection of the inertia axes

(AC and BD) with the detected contour in the RAO projection defines a set of four points denoted as{A, B, C, D}.
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The epipolar lines for these points are traced in the LAO view given the line segments{E A, EB, EC , ED}. The

interceptions of the epipolar lines with the inertia axes in the LAO projection give the points{A ′, B′, C′, D′}.

As only a rough approximation is required, the points in the RAO image are considered matched to the points in

the LAO image forming the following pairs(A, A ′), (B, B′), (C, C ′) and (D, D′) (using the epipolar geometry

[31]). In fact (A, A′) and (C, C ′) are really approximate corresponding pairs whereas(D, D ′) and(B, B′) might

not be in real correspondence. As the intersection between the epipolar linesE D andEB are two line segments

respectively, then any point in the first line segment can be in correspondence with point D and also any point

in the second line segment can be in correspondence with point B. So from the epipolar constraint alone, clearly,

any chosen correspondence is only a guess. However, as only a rough approximated shape is researched in this

first step of the reconstruction process, the only constraints used are given by the epipolar lines on which both

points D′ and B′ have been chosen. Results on synthesized objects and binary databases show that the second

stage is able to cope with the imprecision related to the initial approximate shape. For these matched points the 3-D

reconstruction is performed to obtain four 3-D points. Additionally, the gravity center in both images are considered

matched and reconstructed in 3-D, thus providing the gravity center for the 3-D object. As both projections are

logarithmically subtracted in order to attenuate non-contrasted structures, the projection of the gravity center in each

image corresponds to a pixel whose gray-level value can be taken as an approximate to the depth of the contrasted

3-D left ventricle cavity along the projection line [9]. As the target shape is an ellipsoid that is symmetrical with

respect to the gravity center, the depth (pixel value) is distributed symmetrically with respect to the gravity center

along the projection line. This procedure is performed for each projection image to obtain a set of four additional

3-D points.

2) Ellipsoid construction: A representation of an ellipsoid as a3× 3 symmetric positive-semidefinite matrixX

is considered [29], [32]. A three-dimensional volume enclosed by an ellipsoid centered at the origin is represented

by a set of pointsz given by:
{
z | zT X−1z ≤ 1, z ∈ �3

}
. (5)

The objective is to obtain an ellipsoidal volume shape centered at the gravity center based on the set of points

previously obtained. With this purpose, the 3-D moment matrix for the set of nine points is calculated. This matrix

satisfies the requirements for representing an ellipsoid whose size and orientation can be recovered through an eigen

decomposition procedure [33]. Specifically, ifλ i, νi are the eigenvalues and eigenvectors of the matrixX , then the

principal axes of the ellipsoid are in the direction given byν i and the corresponding semi-axes lengths are given

by
√

λi. The ellipsoidal volume shape is obtained using (5).

D. Reconstruction based on a Markov Random Field

The approximate reconstruction provided by the previously described procedure is deformed by means of an

iterative algorithm that is based on the binary MRF modeling. This procedure includes several stages that are

described below.
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1) Three-dimensional binary object Markov Model: The MRF model for the binary object in reconstruction (the

Left Ventricle (LV) ) takes into account the relation between the global and local 3-D LV contour probabilistic

properties. The binary MRF is defined on the contour of the LV. An iterative deformation procedure based on this

model is then used to improve the reconstructed shape. The gray-level value associated with each pixel in the input

images is related to the depth length of the three-dimensional left ventricle according to the path of an X-ray for

this projection point. This relation is used to recover the three-dimensional binary shape of the ventricle from the

input images. The three-dimensional binary object in reconstruction is denoted by a realizationf = {f ijk} of a

3-D Random FieldF = {Fijk}, associated with the spaceΩ defined inN 3 spanning all possible realizations. The

sites in the Random Field are defined by the following set representing a 3-D lattice:

L = {(i, j, k) : 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3}. (6)

This lattice comprises(N1×N2×N3) voxels or sites. The 3-D object is modeled by a random field{F ijk}, where

each label takes on the value 1 if the voxel belongs to the ventricle and zero otherwise (f ijk ∈ Λ = {0, 1} ). F is

considered as a MRF in relation to a neighborhood:

ηijk = {(q, r, s) ∈ L : dist((q, r, s), (i, j, k)) ≤ u, (q, r, s) �= (i, j, k)} (7)

wheredist(·) denotes the Euclidean distance andu is an integer value. The MRF conditional probability is given

by:

P (fijk

∣∣fL−(i,j,k)) = P (fijk

∣∣ fηijk
). (8)

According to the Hammersley-Clifford theorem [20], the random FieldF defined inL is a Gibbs Random Field

in relation to a neighborhoodη if and only if the probability distribution function is given by:

P (f) =
e−Uη(f)

Z
(9)

where

Z =
∑
f∈Ω

e−Uη(f), (10)

Z is a normalization constant, andUη(f) is an energy function defining the interaction between the MRF sites. The

binary assumption for the label associated with the random field suggests the utilization of the Ising autologistic

model [34], where a first order neighborhood that includes the nearest 6 voxels is considered. In the reconstruction

case, the interaction between voxels in the neighborhood prevents the sudden growth of isolated or many irregular

regions. The considered interactions are given by cliques including two sites where one of the sites is the central

voxel of the neighborhood.

An energy function used to solved the reconstruction problem is determined by using Bayes theory:

P (f | d) =
P (f)P (d | f)

P (d)
(11)

whereP (f | d) is the posterior probability,P (f) is the prior probability expressed by (9),P (d) is a normalization

factor andP (d | f) represents the conditional probability of the observation process (the angiographic projections)
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given the object in reconstruction. Noise in the input projections is approximated by a normal distribution [35] as

in Bresleret al. [36]. The posterior probability thus becomes:

P (f | d) =
e−U(f)

Zt
(12)

whereZt is a normalization factor. By selecting themaximum a posteriori (MAP) estimator, the configuration of

the 3-D object that maximizes the posterior probability is obtained. This leads to the minimization of the energy

function U(f) which is expressed as:

U(f) = Uη(f) + aUd(f) (13)

wherea is a weighting parameter. The termUη(f) represents the internal energy of the 3-D random field of the

object in reconstruction. This energy term models the prior constraints related to the smoothness of the object. It

plays an important role in regularization since it reduces the effect of the ill-posed nature of the problem [37]. In

our case, we use a neighborhood which consists of the26 closest neighbors of each voxel. The energy term is

chosen as:

Uη(f) =
∑

(i,j,k)∈L


 ∑

(q,r,s)∈ηijk

[1 − δ(fijk − fqrs)]


 (14)

whereδ(·) is the delta Kronecker function which takes on the value 1 iff ijk = fqrs and zero otherwise. The term

Ud(f) is represented by a quadratic error whose minimization leads to realizations of the 3-D object that provides

synthesized projections close to the corresponding input projections. The synthesized projections are generated

according to the procedure specified in Section II-B. This term is expressed as:

Ud(f) =
∑
(l,m)

(h1lm − d1lm)2 +
∑
(u,v)

(h2uv − d2uv)2 (15)

whereh1lm andh2uv are the gray-level of pixels in the synthesized projections of the object in reconstruction, and

d1lm andd2uv are the grey-level of the pixels in the input projections.

2) Metropolis Based Optimization procedure: During the optimization procedure, the initial ellipsoidal 3-D

object is progressively deformed by minimizing the energy function. This optimization procedure is guided by a

stochastic relaxation algorithm, which requires a proper choice of the weighting parametera associated with the

energy function [18]. The deformation of the initial 3-D object is performed by the simulation of a Gibbs Random

Field. The optimization procedure works by generating realizations of the random process according to the Gibbs

distribution. These realizations minimize the energy function, and they are generated according to the following

procedure: each iteration of the optimization process implies visitation of each voxel included in a ”target” region

around the contour of the object in reconstruction. The criterion that has been used for defining this region is the

following: a voxel belongs to the ”target” region if the number of voxels in a3×3×3 neighborhood having a value

different from the central voxel is greater than 8. This value was obtained during the training procedure presented

in Section III-D. The stochastic relaxation algorithm used during the optimization of the conditional probability

includes a simulated annealing algorithm that avoids the possibility of the optimization procedure becoming trapped
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in a useless local minima. This implies the introduction of a temperature parameterT (τ) in the joint probability

distribution function of (12) that results in the following equation:

P (f | d) =
e

−U(f)
T (τ)

Zt
. (16)

The temperature value is decreased at each iteration. The initial temperature valueT (0) is taken high enough,

such that a large number of proposed voxel modifications are allowed at the beginning of the optimization process.

The final solution corresponds to the MAP estimator and is attained by progressively decreasing the temperature

value while the iteration number is increased. In this case, we adopted the temperature decreasing law proposed

by Kirkpatrick et al. [38]. The criteria used to decide whether the voxel under consideration is changed is based

on the comparison between the probability value associated with the present configuration and the probability

value associated with the configuration that would result after acceptance of the proposed voxel modification. This

comparison between both probability values is estimated according to (12) and can be performed by estimating the

change in energy associated with each new configuration [18]. The new configuration is accepted according to the

Metropolis decision rule for a given temperature value. Each time a voxel is modified, the synthesized projections

are updated as a function of the voxel modification. The energy function in (13) includes a weighting parameter.

The choice of this value and the initial temperature is performed empirically using a training data set. The stopping

criterion for the iterative optimization procedure implies counting the number of accepted transitions for the voxel

set associated with the contour region. If the number of transitions is lower than 10 % of the total number of voxels

included in this region, then the optimization procedure is stopped. For selecting this threshold value, several tests

were performed and the threshold value that gave the best results in terms of 2-D and 3-D errors with respect to

the number of iterations required was retained. Other threshold values could be chosen (for instance, values as low

as 5 % or 1 %), but the number of iteration increases considerably and the reconstruction error does not improves

accordingly. Alternatively, the algorithm could be run for pre-specified number of iterations. The entire algorithm

is summarized in Fig. 3.

E. Space–time extension of the Markov model

The 3–D reconstruction from an entire sequence of biplane angiograms can be improved by considering the

assumption that the left ventricle shape varies only slightly between two consecutive time instants during the

cardiac cycle. The first stage in the reconstruction process starts by performing the reconstruction for the time

instant t0 in the image sequence, according to the method previously presented. Reconstruction at the instantt

works under the assumption that the 3–D reconstruction for the instantt−1 is available and that this reconstruction

gives the initialization shape. The improvement stage obtains the final reconstruction. A space-time neighborhood

(see Fig. 4) for modeling the smoothness in the shape variation along the cardiac cycle is obtained by including the

voxel fijk,t−1 in the neighborhood considered at timet. In this neighborhood structure, several types of cliques can

be considered. A temporal clique including the voxelsf ijk,t andfijk,t−1 in the neighborhood considered at timet

is incorporated in the internal energy termUη(f) of (14). This clique is weighted by a coefficient that is different
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Require: a: weighting coefficient for the energy function

Require: T(0): initial temperature parameter

Require: MaxIter: max number of iterations

1: Initialize using an ellipsoidal shape

2: for an iteration number lower thanMaxIter do

3: Obtain a regionRc around the contour

4: while non-visited voxels inRc

5: Select a voxel at random and without replacement

6: Select the new possible label as the complement of

. the current label

7: Evaluate∆U for the new label

8: if ∆U < 0 then

9: Update voxel value

10: Update projections

11: else

12: Evaluatep = exp(−∆U
T )

13: Obtain a random numberra

14: if ra > p then

15: Update voxel value

16: Update projections

17: end if

18: end if

19: end while

20: decrementT

21: end for

Fig. 3. Algorithm for the MRF based reconstruction

from the coefficients affecting the spatial cliques. This weighting coefficient is denotedβ t and its value defines the

smoothness degree for modeling the temporal similarity between two consecutive 3–D reconstructed shapes. The

new energy function term modeling the smoothness constraint can be expressed as:

Uη(f) =
∑

(i,j,k)∈L


 ∑

(q,r,s)∈ηijk

[1 − δ(fijk − fqrs)] + βt[1 − δ(fijk,t − fijk,t−1]


 (17)

whereηijk denotes the spatial neighborhood at time instantt.
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fijk,t fijk,t-1

Fig. 4. Space - time neighborhood
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Fig. 5. Choice of algorithm parameters. The reconstruction error (2–D and 3–D) is shown. a) as a function of parameterT (0), b) as a function

of parametera.

III. R ESULTS AND DISCUSSION

The reconstruction method was tested using mathematically synthesized phantoms and two binary databases.

Additionally, the method was also tested using experimental data corresponding to a pair of sequences of real

biplane ventriculograms. Visualization of the three-dimensional databases is performed using the Visualization

ToolKit (VTK) [39].

A. Mathematically synthesized phantoms

Ellipsoidal objects are shapes useful for modeling the left ventricle [40]. This primitive is described according

to the following equation:
(x − xc)2

a2
+

(y − yc)2

b2
+

(z − zc)2

c2
= 1 (18)

wherea, b andc are the semi-axes lengths of the ellipsoid centered at the point (x c, yc, zc). This basic shape can

be deformed for generating shapes useful for testing the reconstruction algorithm. This can be done by introducing
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(a)

(b)

Fig. 6. Results for the reconstruction approach for the first binary database. a) 3-D binary database. b) Final 3-D binary reconstructed object.

Both 3-D objects have a resolution of80 × 80 × 80 voxels.

weighting functions that scale the coordinates of the original shape denoted(x, y, z) to obtain the coordinates of

the transformed object(X, Y, Z) as:

X = (αz + 1)x; Y = (βz + 1)y; Z = z (19)

whereα andβ are two parameters that define the degree of global deformation of the ellipsoidal shape (see Fig.

9).

B. 3-D databases and ventriculographic sequence images

A test of the reconstruction method was performed using two 3-D binary databases. The first is obtained by

manual segmentation of a dog heart in a 3-D CT image. The interior of the heart is filled with 1 values and the

exterior is filled with 0 values. The size of the database is80× 80× 80 voxels. The second 3-D binary database is

the 3-D shape of the LV obtained from SPECT images of a human heart using a deformable model [41]. The size of

this database is the same as the size of the first one. The projections of each binary database are synthesized by using

the pin-hole projection model. This model simulates the conical projection geometry of an X-ray cineangiographic

equipment. The parameters of the projection matrix correspond to the values obtained from the calibration of a

biplane angiographic system. A pair of images is synthesized, each one with a size of512× 512 pixels and 8 bits

per pixel.

The tests on real data of the reconstruction method are performed on two real ventriculographic image sequences

of humans. These images were acquired with a Siemens X-ray biplane angiographic system, considering two

standard examination views (Left Anterior Oblique-LAO60◦ and Right Anterior Oblique-RAO30◦), with a field

of view of 27 cm, a frame rate of 25 images per second and a total acquisition time of about one second including

an entire cardiac cycle going from one end-systole to the next end-systole. The spatial resolution of the images

is 512 × 512 pixels, with a depth of 8 bits. Other orientations of the biplane gantry with respect to the heart are

feasible but the difference between both views should be close to90 ◦ to provide complementary information about

the LV shape. The images for the end–diastole instant in the first sequence of biplane angiograms are shown in

Fig. 11. The acquisition chain includes the following steps:
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Fig. 7. Percent error in function of the iteration number, for the first binary database.

1) Distortion correction (of X-ray beam inhomogeneities, scattering effects, image intensifier-curvature and the

magnetic field effects). This is done according to the procedure presented in Section II-A.

2) Calibration, which is performed according to the procedure reported in [25] from the acquired X-ray projec-

tions of the phantom, for both viewing angles of the bi-plane radiological system.

3) Acquisition of mask sequences of uncontrasted images.

4) Acquisition of contrasted sequences after dye medium injection in the left ventricle cavity.

C. Error measures

The error of the reconstructed object is measured by one of the following procedures, depending on the data

available: a) When a 3-D reference binary object is available the 3-D reconstruction error is evaluated by comparing

the 3-D reconstructed object to the reference object according to the following equation [42]:

3DError(%) =

N1∑
i=1

N2∑
j=1

N3∑
k=1

∣∣∣fijk − f̂ijk

∣∣∣
N1∑
i=1

N2∑
j=1

N3∑
k=1

fijk

× 100 (20)

wheref̂ijk is a voxel in the reconstructed object andf ijk is a voxel in the reference object.

b) When the reference object is not available, the error is obtained by comparing the projection of the reconstructed
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object to the input projection. The reconstruction error can be estimated through the following equation:

RAO − error(%) =

N4∑
l=1

N5∑
m=1

|d1lm − h1lm|
N4∑
l=1

N5∑
m=1

d1lm

× 100

LAO − error(%) =

N4∑
u=1

N5∑
v=1

|d2uv − h2uv|
N4∑
u=1

N5∑
v=1

d2uv

× 100 (21)

where the pixel intensity values of the input projections are denoted asd1 lm andd2uv and the pixel intensity values

of the projections of the 3-D reconstructed object are denoted byh1 lm andh2uv.

D. Choice of the algorithm parameters

The parameters defining the performance of the 3-D reconstruction for a given time instant area, T (0) and the

number of iterations. These parameters have been chosen empirically, after performing several tests, as the set that

gives the least 3-D and 2-D reconstruction error. The reconstruction method is first trained by considering the two

binary databases (training set). The procedure consists in changing the value of one of the parameters while keeping

the other parameters constant. The 2-D and 3-D reconstruction errors are measured and the selected value for this

parameter, that gives the lower reconstruction errors, is kept constant when the other parameter is studied at the

next iteration. This procedure is repeated until the optimal parameter set is obtained. This parameter set is further

tested with the biplane ventriculographic image sequence. The optimal values area = 5 andT (0) = 0.1. In Fig.

5a the variation of the reconstruction error, evaluated according to (20) and (21), is shown as a function of the

parameterT (0) considering a maximum number of 64 iterations and a value of the parametera equal to 5. The

minimum 3-D error is obtained with the value ofT (0) = 0.1. In Fig. 5b the variation of the reconstruction error

(2-D and 3-D) is shown as a function ofa, considering a maximum number of 64 iterations andT (0) = 0.1. The

optimal value fora is 5. In Fig. 7, the variation of the reconstruction error is shown as a function of the number

of iterations. The optimal values for parametersa andT (0) are chosen (a = 5, T (0) = 0.1). The results show that

both the 3-D error and 2-D error attain smoothly the minimum value in about 60 iterations. From these results it

is possible to verify that when we use a set of parameters giving the minimum 3-D error, the 2-D error is also

minimum. Regarding the sensitivity of the reconstruction method to each one of the parameters, it is possible to

appreciate that there is a relative wide range of parameter values that could be used without severely affecting the

performance of the reconstruction algorithm. For instance, a variation of the parametera from 5 to 50 has as a

consequence an increase of the 3-D reconstruction error from 1.7 % to 5 %. In general using parameters values

such thata < 1 and T (0) < 0.05 increases the 3-D percent error, however the algorithm is less sensible when

using higher values for these parameters. Additionally the threshold defining the target region in Section II-D.2

has been selected by varying the value between 3 and 24 and retaining the value that gave the lower 3–D error
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Fig. 8. Percent reconstruction error versus threshold used for defining the target region

using 64 iterations. The optimal value found was 8. If this threshold value is increased the number of voxels in the

target region is decreased and the number of iterations required for attaining a low 3–D error is increased. When

the threshold value is decreased the number of voxels in the target region is increased, the reconstruction error is

reduced slightly but the execution time is increased substantially. The percent error versus the threshold value is

shown in Fig. 8. The parameterβt in (17) is selected as the value that provides the lower projection error when the

algorithm is initialized with the 3–D reconstruction of the angiograms at timet − 1. An optimal value is obtained

asβt = 2.0.

E. Results using mathematically synthesized phantoms

A total of 124 phantoms with size80×80×80 were generated by changing parameters{a, b, c, α, β} in (18) and

(19). Parameters{a, b, c} were varied in the[20, 40] interval and parameters{α, β} were varied in the[0.001, 0.05]

interval. The parameters were varied to generate several sets of phantoms. In each set, one of the parameters is

varied while the others are kept constant. Table I shows the parameter values used to generate the phantoms. Four

of the mathematically synthesized phantoms are shown in Fig. 9, where the objects are rendered using the VTK

according to a pair of views: the RAO view, shown in Fig. 9a, and the LAO view, shown in Fig. 9b. Two projections

of each 3-D object were synthesized using the same projection matrices used for the 3–D binary databases. The

reconstruction is performed from these projections using the optimal parameters. The 3-D and 2-D percent errors

are measured after 64 iterations. Table II summarizes the 3-D percent error and Table III summarizes the 2-D error.

Observe that even when the 3-D average error is 3.87± 3.93 %, the maximum percent error can be as high as

15.12 %. This maximum error is obtained when the ambiguity of the 3-D object is high and the reconstruction

algorithm is not able to recover the right orientation. In all cases, however, the average 2-D percent error for the

RAO view (Table III) is 1.32± 1.19 % and the average 2-D percent error for the LAO view is 1.13± 0.82 %. The

maximum percent error for the RAO view is 6.79 %, and 3.88 % for the LAO view.
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(a)

(b)

Fig. 9. Four 3-D mathematically synthesized phantoms included in the set of 124 used for testing the reconstruction algorithm. a) RAO view.

b) LAO view. Each 3-D object has a resolution of80 × 80 × 80 voxels.

TABLE I

VARIATION OF PARAMETERS FOR PHANTOMS GENERATION.

Axes(a,b,c) Step α Step β Step Number of phantoms

40,20,30 0.0213 0.001-0.05 0.0163 30

40,20,30 0.025-0.049 5.85 × 10−4 2 × 10−3 41

40,21-31,30 1 0.0213 2 × 10−3 11

20-39,20,30 1 8 × 10−3 0.02 20

40,31-40,30 1 0.0213 0.02 10

25,40,26-33 1 8 × 10−3 0.02 8

30,40,36-39 1 8 × 10−3 0.02 4

F. Results using 3-D binary databases

Reconstruction results for the first binary database (see Fig. 6) show the 3-D object visualized from several

view points. The final 3-D error is 1.37 % after 64 iterations. The evolution of the 2-D and 3-D percent errors

as a function of the iteration number is shown in Fig. 7. For the second binary database, we show (see Fig. 10 )

the original as well as the reconstructed objects visualized from several viewpoints. The final 3-D error is 2.7 %

after 80 iterations. An additional test using the first binary database was performed but in this case a resolution of

64× 64× 64 voxels was considered. The evolution of the 2-D and 3-D percent errors as a function of the iteration

number is similar to the one shown in Fig. 7 for the case of a resolution of80 × 80 × 80 voxels, however, the

execution time is reduced because the number of voxels is lower.

TABLE II

3-D PERCENT ERROR FOR THE TESTS PERFORMED.

Ellipsoids 1st database 2nd database

(Mean± Std deviation)

3-D percent error 3.87± 3.93 1.37 2.70

Maximum error 15.12 – –
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(a)

(b)

Fig. 10. Results for the reconstruction approach for the second binary database. a) 3-D binary database. b) Final 3-D binary reconstructed

object. Both 3-D objects have a resolution of80 × 80 × 80 voxels.

RAO 30
o LAO 60

o

Fig. 11. Input angiograms extracted from the first sequence for the end-diastole. The size of the images is512 × 512 pixels.

G. Tests on real data

The fact that the real 3-D object is not available makes it impossible to measure the 3-D reconstruction error

directly. In this case the error assessment is performed by comparing the synthesized projection of the reconstructed

object against the input projections (see Section III-C). Four time instants of the ventriculogram sequence are selected

in order to adjust the algorithm parameters. These tests show that parameters obtained using the binary databases

also provide the minimal projection error when performing the reconstruction from real ventriculograms.

1) Test at the end-diastole instant: 3-D reconstruction for the end-diastole instant of time, in the first sequence

of angiograms, required 48 iterations to reach a projection error value of 6.67 % and 7.92 % for the LAO and RAO

views respectively (see Fig. 13). We verified that more iterations do not improve nor degrade the projection error. The

stopping criterion consists in measuring the projection error. At each iteration, if the projection error improvement

is lower than 0.5 % for both projections during three consecutive iterations or the pre-specified maximum number

of iterations is attained, the algorithm is stopped. The reconstructed shape is spatially coherent and could match the

real anatomic structure shape of the left ventricle. A careful examination of Fig. 11 (RAO incidence) shows that

the assumption of perfect mixture of blood and contrast agent is not verified on these images. A visual examination
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o
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o

Fig. 12. Absolute value of the difference between the input images and the synthesized projections of the reconstructed object. A gray–level

enhancement is performed in both images for visualizing the small differences. The size of the images is512 × 512 pixels.

of the RAO image shows two dark regions located at the base and at the apex of the LV while there is a less

dark region located in the middle portion of the LV. An alternative procedure for detecting the imperfect mixture

of blood and dye agent consists in playing the sequence of cineangiograms and observing how the bubbles of

un-mixed contrast agent evolve in time. This imperfect mixture of blood and contrast agent could affect the shape

of the final reconstructed object as shown by the bulge that is visible in Fig. 13 for the ”Right Apical” incidence.

An additional test consists in performing the reconstruction of the LV chamber at the end–diastole instant in the

second sequence of biplane angiograms. The input biplane angiograms are shown in Fig. 15. The reconstruction

is performed using the same parameters (a, T (0) and number of iterations) considered in the first sequence of

angiograms. The reconstructed shape is shown in Fig. 16. In this case the projection error is 8.78 % and 8.59 % for

the LAO and RAO views respectively.

2) Test at the end-systole instant: The same test has been performed to obtain the 3-D reconstruction of the

left ventricle for the instant of end-systole by considering as the input projections the preprocessed images in the

first sequence of angiograms. The same parameters as those considered for the previous test has been used. Results

are shown in Fig. 14 where the reconstructed object is shown from several views. The minimum projection error

value in this case is 11.7 % for the LAO image and 13.5 % for the RAO image after 48 iterations. This error value

remains unchanged when the iteration count is increased.

3) Test for the entire angiographic sequences: The reconstruction is performed for two angiographic sequences,

each comprising one cardiac cycle. The first sequence has 28 and the second sequence has 27 biplane images. Both

steps of the reconstruction algorithm are considered at each time instant. Table III summarizes the 2-D percent error

obtained. In this case, the average percent error for the RAO view of the first sequence is 9.51± 1.38 % and 11.78±
2.28 % for the LAO view. The maximum percent error for the RAO view is 12.01% and 15.00 % for the LAO view.

The average percent error for the RAO view of the second sequence is 9.50± 1.82 % and 10.72± 2.27 % for the

LAO view. The maximum percent error for the RAO view is 12.81 % and 15.35 % for the LAO view. These errors

could be explained by considering several sources including: the segmentation procedure (which does not take into
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Right Basal Right A. Oblique (RAO) Right Apical

Left A. Oblique (LAO) Left Apical Left Transverse

Right Transverse Anterior Basal Inferior Oblique

Fig. 13. 3-D reconstruction of the left ventricle for the end-diastole. The reconstruction is performed from angiograms extracted from the first

sequence. The reconstruction is visualized from several points of view. The 3-D object has a resolution of80 × 80 × 80 voxels.

Right Basal Right A. Oblique (RAO) Right Apical

Left A. Oblique (LAO) Left Apical Left Transverse

Right Transverse Anterior Basal Inferior Oblique

Fig. 14. 3-D reconstruction of the left ventricle for the end-systole. The reconstruction is performed from angiograms extracted from the first

sequence. The reconstruction is visualized from several points of view. The 3-D object has a resolution of80 × 80 × 80 voxels.
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RAO 30
o LAO 60

o

Fig. 15. Input angiograms extracted from the second sequence for the end-diastole. The size of the images is512 × 512 pixels.

account the correspondence between both views), the imperfect mixture of blood and contrast agent, the quantum

noise, the imperfection related to the subtraction mask and the brightness differences between both views. Their

contribution could make both projections inconsistent for performing the 3-D reconstruction. As a consequence, the

projection error increases considerably with respect to the projection error obtained using simulated data. From these

sources of error the contribution of the inaccuracies related to segmentation are important. This can be verified in

Fig. 12 where the absolute value of the difference between the original projection images for the end-diastole instant

and the synthesized projections of the reconstructed object are shown. A contrast enhancement is applied to both

images for visualizing the error. The pixels where the error is greater are shown with higher gray-level intensities

and they are located mainly in the borders of the images. This is apparent in the LAO view where the projection

error is greater. Additionally, as the 2-D projection error (in (21)) is proportional to the average considering all

pixels in the shape, if the projection error for pixels near the contour is high and the size of the shape decreases

(as is the case when the LV evolves from diastole to systole) then the projection error for the shape increases. This

variation in the 2-D error is obtained when the entire angiographic sequence is reconstructed.

TABLE III

2-D PERCENT ERROR FOR THE TESTS PERFORMED.

Ellipsoids 1st database 2nd database Angiography Angiography

(Mean± Std deviation) 1st sequence 2nd sequence

2-D RAO percent error 1.32± 1.19 0.22 1.00 9.51± 1.38 9.50± 1.82

Maximum RAO percent error 6.79 – – 12.01 12.81

2-D LAO percent error 1.13± 0.82 0.24 1.10 11.78± 2.28 10.72± 2.27

Maximum LAO percent error 3.88 – – 15.00 15.35

4) Test for the space-time Markov model: The left ventricle 3–D reconstruction is also performed for the first

biplane image sequence taking into account the space-time regularization term of (17). The 3–D reconstruction is
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Right Basal Right A. Oblique (RAO) Right Apical

Left A. Oblique (LAO) Left Apical Left Transverse

Right Transverse Anterior Basal Inferior Oblique

Fig. 16. 3-D reconstruction of the left ventricle for the end-diastole. The reconstruction is performed from angiograms extracted from the

second sequence. The reconstruction is visualized from several points of view. The 3-D object has a resolution of80 × 80 × 80 voxels.

performed for this sequence for the images between time instants 0 and 27. The 3–D reconstruction for the time

instantt = 0 includes two stages: approximate reconstruction and iterative refinement. Then, for images 1 to 27

the 3–D reconstructed object at the time instantt is used as initialization for performing the 3–D reconstruction at

the timet + 1. The refinement process, which is based on the Markov Random Field, considers the same set of

parameters (a andT (0)) as for the previous tests. The coefficientβ t is set to 2.0. The number of iterations required

to have projection errors varying less than 0.5% in two consecutive iterations is 16. The reconstructed shapes are

shown in Fig. 17. Visualization of the 3–D ventricle for each instant of the cardiac cycle according to the RAO

30◦ view allows one to appreciate that the reconstructed object gradually changes and its shape remains close to

the left ventricle shape observed in the 2–D angiograms. The temporal constraint is aimed at preventing abrupt

variations in shape between the objects reconstructed at two consecutive time instants. In this paper, our results

are of qualitative nature: they show that the reconstructed objects agree with what is expected, that is, a smooth

transition in shape over time.

H. Comparison with respect to other reconstruction methods

The method proposed by Prause and Onnash [9] is validated using the real biplane images of a dye-filled bottle

obtaining 3–D shape errors of about 18.0 %, whereas for error–free projection data the 3–D error is 3.4 %. The

method is also tested using biplane images of a LV shaped phantom. The 3–D error for the reconstruction from real

biplane images is 12.7 % while for error-free projections is 2.0 %. Our results using synthesized phantoms could be

compared with the results reported in [9] for error-free projections obtaining 3–D error values close to their results

(see Table II). Their results using real biplane images provide 3–D errors between 12.7 % and 18 %. In our case,
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Fig. 17. Visualization of left ventricle 3–D reconstruction for a cardiac cycle of the first sequence of angiograms. The reconstruction is

performed using the space-time regularization term of (17). Each reconstructed object is visualized according to the RAO30◦ view.

March 31, 2006 DRAFT

H
A

L author m
anuscript    inserm

-00130036, version 1



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, MONTH 200X 23

when the reconstruction is performed from real angiograms, the 2D projection errors are between 9.5 % and 11.7 %.

These errors are given in different spaces (3-D and 2-D) and a direct comparison is therefore not possible. The

method in [9] is also tested using severalin vivo biplane angiograms, however, the projection error is not provided.

The method proposed by Kehlet al. [12] performed the comparison in terms of the volume measurement of the

reconstructed object with respect to the true volume of the phantom or post-mortem hearts. A regression line was

obtained in each case showing a good correlation (V true = 1.049V measured−0.75[ml] ). Unfortunately no other

quantitative measurement was performed for validating the accuracy of the reconstructed shape. The reconstruction

method proposed in [16] is tested using the same binary databases and the first sequence of angiograms used for

validating the method reported in this paper. In that case, the 3–D error for the binary databases is 6.48 % and 8.0 %

respectively. The 2–D error for the end-diastole instant is 7.9 % for the LAO view and 7.2 % for the RAO view.

However the average errors for the entire sequence are 11.30 % for the LAO view and 12.0 % for the RAO view.

This shows that the Markov Random based reconstruction method performs better than the fuzzy and evidential

based method. The method proposed by Moriyamaet al. [10] only takes into account the contour information of

the angiograms and the reconstruction error is given in terms of the average distance between points of the LV

contour in the input angiograms with respect to the contour points of the projected reconstructed shape. When only

two views are considered for performing the reconstruction the average error is 4.9 mm. In this case, a comparison

in terms of 3–D error is not possible. The slice based method proposed by Slump and Gerbrands [7] quantifies the

reconstruction error using an equation similar to (21). The reconstruction error for noise-free projections is 8.0 %.

In general, only a few methods can be compared directly with respect to our method in terms of 3-D errors. In these

cases, our method shows a similar or slightly better performance. We note, however, that an adequate comparison

is only possible by testing the different algorithms using the same input data.

IV. CONCLUSIONS

Our contributions towards the solution of the reconstruction of the left ventricle from two angiographic views

are:

1) Consideration of a space-time Markov Random Field Model and simulated annealing to guide a model-based

reconstruction algorithm.

2) Consideration of the real conical geometry in the reconstruction process that gives a more realistic approach,

simplifies the preprocessing stages and enables the reconstruction directly in 3-D space.

The results obtained with mathematical synthesized objects, two binary databases as well as with real angiographic

data are promising. When the reconstruction is performed from two angiographic views, the inclusion of the

acquisition geometry simplifies the pre-processing stages, as the magnification and intensity distortion are implicitly

considered in the reconstruction process. The reconstruction method is flexible because it is possible to modify the

energy function in order to include additional constraints. So for example, a temporal constraint has been included to

optimize the reconstruction through the image sequence. Another advantage of our reconstruction method is related

to the fact that the reconstruction process is performed directly in the 3-D space, so it is also possible to reduce
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the uncertainty of orientation choice in the 2-D slice plane, which is an important limitation of the slice-based

reconstruction methods. One important drawback of the method is the hypothesis of contrast medium homogeneity,

which is not easy to attain except if the injection is initiated at the rapid filling phase of diastole; one way to achieve

this is by ECG-triggered control [43]. If the mixture of blood and contrast agent in the LV is inhomogeneous, the

reconstructed shape will be distorted, and may include holes where there are un-mixed blood bubbles and bulges

where there are bubbles of un-mixed contrast agent. The other limitation of the reconstruction method is the fact

that uniqueness of the solution cannot be guaranteed. This is a common limitation for reconstruction algorithms that

operate from only two views. In our view, the flexibility of the algorithm in terms of the energy function coding

capabilities compensates for this limitation. The 3-D object orientation and the approximate primitive shape of the

LV are further information that can be included in the formulation. The clinical objective for the reconstruction

process is related to the execution time of the algorithm. For diagnostic purposes, it is possible to perform the

reconstruction procedure and analysis off-line. The execution time constraints are more stringent when performing

interventional work, as the results are required almost on-line. Concerning the execution time, our left ventricle

reconstruction algorithm fits within the diagnostic objectives as the reconstruction program takes about 3 minutes

for reconstructing each 3-D image when running on a Silicon Graphics ORIGIN 2000. The program was also

run on a personal computer with a Pentium IV processor at 1.90 GHz and 256 MB RAM for reconstructing the

second sequence of angiograms. The average execution time was 258.25± 7.07 seconds when both stages of the

algorithm are considered. This execution time could be lowered by optimizing the code and by implementing a

parallel program version that could fit several computer architectures. Although the Metropolis based optimization

algorithm using simulated annealing can prevent the optimization procedure from being trapped in local optimal

values, it can be very slow if the volume size is increased for better resolution and representation. Other optimization

procedures were tested including the Gibbs Sampler [18], the microcanonical Monte Carlo simulation [44] and the

Iterative Conditional Modes (ICM) [45]. In general the Metropolis, the Gibbs sampler and the microcanonical Monte

Carlo simulator have a similar performance in terms of final 3-D error and number of iterations required when

tested on the binary databases. The ICM requires about 25 % of the iterations required for the stochastic methods

to attain a 3-D error of 10 % but with this method no further improvements with respect to the reconstruction error

are obtained. This result suggests using a multi-resolution algorithm starting at lower resolutions using stochastic

optimization algorithms and then at higher resolution to switch to deterministic optimization algorithms like the

ICM. In this way, an improvement in speed could be obtained.
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