
HAL Id: inserm-00124457
https://inserm.hal.science/inserm-00124457v1

Submitted on 15 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Immunotherapy of type 1 diabetes: lessons for other
autoimmune diseases.

Jean-François Bach

To cite this version:
Jean-François Bach. Immunotherapy of type 1 diabetes: lessons for other autoimmune diseases..
Arthritis Research, 2002, 4 Suppl 3, pp.S3-15. �inserm-00124457�

https://inserm.hal.science/inserm-00124457v1
https://hal.archives-ouvertes.fr


S3
A glossary of specialist terms used in this chapter appears at the end of the text section. 

Available online http://arthritis-research.com/content/4/S3/S003

Introduction
Insulin-dependent diabetes mellitus (IDDM), or type 1 dia-
betes, is a T-cell-mediated autoimmune disease. Much
effort has been devoted over the past two decades to
establishing an immunological treatment that could substi-
tute for insulin therapy. In this chapter, I provide an update
of the noteworthy preclinical data obtained in the sponta-
neous animal models of the disease and of clinical trials in
progress. These data are presented with particular atten-
tion to lessons that could benefit the immunotherapy of
other autoimmune diseases, notably rheumatoid arthritis.

IDDM as an autoimmune disease
It is now firmly established that in the vast majority of
cases, IDDM has an autoimmune origin [1]. This does not
preclude the possible aetiological role of a triggering envi-

ronmental factor, notably a pancreatotropic virus, but the
fact remains that the β-cell lesion is mediated by β-cell-
specific autoreactive T cells.

No consensus has been reached on the nature of the effec-
tor T cell(s). Research on the nonobese diabetic (NOD)
mouse has shown that both CD4 and CD8 clones could
induce the disease separately, but it is likely that the two cell
types cooperate in the β-cell lesion. CD8 T cells could act
through a direct cytotoxic mechanism, although this has not
been proven. CD4 cells could act either as helper T cells or
as effector cells through cytokine production.

Increasing importance is given to various subsets of regu-
latory T cells that have been shown to control the onsets
of diabetes in both the NOD mouse and the BioBreeding
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(BB) rat. Three main types of regulatory T cell have been
described [2]: Th2 cells, which appear after administration
of soluble β-cell autoantigens, CD4+CD25+ T cells, and
natural killer T cells, which probably appear spontaneously
during ontogeny. It is not yet clear whether the onset of
diabetes results from the decline of T-cell-mediated regu-
lation or, what is more likely, from the overriding of the reg-
ulation by activation of β-cell-specific effector T cells.
Another major uncertainty relates to the nature of the
events that trigger such activation. Antigen mimicry or
pancreatic inflammation are the most likely, but not neces-
sarily the only, mechanisms.

Strengths and limitations of the NOD mouse
model
More than 100 reports have been published using the
NOD mouse to set up new immunotherapeutic strategies.
Table 1 presents a nonexhaustive list of the main products
or strategies tested so far.

The large number of successful results in this mouse has
raised the question of the validation of the model as a pre-
clinical tool for identifying strategies to be applied ulti-
mately to humans. For several substances, the success in
the NOD mouse has been confirmed in humans, e.g.
cyclosporin A [3,4], heat shock protein (hsp)60 peptide
[5], and anti-CD3 antibody (K Herold, unpublished obser-
vations). For others, however, such confirmation was not
obtained, e.g. nicotinamide [6], oral insulin [7,8], and BCG
(bacille Calmette–Guérin) [9]. It is important to realise
that, contrary to human diabetes, which is essentially seen
in the clinic when the disease is overt, diabetes in the
NOD mouse can be studied at all stages of its natural
history, including the preclinical stages. It is interesting in
this context that the three drugs shown to be effective in
human diabetes were still efficient in the NOD mouse at
an advanced stage, whereas nicotinamide, BCG, and oral
insulin worked only at the preclinical stage.

An intriguing question is whether the preventive effects
observed after administration of a drug at a very early stage
(e.g. 4–6 weeks of age) are specific. An attractive hypothe-
sis is that early intervention resets the homeostasis of the
immune system before the disease starts to progress irre-
versibly. It could be postulated that there is a checkpoint
before which the disease outcome is not yet fixed. An
agent that would inhibit the triggering event or boost
immunoregulation could then show a long-term effect.
Applied after this checkpoint, the agent would not show
any significant therapeutic effect. To illustrate this concept,
it may be suggested that if a virus causes the initial insult
that triggers the onset of the diabetogenic process and
that virus can be eliminated, an antiviral treatment could be
effective if applied very early but would be ineffective once
the initial inflammation had occurred and induced a sus-
tained immune response to β-cell autoantigens.

The NOD mouse is one of the few spontaneous models of
T-cell-mediated autoimmune diseases, and as such it is of
special interest to all students of autoimmunity. This mouse
strain is also of major interest because it has been used to
generate many genetically modified models in which
various genes have been deleted or overexpressed as
transgenes in various tissues including the β cells (using
the rat insulin promoter). Such mice provide invaluable help
in discerning the mode of action of the various therapeutic
strategies shown to operate in wild NOD mice.

A weakness of the NOD mouse model is that the putative
target β-cell autoantigen(s) is (are) unknown. Several can-
didates have been proposed, such as glutamic acid decar-
boxylase, insulin, hsp60, and IA-2 [1], but no firm evidence
has shown any of them to be primary autoantigens. This is
not necessarily a major pitfall, since data have been accu-
mulated to indicate that such a primary autoantigen may
not exist. Even if it exists, diversification of autoimmune
specificities (antigen spreading) occurs so fast that the
primary antigen may not be crucial. Additionally, at the
level of cytokine-dependent immunoregulation (cytokines
are discussed further in section 6 below), the occurrence
of bystander suppression [10] allows the suppression ini-
tially directed against a given β-cell antigen, whether it is a
primary autoantigen or not, to be extended to most β-cell-
specific T-cell responses.

Preclinical studies: a unique array of
approaches
As mentioned above, a wide spectrum of agents or manip-
ulations has been shown to prevent, and more rarely to
cure, IDDM in NOD mice. They are listed here according
to the factors postulated to contribute to the development
of the disease. The various strategies that have been
reported are presented below, and Table 1 lists the refer-
ence or references relevant to each product or strategy.

1. T-cell depletion or sequestration/diversion
The most straightforward approach to immunotherapy of a
T-cell-mediated autoimmune disease such as IDDM is the
removal of T cells, either targeted as a whole or as
subsets. This has been accomplished in the NOD mouse
using several approaches.

Anti-T-cell depleting antibodies offer the easiest strategy.
One may thus delay the onset of diabetes by administration
of depleting CD4 antibodies such as GK 1.5 and, to a
lesser extent, CD8, CD44, CD45RA, or CD45RB antibod-
ies. However, although the onset of diabetes can be pre-
vented in the best cases, there is no clear effect on overt
disease, even when it is only recently established. In
recently established disease, besides anti-CD3 antibodies,
which essentially act independently of major T-cell depletion
(see below), only a mixture of depleting CD4 and CD8 anti-
bodies or polyclonal antilymphocyte antibodies have been
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Table 1

Immunotherapeutic agents or other treatments used in NOD mice

1 T-cell depletion or sequestration/diversion
1.1 Depletion

Anti-CD3 [28]
Anti-CD4 [40]
Anti-CD8 [41]
Anti-CD44 [42]
Anti-CD45RA [43]
Anti-CD45RB [44]
Anti-Thy l.2 [45]
Antilymphocyte globulin [11,45]
Neonatal thymectomy [46]

1.2 Sequestration/diversion
Anti-CD43 [47]
Anti-VLA-l [48]
Anti-VLA-4 [48,49]
VLA-4/Ig fusion protein [50]
Anti-CD62L [49]

2 Blockade of T-cell activation
2.1 Chemical immunosuppressants

Cyclosporin A [51]
FK-506 [52]
Azathioprine [53]
Rapamycin [54]
Deoxyspergualin [55]

2.2 γ Irradiation [56]
3 Targeting of T-cell receptors

3.1 TCRαβ antibody [13]
3.2 CD3 antibody [28]
3.3 Vβ8 antibody [57]
3.4 T-cell vaccination

Polyclonal activated T cells [58]
Glutaraldehyde-treated T cells [59]
Activated T cells
Vβ8 T cells [60]
Anti-hsp60 T-cell clone [61]

3.5 Blocking peptides [62]
4 Targeting of MHC molecules

4.1 Anti-class-I [63]
4.2 Anti-class-II [64]
4.3 MHC transgenic mice

Class I [65]
I-A [16,66]
I-E [67]

5 Targeting of costimulation and adhesion molecules
5.1 Costimulation molecules

Anti-CD28 [68]
CTLA-4–Ig fusion protein [69]
Anti-B7.2 [69]
Anti-CD40L [70]

5.2 Adhesion molecules
Anti-ICAM-1 [71]
Soluble ICAM-1

Recombinant protein [72]
Gene therapy (P Lemarchand, unpublished observations)

Anti-Mac [73]
Anti-LFA-l [71]

6 Cytokine blockade
6.1 IFN-γ

Anti-IFN-γ [74,75]
IFN-γR/IgG1 fusion protein [76]

6.2 IL-2
Anti-IL-2R [77]
IL-2R/Ig fusion protein [78]
IL-2 diphtheria-toxin protein [79]

6.3 IL-12
Anti-IL-12 [80]
IL-12 antagonist (p40)2 [81]

6.4 IFN-α (oral) [82]
6.5 IL-1

IL-1 antibody [83]
IL-1 antagonist [84]

6.6 IL-6 [75]
6.7 Lymphotoxin receptor [85]

7 Pharmacologically active cytokines
7.1 IL-4 [86]
7.2 IL-10 [87,88]
7.3 IL-13 [89]
7.4 IL-3 [37]
7.5 G-CSF (F Zavala, unpublished observations)
7.6 Lymphotoxin [90]
7.7 IL-11 [91]
7.8 IL-1α [92]
7.9 TNF-α [26]

8 Tolerance to soluble β-cell autoantigens
8.1 Insulin

Oral [93]
Oral + IL-10 [94]
Intranasal [34,95]
Subcutaneous

Native protein [96]
B chain [96]
Inactive analogue [95,97]

DNA vaccination [98]
Gene-transfer delivery [99] (proinsulin gene)
Cholera-toxin conjugate [100]

8.2 Glutamic acid decarboxylase (GAD)
Oral [101]
Intranasal [102]
Subcutaneous [103]
Intrathymic [104]
DNA vaccination [105]
Anti-GAD antibody [106]

8.3 Heat shock protein 60 (hsp60)
Subcutaneous or intraperitoneal

Protein [107]
P277 peptide [108,109]

Gene-transfer delivery [110]
8.4 Pancreatic extracts (oral) [111]

9 Stimulation of regulatory T cells
9.1 Pathogens

Bacteria
Mycobacteria

Mycobacterium bovis [112]
M. avium [113]
Complete Freund’s adjuvant [114]

Lactobacillus casei [115]
Streptococcal extract [116]
Klebsiella extract [117]
Escherichia coli (+ oral insulin) [118]

Viruses
Mouse hepatitis virus [119]
Lactate dehydrogenase virus [120]
Lymphocytic choriomeningitis virus [121]

Parasites
Filariae [122]
Schistosomes [123]

9.2 Stimulation of innate immunity
α-Galactosylceramide [33,124]

Continued overleaf
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found to reverse the disease [11]. Immunosuppression is
not specific to β-cell antigens and may be prolonged, thus
exposing the patient to the hazards of generalised immuno-
suppression. A more subtle approach, which is probably
less hazardous but also less efficient, targets T-cell homing
molecules, aiming at diverting pathogenic T cells or their
precursors from migrating to the islets. This is the putative
mode of action of anti-VLA-1, anti-VLA-4, anti-CD43, and
anti-L-selectin (CD62L) antibodies.

2. Blockade of T-cell activation
A less radical but similar approach to the previous one is
to reversibly block T-cell activation. At present, this is
achieved using chemical immunosuppressants.

Most drugs used in organ transplantation where T cells
are also incriminated have been used, and these include,

notably, cyclosporin A, azathioprine, rapamycin, FK506,
and deoxyspergualin. Again, these drugs essentially
worked when given early in the course of the disease as a
preventive, but not a curative, treatment. This point is illus-
trated by results reported by Wang and Lafferty and their
coworkers, showing that in diabetic NOD mice trans-
planted with syngeneic islets, recurrence of diabetes
could be prevented by a depleting CD4 antibody (GK 1.5)
but not by cyclosporin A [12].

3. Targeting of T-cell receptors
T-cell-receptor(TCR)-mediated recognition of β-cell
autoantigens is a central step in the diabetes pathogene-
sis, at both the triggering and the effector phases. It was
thus logical to attempt to block TCRs. This has been suc-
cessfully achieved using a number of approaches.

Arthritis Research    Vol 4 Suppl 3 Bach

Table 1 continued

Immunotherapeutic agents or other treatments used in NOD mice

9.3 Nondepleting anti-T-cell antibodies
Anti-CD3 [28]
Anti-CD4 [30]
Superantigens [125]

10 Gene therapy
10.1 β-cell antigens

DNA vaccination [98,105]
GAD immunoglobulin [126]

10.2 IL-4
Retrovirus (T-cell transfection) [127]
Biolistic [128]
Adenovirus [129]
IL-4/IgG1 fusion protein [130]

10.3 IL-10
T-cell transfection [131]
Local [132]
Systemic [133]

10.4 ICAM-1 (P Lemarchand, in preparation)
10.5 IFN-γR/IgGl fusion protein [76,130]
10.6 TGF-β [134]
10.7 Calcitonin [135]

11 Cell therapy
11.1 Islet or segmental pancreas transplantation 

(+ immunosuppression)
Syngeneic [12]
Allogeneic [136] (+ immunosuppression)

11.2 Intrathymic islet transplantation [38]
11.3 Bone marrow transplantation

Allogeneic [137,138]
Syngeneic [37]

11.4 Dendritic cells [139,140]
11.5 Natural killer T cells [141]
11.6 CD4 cell lines

Polyclonal [142]
Anti-Iag7 [143]

11.7 Allogeneic cells
Macrophages [144]
Spleen cells [36]

12 Inhibition of β-cell lesion
12.1 Nicotinamide [145]
12.2 Antioxidants

Vitamin E [146]
Probucol analog [147]
Probucol + deflazacort [148]
Aminoguanidine [149]

12.3 Anti-inflammatory agents
Pentoxifylline [150]
Rolipram [150]

13 Miscellaneous
13.1 Immunomodulators

Linomide [151]
Ling-zhi-8 [152]
D-Glucan [153]
Multi-functional protein 14 [154]
Ciamexon [155]
Cholera toxin B [156,157]
Vanadate [158]
Vitamin D3 analogue [159]

13.2 Hormones and related proteins
Androgens [160]
IGF-I [153]

13.3 Immunomanipulation
Natural antibodies [161,162]
Lupus idiotype [163]
Lipopolysaccharide [164,165]

13.4 Diet
Casein hydrolysate [166,167]

13.5 Other
Sulfatide [168]
Bee venom [90]
Kampo formulation [169]
Silica [170]
Ganglioside [171]
Antiasialo GM-1 antibody [172]
Hyaluronidase [42]
Concanavalin A [173]

CD45RA(B), CD45 receptor A(B); CDXXL, CDXX ligand; CFA, complete Freund’s adjuvant; GAD, glutamic acid decarboxylase; G-CSF,
granulocyte-colony-stimulating factor; ICAM-1, intercellular adhesion molecule-1; IFN, interferon; MHC, major histocompatibility complex; TCR,
T-cell receptor; V, variable region (of immunoglobulin); VLA, very late antigen.
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Global TCR blockade can be obtained by administering
antibodies directed against the constant portion of αβ
TCRs or to the CD3 complex with which TCR is tightly
associated both physically and functionally. In the case of
CD3, though, the blockade effect is only part of the anti-
body mode of action, which also involves depletion (at
least when the entire antibody molecule is used) and
especially T-cell activation notably of regulatory T cells
(see below). Here again, at least for TCRαβ antibody,
immunosuppression is of the global type and works only
preventively. Regression of diabetes was observed in mice
with recently manifested diabetes [13], which is interest-
ing inasmuch as it provides strong support to the argu-
ment that reversible T-cell-mediated inflammation takes
place in the islets. However, such regression was incon-
sistent and transient (at variance with that induced by anti-
CD3 as described below).

A more selective approach is to target T-cell subsets
using selective TCR Vβ antibodies, on the assumption that
pathogenic T cells preferentially use selective Vβ genes.
Some encouraging but as yet unconfirmed results have
been reported for Vβ8.1 and Vβ6. In fact, the experimental
model in which such Vβ gene restrictive usage was initially
reported, namely experimental allergic encephalomyelitis
[14], has not been confirmed for other experimental
autoimmune diseases. When whole myelin antigens are
used, no clear Vβ gene restrictive usage has been found
in human autoimmune diseases. A special case might be
made for human diabetes for Vβ7 (and perhaps Vβ13),
which are seemingly preferentially used by T cells present
in islet infiltrates [15].

A last and even more specific TCR blockade could be
obtained by immunising against idiotypes of pathogenic T
cells, ideally T-cell clones. This has been attempted in the
NOD mouse either using polyclonal T cells or T-cell
clones, notably clones of anti-hsp60 T cells. Some effect
was reported, but the results, which were often only
partial, require confirmation.

4. Targeting of MHC molecules
Peptides of β cells are presented to T cells in the context
of MHC molecules. It was thus logical to attempt to modu-
late the course of β-cell-specific autoimmunity in NOD
mice targeting MHC molecules. Administration of either
class-I-specific or class-II-specific monoclonal antibodies
in young NOD mice (less than 2 months old) but not older
ones prevents the onset of diabetes. The protection
afforded by class II antibodies is long lasting and resistant
to cyclophosphamide and can be transferred to nonanti-
body-treated mice by T cells. Its precise mode of action,
however, remains elusive. It is noteworthy that NOD trans-
genic mice overexpressing mutated MHC non-NOD class
II genes are protected from diabetes and, again, the pro-
tection can be transferred to wild NOD mice by T cells

from transgenic mice [16,17]. Collectively, these data
suggest that targeting MHC molecules might lead to stim-
ulation of regulatory class II restricted CD4 T cells, which
are as yet uncharacterised.

MHC molecules could also be targeted by blocking
peptide binding to those molecules; this possibility is sug-
gested by the prevention of diabetes that is afforded by
the administration of Iag7 immunogenic but not tolerated
peptide binder. Again, one would have to demonstrate
that the Iag7 binder in question does not act as an altered
peptide ligand (APL) known to stimulate regulatory T cells
in these models.

5. Targeting of costimulation and adhesion molecules
The activation of autoreactive T cells specific to β-cell anti-
gens involves a number of costimulation and adhesion
molecules. Thus, antibodies to B7.1 or to CD40L prevent
the onset of diabetes. CTLA-4–Ig, a fusion protein of
CTLA-4 and IgG Fc, which inhibits the binding of CD28 to
B7, also delays the onset of diabetes. A similar preventive
effect has been reported for an anti-CD28 antibody, but
here the mechanism of action of the antibody probably
relates to an agonistic effect leading to signalling of regu-
latory T cells. In fact, this therapeutic approach is more
generally complicated by the dual effect of some of the
agents used, depending when they are administered.
Thus, CTLA-4–Ig fusion protein prevents the onset of dia-
betes when administered late but accelerates the progres-
sion of the disease when administered early [18].

Note also that CD28–/– and B7–/– NOD mice show fulmi-
nant diabetes, probably because of the absence of regula-
tory T cells [18,19].

Diabetes has also been prevented by blocking adhesion
molecules, particularly using antibodies against intercellu-
lar adhesion molecule (ICAM)-1 and LFA-1. Workers in
this laboratory have recently found that administration of
adenovirus-infected cells producing soluble recombinant
ICAM-1 also protected NOD mice against diabetes. We
have even shown that such gene therapy can reverse
recently established diabetes (P Lemarchand, unpublished
observations).

6. Cytokine blockade
A wide array of cytokines are involved in the differentiation
and activation of the various T-cell subsets contributing to
diabetes pathogenesis in NOD mice. All antibodies
directed at cytokines or cytokine receptors inhibiting the
onset of diabetes relate to Th1 cells. Thus, the onset of dia-
betes is prevented by antibodies directed against IFN-γ, IL-
2 receptor (an association with low-dose cyclosporin A is
required), or IL-12. Interestingly, a similar effect was
obtained by blocking the cytokine receptor with a recep-
tor/immunoglobulin fusion protein or by destroying the

Available online http://arthritis-research.com/content/4/S3/S003
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receptor-bearing cell with a cytokine-toxin conjugate. The
preventive effect of orally administered IFN-α is interesting
but is difficult to interpret. Also intriguing is the absence of
diabetes prevention in NOD mice genetically deficient in
IFN-γ, IFN-γ receptor, or IL-12 [20–22], a paradox probably
explained by a redundancy of the genes coding for these
cytokines and their receptors. Prevention of diabetes has
been reported after blockade of proinflammatory cytokines,
namely IL-1, IL-6, and tumour necrosis factor (TNF)-α. In
the latter case, the effect was observed only when the neu-
tralising antibody was administered at a very young age.

7. Pharmacologically active cytokines
Many of the strategies resulting in stimulation of regulatory
cells may be assumed to involve the suppressive effect of
cytokines acting either systematically or locally at the islet
level. The onset of diabetes may also be prevented by the
direct administration of regulatory cytokines.

IL-4
Systemic administration of IL-4 can delay the onset of dia-
betes. The effect is not as dramatic as that of other proce-
dures described here, but is nevertheless quite significant.
In fact, the effect is more clear cut when the cytokine is
directly delivered in the islet using either gene therapy or
β-cell-targeted transgenesis.

IL-10
Findings similar to those reported for IL-4 have been
reported for IL-10 after systemic administration of the
recombinant cytokine. Paradoxically, however, the onset of
diabetes is accelerated by intra-islet delivery of IL-10 in
transgenic mice [23] or by systemic administration of an
IL-10–Ig fusion protein [24], possibly due in the latter case
to an unexpected Th2 polarization.

IL-13
A modest but significant delay in the onset of diabetes has
been reportedly achieved by IL-13, another Th2 cytokine.

G-CSF
Granulocyte-colony-stimulating factor (G-CSF) has been
used successfully to protect NOD mice from diabetes, fol-
lowing previous results in this laboratory showing that
G-CSF could prevent systemic lupus erythematosus in
(NZB × NZW)F1 mice [25]. Data collected in these
various models suggest that the effect of G-CSF could
involve Th2 polarisation.

TNF
Contrasting results have been reported for TNF. Given in
the adult NOD mouse, TNF prevents the onset of diabetes
[26] (an observation in keeping with the insulitis accelera-
tion brought about by anti-TNF antibodies). Conversely,
given to newborn NOD mice, TNF accelerates disease
progression [27].

IL-1
IL-1 has been reported to protect NOD mice from the
onset of diabetes. This is a surprising observation,
because IL-1 has been shown to be exquisitely toxic to β
cells and because an Il-1 antagonist has been reported to
protect against diabetes.

IL-12
Again depending on the protocol of administration, IL-12
may accelerate or slow down the progression of diabetes.

Lymphotoxin
Diabetes protection has also been reported for lympho-
toxin and lymphotoxin–receptor fusion protein.

8. Tolerance to soluble ββ-cell autoantigens
Many efforts have been made to induce tolerance to can-
didate β-cell autoantigens. Prevention of disease (but not
cure of established disease) has been obtained with
insulin, glutamic acid decarboxylase, and hsp60. In the
case of insulin, evidence indicated that the effect was not
exclusively linked to the hormone’s metabolic activity,
since the disease could be prevented with insulin, meta-
bolically inactive B chain, or inactive analogues. In the
case of hsp60, the antigen is not, strictly speaking, β-cell-
specific, but its overexpression in inflamed β cells leads to
some β-cell-selective expression.

With each of these three antigens, diabetes was pre-
vented by using various routes of administration: subcuta-
neous (+ adjuvant), oral, nasal, intravenous, intrathymic.
Tolerance was also induced by vaccination with antigen-
specific DNA, as well as by transgenic overexpression of
the autoantigen.

At the level of underlying mechanisms, there is no true
antigen-specific tolerance, since the downregulation of
autoimmunity extends to antigens other than the tolero-
gen. Accumulated data show that soluble β-cell autoanti-
gens induce a deviation in immunity towards Th2, with
bystander suppression probably involving local release of
immunosuppressive cytokines [2].

9. Stimulation of regulatory T cells
The diabetogenic autoimmune response is tightly con-
trolled by a variety of regulatory T cells. I have pointed out
how the administration of soluble β-cell autoantigens
could stimulate Th2 cells and prevent the onset of dia-
betes if given when the mice are young enough. Many
other strategies have been used to prevent the onset of
diabetes targeting non-Th2 regulatory T cells. One may
assume, a priori, that most of these strategies are not β-
cell-specific, since they use non-β-cell-related agents. The
possibility cannot be excluded that, at least in some cases,
the induced regulation is β-cell-specific at the effector
level. One may postulate that a nonspecific stimulation

Arthritis Research    Vol 4 Suppl 3 Bach



S9

leads to the activation or boosting of β-cell-specific regula-
tory T cells, whether or not they are of the Th2 type. The
strategies for stimulating regulatory T cells may be classi-
fied according to whether they make use of nondepleting
anti-T-cell monoclonal antibodies, stimulation of innate
immunity, or pathogens, as discussed below.

Nondepleting anti-T-cell monoclonal antibodies
Administration of anti-CD3 antibodies to NOD mice with
recently manifested IDDM induces long-term remission of
the disease. The effect is obtained after brief treatment
(5 days) and does not require the use of the mitogenic whole
autoantibody molecule (nonactivating F(ab′)2 fragments are
tolerogenic) [28,29]. My colleagues and I have recently
obtained data indicating that the effect is mediated by active
tolerance involving TGF-β-dependent CTLA+CD25+ T cells
(L Chatenoud, unpublished observations).

Similar, though less well documented, data have been
reported for nondepleting anti-CD4 antibodies [30], in
keeping with the analogous effect of the same antibodies
in transplantation. [31].

Stimulation of innate immunity
NOD mice show an early deficit in NK (natural killer)
T cells, both quantitatively and qualitatively (deficient IL-4
production) [32]. It was thus logical to attempt to prevent
IDDM in such mice by stimulating the function of NK
T cells. This was recently done by administering a selec-
tive NK-T-cell ligand, the glycolipid α-galactosylceramide.
Interestingly, the protection still applies in some protocols
when the glycolipid is given late, and can inhibit the recur-
rence of disease in diabetic mice with grafts of syngeneic
islets [33].

Stimulation of γδ regulatory T cells has been reported after
intranasal administration of insulin [34]. It will be interest-
ing to learn whether such T cells that protect against dia-
betes after nasal administration of insulin are insulin
specific.

Pathogens
Bacteria. A whole array of bacteria have been shown to
prevent the onset of diabetes in NOD mice. Mycobacteria
have been extensively studied, particularly Mycobacterium
bovis (the source of BCG vaccine) and M. avium. The
effect is also obtained with mycobacteria extracts (in com-
plete Freund’s adjuvant). The role of regulatory T cells in
protection induced by complete Freund’s adjuvant or vac-
cination with BCG is demonstrated by the transfer of pro-
tection that is achieved when CD4 T cells from protected
mice are transferred to naive mice [35]. The nature of the
regulatory cells in question is open to speculation (are
they Th2 cells? CD25 cells?). Other bacterial-cell extracts
have also been shown to prevent the onset of diabetes in
NOD mice, notably extracts of streptococcus or klebsiella.

Viruses. The onset of diabetes in NOD mice can be pre-
vented by infection with various viruses, in partucular lym-
phochoriomeningitis virus (LCMV), murine hepatitis virus
(MHV), and lactate dehydrogenase virus (LDHV).

Parasites. Diabetes can also be prevented by deliberate
administration of parasites, such as schistosomes or filariae.

10. Gene therapy
Gene therapy may be used in many ways to prevent or
cure diabetes in NOD mice. Insulin gene therapy and
related strategies are not discussed in this chapter.

Immune-based gene therapy has been developed along
several lines. One possibility is to overexpress cytokines or
cytokine receptors with the aim of reproducing the phar-
macological effect of the particular molecules. Various
experimental settings have been considered, including
local intra-islet delivery of the cytokine (using transgenic
mice or islet-specific T-cell transfection) and systemic
delivery. Various vectors (viral and nonviral) have been
used. IL-4, IL-4–Ig fusion protein, IL-10, IFN-γ receptor, Ig,
and TGF-β all protected the mice from diabetes.

We recently reported that systemic delivery of soluble ICAM-
1 using a recombinant adenovirus vector could also be pro-
tective and even curative in mice that had recently developed
diabetes (P Lemarchand, unpublished observations).

Less expected is the protective effect of calcitonin gene
therapy.

11. Cell therapy
Islet transplantation
Syngeneic islet transplantation is really a palliative proce-
dure, not an immunotherapeutic one. However, unlike
insulin therapy, it poses the problems of the prevention of
disease relapse on the graft and consequently requires
associated immunotherapy. Many of the procedures
described above have been used to prevent such disease
relapse, e.g. anti-CD3 and anti-CD4 antibodies, soluble
glutamic acid decarboxylase, α-galactosylceramide, and
BCG vaccination. Similar immunological problems will be
met with attempts to regenerate islet cells from ductal
stem cells, as has been recently described. The problem is
even more serious in the case of allogeneic islet transplan-
tation, in which two problems — relapse and allograft
rejection — are combined.

Bone marrow transplantation
Allogeneic bone marrow transplantation. Another
approach consists in replacing the bone marrow T (and B)
cell precursors. This is not an easy approach, because of
the associated allogeneic reaction (graft versus host and
host versus graft). Such alloimmune response could have
a protective effect, probably through the production of
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immunoregulatory cytokines: this possibility is suggested
by the protection afforded by induction of (usually partial)
allogeneic tolerance in newborn NOD mice, which also
totally protects from diabetes [36].

Syngeneic bone marrow transplantation. More unexpect-
edly, syngeneic bone marrow transplantation may also
afford protection (in conjunction with IL-3), possibly by
resetting immunoregulatory mechanisms that override
effector ones [37].

Infusion of mononuclear cells
Prevention of diabetes has been reported after infusion of
dendritic cells and CD4–/–CD8–/– thymocytes presumably
enriched in NK T cells. It has also been extensively demon-
strated that the onset of diabetes in NOD mice is pre-
vented by administering mature CD4 T cells (either
polyclonal, notably of the CD25 type, or monoclonal).

Intrathymic islet transplantation
Diabetes has been prevented in NOD mice upon
intrathymic grafting of syngeneic or allogeneic islets, either
at birth or within 4 weeks of age. The preventive effect
was associated with a complete absence of insulitis in
most animals. The observations that spleen cells from tol-
erant islet-grafted NOD mice did not transfer diabetes into
immunoincompetent hosts [38] and that cyclophos-
phamide did not break the tolerance in one study [39] are
compatible with a preferential deletional mechanism.

12. Inhibition of ββ-cell lesion
Inhibition of the effector mechanisms leading to destruc-
tion of β cells has been attempted with limited success.

Nicotinamide has some protective effect but only at rela-
tively high doses and early in the disease history. Nitric
oxide (NO) inhibitors have also shown some effects as do
antioxidants, pentoxifylline, and rolipram.

Anti-TCR antibodies and CD3 antibodies also deserve
mention here. They probably act, at least in part, by inacti-
vating effector T cells, as is suggested by virtually immedi-
ate reversal of hyperglycaemia after the first injection of
such antibodies [13,28].

13. Miscellaneous
Immunomodulation
Some products known to modulate immune responses
(without showing a clear overall suppressor or stimulator
pattern of activities) prevent the onset of diabetes in NOD
mice. These include linomide, ciamexon, vanadate, vitamin
D3, and D-glucan.

Hormones
Some hormones or related compounds can also prevent
insulitis and the progression of diabetes in NOD mice.

This has notably been reported for androgens, a finding in
keeping with the acceleration of disease seen after castra-
tion in males and the high female/male ratio of affected
mice. The onset of diabetes is also prevented by IGF-I.

Immunomanipulation
Unexpectedly, immunisation against the lupus-associated
idiotype 16/6 protects NOD mice from diabetes. The pro-
tective effect of natural antibodies presumably has a
similar mode of action. The effect of such antibodies is
interesting, but their mode of action is poorly defined.

Diet
Various diets have been shown to slow the progression of
diabetes in NOD mice, notably the low-protein diets. It has
been reported that casein hydrolysate formula does likewise.

Other products
A number of products listed in Table 1 that have an ill-
defined action on the immune system have also been
reported to prevent the onset of diabetes in NOD mice.

Concluding remarks
The number and variety of therapeutic interventions
capable of preventing diabetes represents an unprece-
dented observation in immune pathology. The number of
interventions that work in mice with advanced disease,
and particularly with established diabetes, is much more
limited, indicating that the majority of efficacious treat-
ments are active only at the very early stages of a
chronic process progressing from insulitis to clinical dia-
betes. As has been mentioned above, the only products
that have been shown to arrest the destruction of β cells
in man are those shown to act late in the natural history
of the disease in NOD mice. Nevertheless, the early-
acting procedures may prove useful in combination with
late-acting drugs. One might envision treating patients
who have recently diagnosed diabetes with the late-
acting drugs, followed by administration of early-acting
drugs, which would regain their activity once the immune
homeostasis has been reset. Alternatively, these numer-
ous early-acting compounds could be applied in man
very early if valid prediction could identify subjects at risk
of developing the disease. However, the logistic prob-
lems associated with such prediabetes trials should not
be overlooked (for example, the number of subjects to be
screened and enrolled and the duration of the trial).
Lastly, many of the concepts and therapeutic strategies
described above for IDDM could probably be extrapo-
lated correctly to other autoimmune diseases, notably
rheumatoid arthritis.

Glossary of terms
BB = BioBreeding (rat); BCG = bacille Calmette–Guérin;
NOD = nonobese diabetic (mouse).
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