
HAL Id: inserm-00129780
https://inserm.hal.science/inserm-00129780

Submitted on 14 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative evaluation of linear and nonlinear methods
characterizing interdependencies between brain signals.
Karim Ansari-Asl, Lotfi Senhadji, Jean-Jacques Bellanger, Fabrice Wendling

To cite this version:
Karim Ansari-Asl, Lotfi Senhadji, Jean-Jacques Bellanger, Fabrice Wendling. Quantitative evaluation
of linear and nonlinear methods characterizing interdependencies between brain signals.. Physical Re-
view E : Statistical, Nonlinear, and Soft Matter Physics, 2006, 74 (3 Pt 1), pp.031916. �10.1103/Phys-
RevE.74.031916�. �inserm-00129780�

https://inserm.hal.science/inserm-00129780
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
 
 

Quantitative evaluation of linear and nonlinear methods characterizing 
interdependencies between brain signals 

 
 
 
 

Karim Ansari-Asl 1,2 , Lotfi Senhadji1,2, Jean-Jacques Bellanger1,2, Fabrice Wendling1,2

 
 
 
 

1 INSERM, U642, Rennes, F-35000, France; 
2 Université de Rennes 1, LTSI, Rennes, F-35000, France. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

July 2006 
 
 
 
 
 
 
 
 
 
 
Correspondence: 

Lotfi Senhadji 
LTSI, Campus de Beaulieu, Université de Rennes 1, 263 Avenue du Général Leclerc - CS 74205 - 35042 Rennes Cedex, France.  
Tel: (33) 2 23 23 62 20 
Fax: (33) 2 23 23 69 17 
Email: lotfi.senhadji@univ-rennes1.fr 

 

 1

H
A

L author m
anuscript    inserm

-00129780, version 1

HAL author manuscript
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 2006;74(3 Pt 1):031916



 

 

 

 

 

Abstract 

Brain functional connectivity can be characterized by the temporal evolution of correlation between 

signals recorded from spatially-distributed regions. It is aimed at explaining how different brain 

areas interact within networks involved during normal (as in cognitive tasks) or pathological (as in 

epilepsy) situations. Numerous techniques were introduced for assessing this connectivity. 

Recently, some efforts were made to compare methods performances but mainly qualitatively and 

for a special application. In this paper, we go further and propose a comprehensive comparison of 

different classes of methods (linear and nonlinear regressions, phase synchronization (PS), and 

generalized synchronization (GS)) based on various simulation models. For this purpose, 

quantitative criteria are used: in addition to mean square error (MSE) under null hypothesis 

(independence between two signals) and mean variance (MV) computed over all values of coupling 

degree in each model, we introduce a new criterion for comparing performances. Results show that 

the performances of the compared methods are highly depending on the hypothesis regarding the 

underlying model for the generation of the signals. Moreover, none of them outperforms the others 

in all cases and the performance hierarchy is model-dependent. 
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I. INTRODUCTION 

Brain functional connectivity is defined as the way different brain areas interact within networks 

involved during normal (as in cognitive tasks) or pathological (as in epilepsy) activity. It can be 

characterized by the temporal evolution of the cross-correlation (in a wide sense) between signals 

recorded from spatially-distributed regions. During the past decades, numerous techniques have 

been introduced for measuring this correlation. In the early fifties, the first developed methods [1] 

were based on the cross-correlation function and its counterpart in the frequency domain, i.e., the 

coherence function [2, 3] just after fast Fourier transform (FFT) algorithms were introduced [4]. 

Some other methods based on a similar concept but using time-varying linear models to estimate 

the cross-correlation were introduced later and were used to characterize the relationship between 

brain oscillations in the time and/or frequency domain [5, 6].  

As aforementioned methods are mostly linear, recently a considerable number of studies have been 

dedicated to the development of nonlinear methods [7], mostly because of the nonlinear nature of 

mechanisms at the origin of EEG signals. A family of methods based on mutual information [8] or 

on nonlinear regression [9, 10] was first introduced in the EEG field. Another family is currently 

developing, based on works related to the study of nonlinear dynamical systems and chaos [11, 12]. 

The latter family can be divided into two groups: (i) phase synchronization (PS) methods [13, 14] 

which first estimate the instantaneous phase of each signal and then compute a quantity based on 

co-variation of extracted phases to determine the degree of relationship; (ii) generalized 

synchronization (GS) methods [15, 16] which also consist of two steps, in the first one, state space 

trajectories are reconstructed from scalar time series signals and in the second one, an index of 

similarity is computed to quantify the similarity between these trajectories. 

Given the number and the variety of methods introduced for characterizing brain signal interactions 

and considering the diversity of situations in which these methods are applied, there is a need for 

identifying objectively, among available methods, those which offer the best performances. 
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Recently, some efforts have been made for comparing methods but mainly qualitatively [17, 18] 

and for particular applications [19, 20].  

In this paper, we go further and propose a comprehensive comparison of the aforementioned classes 

of methods (linear and nonlinear regression, phase synchronization, and generalized 

synchronization) based on various simulation models (linearly correlated noises, nonlinear coupled 

oscillators and coupled neuronal population models) in which a coupling parameter can be tuned. 

Methods are compared according to quantitative criteria: (i) the mean square error (MSE) under null 

hypothesis (independence between the two analyzed signals); (ii) the mean variance (MV) 

computed over all values of the coupling parameter in each model; (iii) in addition to two preceding 

criteria, we proposed a new criterion related to the method sensitivity. 

The paper is organized as follows: Section II introduces simulation models and briefly reviews 

some of the methods widely used in the field of EEG to estimate the degree of relationship between 

two signals. Results are presented in Section III and discussed in Section IV. 

 

II. METHODS 

A. MODELS  

In this section general features of models considered in this study are introduced. Each of them is a 

more or less simplified version of a general finite dimensional state-space model with three inputs 

and two outputs. This general model denoted by ,
C
X YM  is decomposed in two sub-systems S1 and 

S2 as illustrated in Fig. 1. To describe state evolution (on discrete time or on continuous time) of the 

global system two finite dimensional marginal state vectors, respectively denoted  and Y , must 

be introduced. In an EEG measurement perspective,  and Y  macroscopically represent 

dynamical states of two functionally interdependent neuronal subpopulations, respectively. Each 

subsystem is specified by a state evolution equation: 

X

X
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where matrix  is a matrix of positive numbers interpreted in the sequel as a coupling 

parameter which weights the effect of "non-autonomous" terms v and w respectively on states  

and Y (Fig. 1). 

( ,i jC C= )

X

The inputs N1, N2, and N3 are mutually independent, zero-memory, zero-mean and unit-variance 

stochastic processes (white noises) which can be interpreted, in a physiological perspective, as 

influences from distant neural populations. Input N3 corresponds to a possible shared afference. The 

scalar outputs x  and , in the same perspective, correspond to two EEG channels. If it exists, the 

dynamical ‘coupling’ between states  and Y  is represented through a functional dependence of v 

on Y  and on the shared input N

y

X

3 and through the dependence of w  on  and NX 3:  

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1,1 1 3

2 2,1 2 3

( ) , , ,

( ) , , ,

v t g C N t N t Y t

w t g C N t N t X t

⎧ =⎪
⎨

=⎪⎩
. 

The models for the two output scalar signals are: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1

2 2

, ,

, ,

x t h X t Y t m t

y t h X t Y t m t

⎧ =⎪
⎨

=⎪⎩
 

1g , ,  and  are deterministic functions. The measurement noises, if present, are modeled by 

two independent random processes  and .  

2g 1h 2h

1( )m t 2 ( )m t

If v does not depend on  and w does not depend on (.)Y (.)X  and if furthermore N3 = 0, then the 

two subsystems S1 and S2 are disconnected. In this case and when inputs N1 and N2 are present, 

outputs x  and  are statically independent if  (resp. ) is not a function of Y  (resp. ) . Then 

equations become 

y 1h 2h X

( ) ( )(1 )x t h X t=  and ( ) ( )( )2y t h Y t= , in absence of measurement noise.  

The dashed lines in Fig. 1 correspond to the influences of S2 on the signal x . These influences are 

not considered in the present study (neither a feedback influence of  on Y  nor a forward X
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influence of Y  on x ) except for one model (the model denoted by M1 here after). This 

consideration corresponds to a causal influence directed from S1 to S2 and clearly does not address 

the most general bidirectional situation which is beyond the scope of this paper. Consequently, 

matrix C is the parameter which tunes the dependence of  on . When C is null no dependence 

exists. Dependence between the two systems is expected to increase with C coefficients. Depending 

on model type, for large values of these coefficients and when N

y X

2=0 and m2=0, output  becomes a 

deterministic function of state  and of N

y

X 3. 

In order to comprehensively simulate a wide range of coupled temporal dynamics we used various 

mathematical models as well as a physiologically-relevant computational model of EEG simulation 

from coupled neuronal populations. Motivations for the choice of these kinds of relationship models 

in the context of brain activity are discussed in a previous work [21].  

Degenerated model M1 is derived by setting 1,1 2,1C C c= =  and by letting the other matrix 

coefficient equal to zero with x X v= =  and y Y w= = . This model generates two broadband 

signals ( ,x y ) from the mixing of the two independent white noises (N1, N2) with the common noise 

(N3): 

( )
( )

1 3

2 3

1

1

x c N cN

y c N cN

= − +

= − +
 

where  is the coupling degree; for 0 c≤ 1≤ 0c =  the signals are independent and for  they are 

identical.  

1c =

In model M2, the general description above reduces to: 1v N= , 2w N= , ( )1x h X= , 2,3C c= , and 

. The other coefficients of the matrix C are all equal to zero. In practice, four low-

pass filtered white noises (NF

(2 , ,y h X Y c= )

1, NF2, NF3, and NF4) are combined in two ways to generate two 

narrowband signals around a frequency 0f . Generated signals share either a phase relationship (PR) 

or an amplitude relationship (AR), only: 
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⎨
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⎨
⎩

 

where 2 2
1 1 2A NF NF= + , 2 2

2 3 4A NF NF= + , ( )2

11 arctan NF
NFφ = , ( )4

32 arctan NF
NFφ = , and . For 

, the two generated signals have independent phase and amplitude and for , they have 

identical phase or amplitude.  

0 c≤ ≤ 1

0c = 1c =

We also evaluated interdependence measures on coupled temporal dynamics obtained from two 

models of coupled nonlinear oscillators, namely the Rössler [22] and Hénon [23] deterministic 

systems. In model M3, where two Rössler systems [24] are coupled, the driver system is 

( )

1
2 3

2
1 2

3
3 1

0.15

0.2 10

x

x

dx x x
dt
dx x x
dt
dx x x
dt

ω

ω

= − −

= +

= + −

 

and the response system is 

( )

( )

1
2 3 1 1

2
1 2

3
3 1

0.15

0.2 10

y

y

dy y y c x y
dt
dy y y
dt

dy y y
dt

ω

ω

= − − + −

= +

= + −

 

here 0.95xω = , 1.05yω = , and c is the coupling degree. For this model,  (other  are 

equal to zero), , 

2,1C = c ,i jC

1 2 3 0v N N N= = = = ( )2 ,w g X c=  and the outputs are linear forms of the state 

vectors: 1( )x h X HX= =  and .  2 ( )y h Y HY= =

In model M4, we used two Hénon maps to simulate a unidirectional coupled system. The Hénon 

map [25] is a nonlinear deterministic system which is discrete by construction. Here, the driver 

system is 
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[ ] [ ] [ ]21 1.4 1xx n x n b x n+ = − + −  

and the response system is 

[ ] [ ] [ ] ( ) [ ]( ) [ ]21 1.4 1 1yy n cx n y n c y n b y n+ = − + − + −  

where c is a coupling degree and ; to create different situations, once  is set to 0.3 to have 

two identical systems (M

0.3xb = yb

4a) and once  is set to 0.1 to have two non-identical systems (Myb 4b). 

For each of these two cases (identical or different systems), we added some measurement noise to 

verify the robustness of estimators against changes in signal-to-noise ratio (S/N), here we evaluated 

the noise-free case (S/N=inf.) and S/N=2. S/N was computed as the ratio of standard deviation (Std) 

of the signal over the Std of the noise. In this case, this model matches the general description figure 

with , 2,1C c= 1 2 3 0v N N N= = = = , ( )2 ,w g X c= , 1( ) 1x h X HX m= = + , and 

. 2 2( )y h Y HY m= = +

Finally, to further match dynamics encountered in real EEG signals, especially in epilepsy, we 

considered a physiologically-relevant computational model of EEG generation from a pair of 

coupled populations of neurons [26]. Each population contains two subpopulations of neurons that 

mutually interact via excitatory or inhibitory feedback: main pyramidal cells and local interneurons. 

The influence from neighboring is modeled by an excitatory input ( )p t  (i.e., here  or ) that 

globally represents the average density of afferent action potentials (Gaussian noise). Since 

pyramidal cells are excitatory neurons that project their axons to other areas of the brain, the model 

accounts for this organization by using the average pulse density of action potentials from the main 

cells of a first population as an excitatory input to a second population of neurons. A connection 

from a given population i to a population j is characterized by parameter 

1N 2N

ijK  which represents the 

degree of coupling associated with this connection. Other parameters include excitatory and 

inhibitory gains in feedback loops as well as average number of synaptic contacts between 
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subpopulations. Appropriate setting of parameters ijK  allows for building systems where neuronal 

populations can be unidirectionally and/or bidirectionally coupled. In model M5, we considered the 

case of two populations of neurons unidirectionally coupled ( 12K c=  is varied and  stays equal 

to 0). This model was used to generate two kinds of signal: background (M

21K

5(BKG)) and spiking 

(M5(SPK)) EEG activity. For both cases, normalized coupling parameter was varied from 0 

(independent situation) to 1 value under which temporal dynamics of signals stay unchanged. 

Following the general description of the simulation model we have, , 2,1C c= 1v N= , 

, , ( )2 2 2, ,w g X c N N cHX= = + 3 0N = 1( )x h X HX= =  and 2 ( )y h Y HY= = .Here, HX and HY 

are linear forms of the state vectors 

 

B. Interdependence measures and coupled systems 

In experimental context, the classical approach to evaluate a functional coupling between two 

systems S1 and S2 is a two steps procedure. The first step consists in building an indicator of 

relationship between state vectors  and Y . The second step focuses on the estimation of the 

indicator as a function of the two outputs 

X

x  and  observed over a sliding window of fixed length. 

The window length is set so that the observed signals are locally stationary. A naïve approach is to 

reduce this functional coupling to the value of parameter C in a given model 

y

,
C
X YM , and hence to 

restrict the characterization to an estimation of this parameter. Indeed a value of C is not a definitive 

answer to the problem. The link, in a given model, between this value and the joint dynamical 

activity of coupled systems is generally not simple to establish theoretically. However, in some 

particular cases it can be derived analytically (see appendix A). Even in the case where we have an 

exact mathematical model ,
C
X YM  allowing to accurately simulate the joint evolution of state 

vectors  and Y , it can be hard to closely analyze the functional relationship between them. The 

difficulty is that a general definition of a functional relationship index 

X

( ),
C
X Yr M  from  to Y , X
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which should be taken as an "absolute reference", does not exist (a particular definition will 

generally capture only some cross-dynamical features). Furthermore a theoretical definition is not 

sufficient. It is also necessary to make a measurement from output signals x and y, i.e., to build an 

estimator  of . In a model identification approach a natural estimator should be 

 where  is an estimation of C in model 

ˆ( , )r x y ,( C
X Yr M )

)( ) ( )( )ˆ ,
,ˆ , C x y

X Yr x y r M= (ˆ ,C x y ,
C
X YM . This model based 

approach is beyond the scope of this paper. Our concern here is essentially to compare various 

coupling functionals ( ),R x y  defined directly on a pair of scalar observation signals without 

explicit reference to an underlying model. In this study, compared functionals and corresponding 

estimators ( )ˆ ,R x y  are those widely used in the literature (see section II.C). These measures can be 

considered as descriptive methods.  

 

C. Evaluated interdependence measures 

We investigated the most widely used methods for characterizing stationary interactions between 

systems. These may be divided into three categories: (i) linear and nonlinear regression: Pearson 

correlation coefficient (R²), coherence function (CF) and nonlinear regression (h²); (ii) phase 

synchronization: Hilbert phase entropy (HE), Hilbert mean phase coherence (HR), wavelet phase 

entropy (WE) and wavelet mean phase coherence (WR); (iii) generalized synchronization: three 

similarity indexes (S, H, N) and synchronization likelihood (SL).  

Here we review succinctly their definitions.  

i) For two time series ( )x t  and , Pearson correlation coefficient is defined in the time domain 

as follows [27] 

( )y t

( ) ( )( )
( )( ) ( )( )
2

2 cov ,
max

var var
x t y t

R
x t y tτ

τ
τ

+
=

⋅ +
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where var, cov, and τ denote respectively variance, covariance, and time shift between the two time 

series.  

The magnitude-squared coherence function (CF) can be formulated as [28]: 

( )
( )

( ) ( )

2
2 xy

xy
xx yy

S f
f

S f S f
ρ =

⋅
 

where  and  are respectively the power spectral densities of ( )xxS f ( )yyS f ( )x t  and ( )y t , and 

 is their cross-spectral density. It is the counterpart of R² in the frequency domain and can 

be interpreted as the squared modulus of a frequency-dependent complex correlation coefficient.  

( )xyS f

Among nonlinear regression analysis methods, we chose a method introduced in the field of EEG 

analysis by Lopes da Silva and colleagues [29] and more recently evaluated in a model of coupled 

neuronal populations [30]. Based on the fitting of a nonlinear curve by piece-wise linear 

approximation [31], this method provides a nonlinear correlation coefficient referred to as h²:  

( ) ( )( )
( )( )

2 var /
max 1

varxy

y t x t
h

y tτ

τ
τ

⎛ ⎞+
= −⎜ ⎟⎜ ⎟+⎝ ⎠

 

where 

( ) ( )( ) ( ) ( )( )( )2
var / arg min

g
y t x t E y t g x tτ τ⎡ ⎤+ + −⎣ ⎦�  

where  is a function which approximates the statistical relationship from ( )g ⋅ ( )x t  to . ( )y t

ii) Phase synchronization estimation consists of two steps [13]. The first step is the instantaneous 

phase extraction of each signal and the second step is the quantification of the degree of 

synchronization via an appropriate index. Phase extraction can be done by different techniques. 

Two of them are used in this work: the Hilbert transform and the wavelet transform. Using the 

Hilbert transform, analytical signal associated to a real time series ( )x t  is derived: 

( ) ( ) ( ) ( ) ( ) ,
H
xi tH

x xZ t x t i x A t e φ= + =⎡ ⎤⎣ ⎦H t  
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where , H H
xφ , and ( )H

xA t  are respectively the Hilbert transform, the phase, and the amplitude of 

( )x t . Complex continuous wavelet transform can also be used to estimate the phase of signal [32]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,*
W
xi tW

x xW t x t t x t t dt A t e φψ ψ ′ ′ ′= = − = ⋅∫  

where ψ , W
xφ , and ( )W

xA t  are respectively a wavelet function (e.g., Morlet used here), the phase, 

and the amplitude of ( )x t . Once phase extraction is performed on the two signals under analysis, 

several synchronization indexes can be used to quantify phase relationship. In this study, we 

explored two of them both based on the shape of the probability density function (pdf) of the 

modulo 2π  phase difference ( ( ) mod 2x yφ φ φ π= − ). The first index is stemmed from Shannon 

entropy and defined as follows [33]: 

max

1max

, l
M

i i
i

H H H p
H

ρ
=

−
= = −∑ n ,p  

where M is the number of bins used to obtain the pdf,  is the probability of finding the phase 

difference 

ip

φ  within the i-th bin, and  is given by maxH ln M . The second index which named mean 

phase coherence corresponds to ie φ⎡ ⎤⎣ ⎦E  and is estimated in [34] by:  

( )
1

0

1 N
i t

t

R e
N

φ
−

=

= ∑  

where N is the length of time series. Combining two ways of phase extraction and two indices for 

quantification of phase relationship, we obtain four different measures of interdependencies: Hilbert 

entropy (HE), Hilbert mean phase coherence (HR), wavelet entropy (WE), and wavelet mean phase 

coherence (WR). 

iii) Generalized synchronization is also a two step procedure. First, a state space trajectory is 

reconstructed from each scalar time series using a time delay embedding method [35]. This 

technique makes it possible to investigate the interaction between two nonlinear dynamical systems 
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without any knowledge about governing equations. First, for each discrete time n a delay vector 

corresponding to a point in the state space reconstructed from x is defined as: 

( )( )1, , , , 1, ,n n n n mX x x x n Nτ τ+ + −= =… …  

where m is the embedding dimension and τ  denotes time lag. The state space of y is reconstructed 

in the same way. Second, synchronization is determined via a suitable measure. Four measures, all 

based on conditional neighborhood, are presented in this study. The principle is to quantify the 

proximity, in the second state space, of the points whose temporal indices are corresponding to a 

neighboring points in the first state space. Three of these measures S, H, and N [15], which are also 

sensitive to the direction of interaction, originate from this principle and use an Euclidean distance:  

( ) ( )
( ) ( )

( ) ( )1

1| ,
|

kN
k n

k
n n

R X
S X Y

N R X Y=

= ∑  

( ) ( )
( ) ( )

( ) ( )

1

1

1| log
|

NN
k n

k
n n

R X
H X Y

N
,

R X Y

−

=

= ∑  

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1

1
1

|1| ,
N kN

k n n
N

n n

R X R X Y
N X Y

N R X

−

−
=

−
= ∑  

where ( ) ( )k
nR X  is computed as 

( ) ( )
,

2

1

1
n j

k
k

n n
j

R X X X
k =

= −∑ r  

and ( ) ( )|k
nR X Y  is 

( ) ( )
,

2

1

1|
n j

k
k

n n
j

R X Y X X
k =

= −∑ s  

where ⋅  is the Euclidean distance; , , 1, ,n jr j k= …  and , , 1, ,n js j k= …  respectively stand for the 

time indices of the k nearest neighbors of nX  and . nY
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The fourth measure, referred to as the synchronization likelihood (SL) [16], is a measure of 

multivariate synchronization. Here we only focus on the bivariate case. The estimated probability 

that embedded vectors nX  are closer to each other than a distance ε  is 

( )2 1

1 2

1
, 2( )

1

N

x n nw w
j

w n j w

P Xε θ ε−
=

< − <

= −∑ jX−  

where θ  stands for Heaviside step function,  is the Theiler correction and  determines the 

length of sliding window. Letting 

1w 2w

, ,x n y n reP P Pε ε= = f  be a small arbitrary probability, the above 

equation for nX  and its analogous for , gives the critical distances nY ,x nε  and ,y nε  from which we 

can determine if simultaneously nX  is close to jX  and  is close to , i.e.,  in the 

equation below  

nY jY , 2n jH =

( ) ( ), , ,n j x n n j y n n jH X X Yθ ε θ ε= − − + − − Y  

Synchronization likelihood at time n can be obtained by averaging over all values of j 

( ) ( )
1 2

,
12 1

1 1
2

N

n n
jref

w n j w

S H
P w w =

< − <

= −
− ∑ j  

All aforementioned measures but H, are normalized between 0 and 1; the value of 0 means that the 

two signals are completely independent. On the opposite, the value of 1 means that the two signals 

are completely synchronized.  

 

D. Comparison criteria 

For all models and all values of the degree of coupling parameter, long time-series were generated 

in order to address some statistical properties of the computed quantities: (i) the mean square error 

(MSE) under null hypothesis (i.e., independence between two signals), which could be interpreted 

as  a quadratic bias, defined by ( ){ }2

0 0
ˆE θ θ−  where E is the mathematical expectation, 0 0θ =  and 
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0̂θ  is the estimation of 0θ ; (ii) the mean variance (MV) computed over all values  of 

the degree of coupling and defined as 

, 1,2,...,ic i I=

( )( ){ }2

1

1 ˆ ˆ
I

i i
i

E E
I

θ θ
=

−∑  where I is number of coupling degree 

points and îθ  is the estimated relationship for the coupling degree ; (iii) in addition to two above 

criteria, we introduced the median of local relative sensitivity (MLRS) as a comparison criterion, it 

given by: 

ic

( )
2 2

1 1

1

ˆ ˆ ˆ ˆ
, ,

2i i
i i i i

i i
i i

MLRS Median S S
c c

σ
θ θ σσ σ+ +

+

=
− +

= =
−

 

where  is the increase rate of the estimated relationship and iS iσ  is the square root of the average 

of estimated variances associated to two adjacent values of the coupling degree. This quantity is a 

reflection of the sensitivity of a method with respect to the change in the coupling degree. We have 

also retained the median of the distribution of local relative sensitivity instead of its mean because 

the fluctuation in its estimation may make this distribution very skewed. Contrary to MSE and MV, 

higher MLRS values indicate better performances. 

For all models and all values of the degree of coupling, Monte Carlo simulations were conducted to 

compare interdependence measures provided by methods described in section II.C. For τ  

parameter used in GS methods, first the mutual information as a function of positive time lag is 

plotted and then as described in [36] time lag τ  was chosen as the abscissa value corresponding to 

the first minimum this curve. The embedded dimension m, in these kinds of methods, was 

determined from the Cao method [37]. Appendix B provides details about implementation of 

methods  

 

III. RESULTS 

Mean value and variance for each coupling degree are shown in Figures 2 to 7 for all methods 

except H that does not provide normalized quantity. For model M1 (Fig. 2), all quantities but N 
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reach the value of 1 for . R² and h² methods behave very similarly because the relationship in 

M

1c =

1 is completely linear.  

Regarding phase synchronization measures, we observed similar method behavior as curves were 

found to be very close to one another. For signals generated with model M1, SL was also found to 

have the maximum variance among all measures particularly for the high values of the coupling 

parameter, as depicted in Fig. 2 (c). This result was not expected because the variance generally 

falls for the high relationship degree. Finally, we also observed in M1 that S and CF have non-

negligible MSE under null hypothesis compared to other measures.  

Results obtained in model M2 are shown in Fig. 3. For phase relationship only (PR) (Fig. 3 (a)-(c)), 

we observed that PS methods exhibit higher performances than other methods as expected. 

Similarly, R² and h² methods gave rather good results. On the opposite, GS methods and coherence 

had lower performances. In the case of amplitude relationship only (AR) (Fig. 3 (d)-(f)), PS 

methods did not present any sensitivity to changes in the degree of relationship as expected from 

their definitions. GS, R², and h² methods provided quantities which slightly increase with increasing 

degree of coupling. Finally, despite what is commonly thought, CF showed only slight sensitivity to 

amplitude co-variation.  

In this study, nonlinear deterministic systems (models M3 and M4) were used only for comparing 

the performances of relationship estimators. Their properties were not investigated into details here 

as they have already been analyzed in many previous studies [38]. For the two coupled Rössler 

systems (Fig. 4), we found that SL method had both the least MSE under the null hypothesis and 

the best sensitivity with respect to change in the coupling degree. However, its variance stayed high 

compared to other methods. Qualitatively, PS methods performed better in this case. A striking 

result was also obtained in this case: several methods (R², h² and WE) provided quantities which 

first increased and then decreased for increasing low values of the coupling parameter 

( ).  0 0.c< < 14
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For coupled identical Hénon systems (M4a), N performed better than other methods (Fig. 5). For 

non-identical Hénon systems (M4b), GS methods still exhibited best performances (Fig. 6). 

Although MSE and MV were found to be reduced with addition of measurement noise for all 

methods, it is worth to mention that regression methods are generally more robust against noise than 

other approaches, especially for non-identical coupled systems.  

For the neuronal population model (model M5), signals were generated to reproduce normal 

background EEG activity (M5(BKG)) or spiking activity (M5(SPK)) as observed during epileptic 

seizures. Properties of these signals are very close to those reported in a previous attempt for 

comparing relationship estimators [17]. In our study, the relationship between the two modeled 

populations of neurons was unidirectional. As shown in [18] in the case of background activity 

using surrogate data techniques, the relationship between signals in this model are mainly linear. 

Thus we expected all methods to exhibit similar behavior in this case. Results showed that 

increasing the degree of coupling between neuronal populations did not lead to significant increase 

of computed quantities, as shown in Fig. 7 (a)-(c). In this situation CF and all the PS methods but 

HR do not detect any relationship; other methods detect a weak relationship. For spiking activity, 

results for all methods are reported in Fig. 7 (d)-(f). As an interesting result, we observed that WE 

and CF were almost blind to the established relation. Similarly, HE and WR only displayed small 

increase with increasing of degree of coupling but their variance was low. R², h², S and HR methods 

exhibited good sensitivity. However, MSE under null hypothesis was found to be high for HR.  

Results presented in figures 1 to 6 are summarized in tables I to III which respectively give the 

MSE under null hypothesis, the MV and the MRLS for all methods and simulation models (see 

appendix C for confidence intervals). For each studied situation, the best method is highlighted with 

gray color. Methods that were found to be insensitive with respect to changes in the coupling degree 

are denoted by symbol "*". From these tables, we deduced that for model M1, R² is the most 

appropriate estimator based on defined criteria. For model M2, in the case of phase relationship, PS 
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methods (especially WE) perform better than other methods. In the case of amplitude relationship, 

there is no consensus for the choice of a best method as all methods are more sensitive to the phase 

of signals than to their envelope. For the coupled Rössler systems (M3), PS methods are more 

suitable. For Hénon coupled systems, S and N methods had higher performances, on average but R² 

was found to be more robust in the presence of added noise. For the neuronal population model, in 

the background activity situation, R² and h² methods detected the presence of a relationship and 

performed better than other methods; this tendency was also confirmed in the spiking activity 

situation. However, it was difficult to determine the overall best method in this second case since 

criteria did not lead to consensual results.  

In order to globally compare the three groups of methods, we averaged results obtained in each 

simulation model for each criterion. Results are synthesized in Fig. 8. For model M1, regression 

methods perform better than others as the MV is the lowest while the MRLS is the highest. For 

model M2 (in the case of PR), it is evident that PS methods are the most appropriate. For model M2 

(in the case of AR), there is no consensus for the best method. For model M3, PS methods 

outperform others although they are characterized by higher MSE values. For model M4 

(considering the four situations), GS methods have the lowest MSE and PS methods have the 

lowest MV. As far as the MRLS is concerned, these two groups of methods perform equally. 

Finally, for the neuronal population model M5, regression methods outperform others in the case of 

normal background EEG activity. For spiking epileptic-like activity, these methods, in addition to 

PS methods have also higher performances than GS methods. 

 

IV. DISCUSSION AND CONCLUSIONS 

Numerous methods have been introduced to tackle the difficult problem of characterizing the 

statistical relationship between EEG signals without any a priori knowledge about the nature of this 

relationship. This question is of great interest for understanding brain functioning in normal or 
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abnormal conditions. Therefore, these methods play a key role as they are supposed to give 

important information regarding brain connectivity from electrophysiological recordings. In this 

work, we compared the performances of various estimators for quantifying statistical coupling 

between signals and characterizing interactions between brain structures. We analyzed, 

quantitatively and as comprehensively as possible, various kinds of estimators using different 

models of relationship for representing the wide range of signal dynamics encountered in brain 

recordings. In this regard, our study differs from that of Schiff et al. [39] who evaluated one method 

to characterize dynamical interdependence (based on mutual nonlinear prediction) on both 

simulated (coupled identical and non identical chaotic systems as those used here) and real (activity 

of motoneurons within a spinal cord motoneuron pool) data. It also differs from other evaluation 

studies which mainly focused on qualitative comparisons [17, 18] and for particular applications 

[19, 20]. 

In the particular field of EEG analysis, the model of coupled neuronal populations is of particular 

relevance since it generates realistic EEG dynamics. In this model, for background activity (that can 

be considered as a broadband random signal), we found that coherence and phase synchrony 

methods (except HR) were not sensitive to the increase of the coupling parameter whereas 

regression methods (linear and nonlinear) exhibited better sensitivity. This result may be explained 

by the fact that the interdependence between simulated signals is not entirely determined by a phase 

relationship. This point is crucial since it illustrates the fact that the choice of the method used to 

characterize the relationship between signals is critical and may lead to possible misleading 

interpretation of EEG data.  

In addition, as background activity can be recorded in epileptic patients during interictal periods, 

our results also relate to those recently published by Morman et al. [19] in the context of seizure 

prediction. For thirty different measures obtained from univariate and bivariate approaches, authors 

evaluated their ability to distinguish between the interictal period and the pre-seizure period 
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(sensitivity and specificity of all measures were compared using receiver-operating-characteristics). 

In both types of approach (and consequently for bivariate methods similar to those implemented in 

the present study) they also found that linear methods performed equally good or even better than 

nonlinear methods. 

Moreover, we did not report results about the capacity of some measures to characterize the 

direction of coupling in some models (in particular in asymmetrically coupled oscillators or 

neuronal populations). This issue which is beyond the scope of the present study has already been 

addressed in other reports. For instance, Quian Quiroga et al. [40] quantitatively tested two 

interdependence measures on coupled nonlinear models (similar to those used here) for their ability 

to determine if one the systems drives the other. 

To sum up, the main findings of this study are the following: (i) some of the compared methods are 

insensitive to particular signal coupling; (ii) results are very dependent on signal properties (broad 

band versus narrow band); (iii) generally speaking, there is no universal method to deal with signal 

coupling, i.e., none of the studied methods performed better than the other ones in all studied 

situations; (iv) as R² and h² methods showed to be sensitive to all relationship models with average 

or good performances in all situations.  

This latter point led us to conclude that it is reasonable to apply R² and h² methods as a first attempt 

to characterize the functional coupling in studied systems in absence of a priori information about 

its nature. In addition, in the case where such information is available, this study can help to choose 

the appropriate method among those studied here. 

 

APPENDIX A: MATHEMATICAL EXPRESSION OF THREE COUPLING FUNCTIONALS 

In the ideal case, analytical expression of ( ),R x y  as a function of coupling parameter values is 

required to compute MSE. Generally, this analytical expression can not obtained except for the 

special cases that are developed hereafter for model M1 (R²) and model M2 (PR). 
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Since the noises used in model M1 are independent zero mean and unit variance white noises, we 

can compute theoretical value for R² as follows: 

( ) ( )( ) ( ) ( )1 2 1 2 2

0 0
cov ,

0
if

x t x t E x t x t
c if

τ
τ τ

τ
≠⎧

+ = ⋅ + =⎡ ⎤ ⎨⎣ ⎦ =⎩
 

and 

( )( ) ( )( ) ( ) ( ) ( )22 2
1 2 1 2var var 1 2x t x t E x t E x t cτ τ⎡ ⎤ ⎡ ⎤= + = = + = −⎣ ⎦ ⎣ ⎦ c+  

Substitution of theses two equations in R² definition leads to: 

( )
( )( )

4
2

22 21

cR c
c c

=
− +

 

For model M2(PR), theoretical value could be derived for the phase synchronization methods; the 

phase difference in this model is 

1 2 1 1 2( (1 ) ) mod(2 ) ( 1) (1 ) mod(2 )c c c cφ φ φ φ π φ φΔ = + − − = − + − π  

As 1φ  and 
2

φ  are independent and uniformly distributed on [ ],π π− , the mean phase coherence can 

be derived as follows: 

[ ] [ ]1 2 1 2 1 2( 1) (1 ) mod 2 ( 1) (1 ) ( 1) (1 )( ) ( ) ( ) ( ) (i c c i c c i c i ciE e E e E e E e E eφ φ π φ φ φ φφ − + −⎡ ⎤ − + − − −Δ ⎣ ⎦= = = )  

2 2

0

1 1 1( ) ( 1)
2 2

i i u i i uE e e du e e
i

παφ α πα πα sinπα
π π α πα

= = − =∫  

1 2

2
( 1) (1 ) ( 1) (1 )sin ( 1) sin (1 ) sin (1 )( ) ( )

( 1) (1 ) (1 )
i c i c i c u i c uc cE e E e e e

c c
φ φ π ππ π π

π π π
− − − − c

c
⎡ ⎤− −

= =
−

⎢ ⎥− − −⎣ ⎦
 

For other synchronization indexes based on Shannon entropy, theoretical value can also be derived. 

As the probability distributions of 1φ  and 2φ  are uniform on [ ],π π− , those of 1( 1)c φ−  and 

2(1 )c φ−  are also uniform on the interval [ ](1 ), (1 )c cπ π− − − . Therefore the probability density of 

the sum 1( 1) (1 ) 2X c cφ φ= − + −  is the convolution product of the probability densities of 1( 1)c φ−  

and 2(1 )c φ− : 
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( ) ( ) ( ) ( ) ( )1 1 , 2 1 2
2 1 2 1

0 otherwise

x if c x c
p x c c

π π
π π

⎧ ⎛ ⎞
− − − ≤ ≤⎪ ⎜ ⎟⎜ ⎟= − −⎨ ⎝ ⎠

⎪
⎩

1−
 

Defining the phase difference modulo 2π , mod 2Xφ πΔ = , considering the parity of (.)p  and 

denoting , the continuous probability distribution of ( ) ( )1h x p x +=
\

φΔ  can be written as 

( ) ( ) (2 )p x h x h xπΔ = + − . After partitioning [ ]0,2π  in M intervals of length 2
M
πδ =  we consider 

the associated discrete probability distribution ( )
( 1)

, 0,.., 1
k

k k
p p x dx k M

δ

δ

+

Δ= =∫ −  and its 

normalized entropy max

max

H H
H

ρ −
=  where  is the standard entropy. For large M 

we have: 

1
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M

i
i
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=
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2 20 0
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( ) log ( ( )) log ( )p x p x dx

π
δΔ Δ− −∫�  

2
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2 2

H dx
M

π π π π
π π
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⎝ ⎠∫� M  
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APPENDIX B: IMPLEMENTATION DETAILS 

To consider the non-stationary nature of EEG signals, especially in the epileptic situation, measures 

were estimated over a sliding window on long duration signals (20000 samples). Window length 

was equal to 512 samples corresponding to 2 sec of our real EEG data sampled at 256 Hz. Sliding 
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step was set to 10 samples. These parameters were empirically chosen with respect to a compromise 

between the quality of estimates (the longer the window, the better) and the dynamics of changes in 

the relationship (when changes are abrupt, a short window is preferred). 

Implementation details for all methods are sum up as follows:  

For R² and h², the time shift (in samples) between two signals was allowed to vary in the range of 

10 10τ− ≤ ≤ . The periodogram method (FFT blocks of 256 samples) was used to estimate the 

power spectra and cross-spectrum of analyzed signals. The magnitude-squared coherence (CF) was 

computed from these estimates and averaged over the whole frequency band. For the phase 

synchronization methods (HR, HE), the Hilbert transform was implemented using the FFT: the 

analytical signal is obtained from the inverse FFT performed on the signal spectrum S restricted to 

positive frequencies (i.e., by setting ( ) 0S f =  for 0f < ). Signals were not prefiltered before 

application of the Hilbert transform. For the wavelet transform, we implemented a continuous 

wavelet method (so-called ‘Morlet wavelet’). Measures (WR, WE) built from the wavelet transform 

were obtained from averaging over frequency sub-bands. For the generalized synchronization 

methods (S, N, H, SL), state space reconstruction parameters details (i.e., time lag τ  and 

embedding dimension d) for all models are summarized in Table IV. In addition, for these methods, 

the Theiler correction was chosen equal to time lag τ  to prevent the information redundancy in 

used data. 

 

APPENDIX C: CONFIDENCE INTERVALS ON MEASURED VALUES 

Given  value, we assume that the estimations ic ( )ˆ , , 1,..,i i i
k L k kT R x y k N= =  are random variables 

that obey the same probability distribution as the random variable 2 2 2
1

i

i

K
i k ia u a 2

Kχ=∑  where 

 is a scaling parameter and where the  are  mutually independent and identically 

distributed (index i stipulate the dependence on parameter ) Gaussian random variables, with zero 

ia ku iK

ic
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mean and unit variance. The 2
iKχ  term corresponds to a 2χ  law with  degrees of freedom. 

Indeed, the 

iK

2χ  approximation was found to approximate histograms computed from simulated  

better than Gaussian distribution. 

i
kT

Classical derivations from Gaussian moments properties give the following relationship:  

( ) 2i
k i iE T K a=  and ( ) 42i

kV A R T K a= i i . Hence, the two parameters  and 2
ia iK  can be 

estimated by application of the moments estimation method which leads to formulas 2ˆ ˆ2
i

i
i

Sa
θ

=  and 

2ˆ
ˆ

2
i

i
i

K
S

θ
=  where 2

1

1 ˆ(
1

N
i

i k
k

S T
N

)iθ
=

=
− ∑ −  is the unbiased estimated variance of  and i

kT
1

1ˆ
N

i
i k

k
T

N
θ

=

= ∑  

its estimated mean.  

Considering furthermore the random variables 2

1

1 ˆ( )
1

N
i

i k i
k

S T
N
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=

= −
− ∑ , 

1

0

1 M

i
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S S
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= ∑ , and 

0 2
0

1

1 ( )
N

k
k

MQ T
N =

= ∑ , the problem is to quantify roughly their statistical dispersions. Although the 

pdf of  are not Gaussian, those of i
kT îθ , , and iS iMQ  can reasonably be modeled as Gaussian 

(central limit effect). Consequently, approximations of corresponding standard deviations allow 

characterization of dispersions. 

• Variance of îθ   

1

1ˆ( ) ( )
N

i i
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k

SVAR VAR T
N N

θ
=

= ∑ �  

• Variances of  and   iS S

2 2
2 21 1

1 1ˆ( ) ( ( ) ) ( ( ) )
( 1) ( 1)

N Ni i
i k ik k

V A R S V A R T V A R T
N N

θ
= =

= −
− −∑ ∑� k  

1 1

20 0

1 1( ) ( ) ( )M M
i ii i

V A R S V A R S V A R S
M M

− −

= =
= =∑ ∑

 

• Variance of 0MQ  
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0 2 0 2
0 1 1

1 1( ) ( ( ) ) ( ( ) )N N
k kk k

V A R M Q V A R T V A R T
N N= =

= =∑ ∑  

Finally, the variance   is computed as follows.  2 4(( ) ) (( ) ) ( (( ) ))i i i
k k kVAR T E T E T= − 2 2

)Let ' ( m
m E Tμ =  and  be moments of order m in the case where the mean of 

random variable T is zero and none zero, respectively. 

(( ( )) )m
m E T E Tμ = −

As  is assumed to be a i
kT 2

Kχ  random variable, we can write (Stuart et al. [41]) that 2 2 iKμ = , 

3 8 iKμ = , and 4 12 ( 4)i iK Kμ = + ' 2. From formulas (Stuart et al. [41], page 542) ' 2
2 1μ μ μ= + , 

' ' ' 2 ' 4
4 4 3 1 2 14 6 1μ μ μ μ μ μ μ= + + +  , we get the results: 

' 2
2 2 ,i iK Kμ = +  

' 2
4 48 44 12i i i

3 4
iK K Kμ = + + + K

3
i

)

 

which lead to 

2 ' ' 2 2
4 2( ) 48 40 16i iVAR T K K Kμ μ= − = + +  

and finally to 

2 8 2 3 2 4 2 3ˆ ˆ ˆˆ(( ) ) (48 40 16 ) ( ) (48 40 16i
k i i i i iVAR T a K K K a K K K= + + + +�  
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TABLE I. MSE Values and standard deviations (see Appendix C for computation) for studied 

methods and models. "*" denotes methods that are nearly insensitive to changes in the coupling 

degree and for which this criterion is not applicable. 

 

 
M1 M2 M3 

M4a 

(S/N=inf)
M4a 

(S/N=2) 
M4b 

(S/N=inf)
M4b 

(S/N=2) M5(SPK) M5(BKG)

R² 0.12 
±0.004 

76.42 
±4.55 

109.55 
±2.55 

0.28 
±0.01 

0.22 
±0.01 

0.26 
±0.03 

0.22 
±0.02 

63.17 
±3.08 

1.54 
±0.09 

CF 104.48 
±0.33 

108.22 
±0.41 

91.14 
±5.61 

107.14 
±0.32 

107.83 
±0.41 

102.53 
±0.08 

104.17 
±0.37 

* 
 

* 
 

h² 1.10 
±0.01 

117.45 
±3.78 

151.14 
±2.38 

3.43 
±0.04 

1.33 
±0.01 

2.73 
±0.02 

1.12 
±0.02 

103.79 
±3.25 

5.99 
±0.13 

HE 4.98 
±0.02 

23.11 
±0.61 

63.82 
±0.38 

8.09 
±0.03 

6.87 
±0.03 

6.00 
±0.01 

5.69 
±0.02 

28.75 
±0.49 

* 
 

HR 3.00 
±0.11 

175.56 
±5.52 

473.07 
±2.23 

6.26 
±0.21 

4.99 
±0.13 

2.74 
±0.06 

3.04 
±0.10 

249.31 
±5.28 

18.99 
±0.61 

WE 10.54 
±0.02 

20.48 
±0.32 

76.47 
±0.55 

13.01 
±0.04 

13.27 
±0.05 

12.98 
±0.01 

12.76 
±0.03 

* 
 

* 
 

WR 8.78 
±0.1 

113.65 
±2.97 

161.50 
±1.36 

68.97 
±0.32 

65.79 
±0.35 

62.26 
±0.05 

64.22 
±0.28 

53.39 
±0.88 

* 
 

S 75.51 
±0.1 

28.45 
±0.82 

26.59 
±0.48 

0.03 
±0.0001 

27.47 
±0.06 

0.03 
±0.0002 

27.41 
±0.07 

107.53 
±2.51 

120.04 
±0.104 

H 0.44 
±0.28 

2228.14
±34.87 

441.99 
±14.04 

1.86 
±0.18 

0.50 
±0.09 

1.04 
±0.22 

0.39 
±0.21 

651.21 
±45.65 

4.21 
±11.60 

N 0.41 
±0.35 

378.44 
±3.50 

116.76 
±5.77 

0.63 
±0.34 

0.30 
±0.27 

0.55 
±0.32 

0.33 
±0.26 

201.46 
±15.30 

4.90 
±1.87 

SL 4.28 
±0.33 

115.25 
±2.58 

8.50 
±2.19 

4.18 
±0.33 

4.47 
±0.25 

3.83 
±0.23 

3.74 
±0.30 

41.32 
±5.58 

6.16 
±0.88 
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TABLE II. MV Values and standard deviations. "*" denotes methods that are nearly insensitive to 

changes in the coupling degree and for which this criterion is not applicable. 

 

 
M1 M2(PR) M2(AR) M3 

M4a 

(S/N=inf)
M4a 

(S/N=2)
M4b 

(S/N=inf)
M4b 

(S/N=2) 
M5(SPK) M5(BKG)

R² 3.6 
±0.4 

200.1 
±3.4 

366.6 
±5.6 

65.5 
±0.6 

51.7 
±1.9 

23.9 
±0.4 

17.4 
±0.1 

10.9 
±0.2 

215.8 
±2.5 

21.2 
±0.3 

CF  5.0 
±0.5 

14.4 
±0.6 

* 
 

199.4 
±1.3 

26.6 
±1.2 

13.1 
±0.4 

11.6 
±0.1 

9.2 
±0.3 

* 
 

* 
 

h² 3.7 
±0.4 

161.0 
±2.9 

274.8 
±4.0 

60.4 
±0.6 

42.0 
±1.4 

23.3 
±0.4 

21.5 
±0.1 

11.8 
±0.3 

205.0 
±2.4 

22.6 
±0.3 

HE 2.4 
±0.3 

57.2 
±1.3 

* 
 

19.0 
±0.3 

25.5 
±1.0 

4.2 
±0.1 

4.2 
±0.03 

2.3 
±0.1 

45.3 
±0.5 

* 
 

HR 8.8 
±0.6 

206.7 
±3.9 

* 
 

10.1 
±0.3 

49.6 
±1.4 

28.0 
±0.4 

17.9 
±0.1 

14.8 
±0.3 

217.5 
±2.8 

65.5 
±0.8 

WE 1.5 
±0.3 

29.4 
±0.8 

* 
 

6.3 
±0.1 

20.1 
±0.9 

3.3 
±0.1 

3.1 
±0.03 

1.7 
±0.1 

* 
 

* 
 

WR 6.0 
±0.4 

118.6 
±2.3 

* 
 

17.6 
±0.3 

23.2 
±1.1 

14.6 
±0.4 

11.4 
±0.1 

10.1 
±0.3 

38.4 
±0.5 

* 
 

S 2.8 
±0.5 

58.1 
±1.0 

74.6 
±1.1 

48.8 
±0.5 

20.8 
±1.0 

6.6 
±0.2 

1.2 
±0.01 

4.7 
±0.2 

183.7 
±2.0 

44.1 
±0.9 

H 9.8 
±0.9 

2066.6 
±40.9 

2441.3 
±42.0 

3408.4 
±19.3 

701.4 
±29.2 

54.9 
±1.4 

182.4 
±2.0 

46.4 
±1.2 

2942.3 
±25.8 

70.6 
±15.3 

N 5.0 
±0.5 

120.5 
±3.1 

142.3 
±3.5 

68.4 
±0.7 

12.5 
±0.8 

1.36 
±0.4 

8.4 
±0.1 

13.4 
±0.3 

501.1 
±5.1 

60.1 
±5.7 

SL 44.8 
±1.5 

253.4 
±3.8 

209.1 
±3.1 

253.5 
±1.4 

104.2 
±2.7 

138.2 
±1.2 

163.5 
±0.6 

139.2 
±1.3 

383.8 
±3.5 

59.2 
±1.0 
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TABLE III. MRLS Values. "*" denotes methods that are nearly insensitive to changes in the 

coupling degree and for which this criterion is not applicable. 

 

M1 M2(PR) M2(AR) M3 
M4a 

(S/N=inf)
M4a 

(S/N=2) 
M4b 

(S/N=inf)
M4b 

(S/N=2) 
M5(SPK) M5(BKG)

R² 57.6 3.94 0.41 1.38 6.99 2.93 21.31 16.85 1.3 1.2 
CF  56.4 1.30 * 2.20 5.68 1.94 17.17 9.41 * * 
h² 35.6 4.06 0.36 0.98 6.91 0.56 20.62 16.42 1.8 1.1 

HE 40.9 6.58 * 15.5 7.16 3.98 20.54 15.58 1.2 * 
HR 42.5 6.5 * 8.87 6.79 4.77 21.45 15.38 1.2 0.7 
WE 47.0 6.69 * 13.8 11.18 5.07 19.20 11.75 * * 
WR 46.6 6.76 * 8.83 10.27 4.68 20.05 14.80 1.2 * 

S 31.1 2.23 0.84 6.91 19.40 10.26 31.51 18.03 0.9 0.05 
H 30.3 2.84 0.77 3.53 25.07 15.28 24.56 16.59 0.7 0.9 
N 29.0 3.02 0.60 3.46 25.42 15.70 12.32 17.04 0.4 0.9 

SL 8.32 0.772 0.41 3.52 2.41 2.61 4.90 3.84 1.3 0.007 
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TABLE IV. State space reconstruction parameters used in computing the interdependencies by 

generalized synchronization methods 

 

 
M1 

M2 

(PR, AR) M3 
M4(a,b) 

(S/N=inf) 
M4(a,b) 

(S/N=2) M5(SPK) M5(BKG) 

τ 1 1 32 1 1 20 20 

d 10 10 4 5 10 10 10 
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FIGURE CAPTIONS  
 

FIG. 1. General finite dimensional state-space model (composed of two coupled sub-systems S1 and 

S2) with three inputs N1, N2, N3 and two outputs x, y. Models considered in this study correspond 

to simplified versions of this model. See text for details. 

 

FIG. 2. Results obtained in model M1 (stochastic broadband signals), using Monte-Carlo simulation 

for Pearson correlation coefficient (R²), coherence function (CF) , nonlinear regression (h²), Hilbert 

phase entropy (HE), Hilbert mean phase coherence (HR), wavelet phase entropy (WE) and wavelet 

mean phase coherence (WR), three similarity indexes (S, H, N) and synchronization likelihood 

(SL). (a) Simulated signals generated by model M1, (b) estimated relationships and (c) variances of 

estimation.  

 

FIG. 3. Results obtained in model M2 (stochastic narrowband signals). (a) Simulated signals 

generated by model M2(PR), (b) estimated relationships, and (c) variances of estimation, for the 

phase relationship (PR) case. (d)-(f) Results for the amplitude relationship (AR) case. 

 

FIG. 4. Results obtained by model M3 (Rössler coupled systems). (a) Simulated signals, (b) 

estimated relationship and (c) variances of estimation. 

 

FIG. 5. Results obtained for model M4a (identical Hénon coupled systems). (a) Simulated signals 

generated by model M4a(S/N=inf., the noise-free case), (b) estimated relationship, and (c) variances 

of estimation, for the noise-free case. (d)-(f) Results for the S/N(signal-to-noise ratio)=2 case. 
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FIG. 6. Results obtained for model M4b (non-identical Hénon coupled systems). (a) Simulated 

signals generated by model M4b(S/N=inf., the noise-free case), (b) estimated relationship, and (c) 

variances of estimation, for the noise-free case. (d)-(f) Results for the S/N(signal-to-noise ratio)=2 

case. 

 

FIG. 7. Results obtained for model M5 (neuronal population model). (a) Simulated signals by model 

M5(BKG), (b) Estimated relationship, and (c) variances of estimation, for the background activity. 

(d)-(f) Results for the spiking activity case. 

 

FIG. 8. Mean values of (a) MSE, (b) MV, and (c) MRLS for the three categories of methods 

( white: regression methods, grey: PS methods, and black: GS methods). Note that, inversely to 

MSE and MV, higher MLRS values indicate better performances. 
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