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Abstract

Background: The effects of lindane, a gamma-isomer of hexachlorocyclohexane, were studied on
transmembrane potentials and currents of frog atrial heart muscle using intracellular
microelectrodes and the whole cell voltage-clamp technique.

Results: Lindane (0.34 microM to 6.8 microM) dose-dependently shortened the action potential
duration (APD). Under voltage-clamp conditions, lindane (1.7 microM) increased the amplitude of
the outward current (l,,,,) which developed in Ringer solution containing TTX (0.6 microM), Cd2*
(I mM) and TEA (10 mM). The lindane-increased |, was not sensitive to Sr2* (5 mM). It was
blocked by subsequent addition of quinidine (0.5 mM) or E-4031 (I microM). E-4031 lengthened
the APD; it prevented or blocked the lindane-induced APD shortening.

Conclusions: In conclusion, our data revealed that lindane increased the quinidine and E-4031-
sensitive rapid delayed outward K* current which contributed to the AP repolarization in frog atrial
muscle.

Background

Lindane, a gamma-isomer of hexachlorocyclohexane has
largely been used as an insecticide and is widely spread in
the environment due to the long life time of the molecule
[1]. Absorbed by the respiratory, digestive or cutaneous
pathways, it accumulates in tissues in the following order:
fat > brain > kidney > muscle > lung > heart > spleen > liv-
er > blood [2]. Lindane stimulates the synaptic transmis-
sion of a large number of muscular and nerve
preparations, and suppresses the GABA-activated chloride
current [3] by interacting with the receptor GABA-chloride
channel complex [4]. Due to the similarity between lin-
dane and inositol 1, 4, 5 triphosphate (IP3) [5], it has

been suggested that lindane releases Ca2+ from IP5-sensi-
tive intracellular stores in macrophages [6] and smooth
myometrial muscle cells [7]. Lindane transiently depolar-
izes the membrane, opens Ca2+ channels thus increasing
the intracellular Ca2+ concentration, and subsequently
triggers Ca2+-activated K+ current (Ix_c,) in human sperm
[8]. Lindane (1 microM - 100 microM) does not depress
the peak of intracellular Ca2+ transient in guinea pig my-
ocytes, and does not interact directly with the ryanodine
receptor Ca2+ release channels from cardiac sarcoplasmic
reticulum vesicles [9]. A Ca2+ release from the endoplas-
mic reticulum, mitochondria and other Ca2+ stores has
been reported in the presence of lindane (0.15 mM) in cat
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Figure |

Effect of lindane on spontaneously beating frog auric-
ular action potential (AP) AP recorded intracellularly on
the same auricle in the standard Ringer solution (white cir-
cle) before and 5 min after application of lindane (3.4
microM; black circle).

kidney cells [10]. Lindane (30 microM) has no effect on
the L-type Ca2+ current, but suppresses the activity of large
conductance Ca2+-activated K+ channels and increases the
firing rate of spontaneous action potentials in rat pituitary
GH(3) cells [11].

Little is known about the effect of the pesticide on cardiac
tissues. The aim of the present work was to study the effect
of lindane on the action potential and transmembrane
currents of frog auricular heart muscle.

Results

Intracellular recordings of transmembrane potentials
show that the addition of lindane (3.4 microM) to the
Ringer solution did not alter the RP, decreased the ampli-
tude of the OS and shortened the plateau duration (Fig.
1). The effects of lindane on the AP were dose-dependent.
Table 1 shows that lindane (0.34 microM to 6.8 microM)
did not significantly modify RP; lindane (0.34 microM)
slightly but significantly (P < 0.05) shortened APD 4, and
APD;, by 6% and 3%, respectively. APD,y and APD,
shortening was not significantly increased by increasing
the lindane concentration to 6.8 microM. APD, was only
significantly shortened (P < 0.05) in the presence of lin-
dane 3.4 microM in the Ringer solution (Table 1). Under
voltage-clamp conditions, the remaining currents record-
ed in the Ringer solution containing TTX (0.6 microM),
Cd2+ (1 mM) and TEA (10 mM) (control solution) mainly
corresponded to the leak current and to the background
inward rectifier K+ current (Ig;) (Fig. 2A). Current-voltage
relationships plotted for the current measured at the end
of the clamp step potential (V) show that the current was
inward (I;;,) at V more negative than HP and outward
(Iout) at V more positive than HP (Fig. 2B). The addition
of lindane (1.7 microM) to the control solution increased
Iout but did not alter the tail current (Fig. 2A). Current-
voltage relationships of Fig. 2B show that lindane (1.7 mi-
croM) increased the amplitude of I, which developed at
membrane potentials more positive than -70 mV. Subse-
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quent addition of Sr2* (5 mM) to the control solution
containing lindane (1.7 pM) decreased the amplitude of
Iout in the membrane potential range of -120 mV to +30
mV (Fig. 2B), whereas further addition of quinidine (0.5
mM) to the solution containing both, lindane and Sr2+,
suppressed the remaining I, whatever the membrane
potential tested (Fig. 2B). Lindane (1.7 microM) increased
the magnitude of I, which developed when Iy; was
blocked by the addition of Ba2+ (2 mM) to the control so-
lution (Fig. 3A). Current-voltage relationships show that
the lindane-increased I,,,; developed at membrane poten-
tials more positive than -20 mV (Fig. 3B). Subsequent ad-
dition of E-4031 (1 microM) to the control solution
containing lindane blocked the lindane-increased I
(Fig. 2A) whatever the membrane potential studied (Fig.
3B). The addition of E-4031 (2 microM) to the Ringer so-
lution did not modify RP but prolonged APD (Fig. 4Aa)
and further addition of lindane (3.4 microM) to the solu-
tion containing E-4031 (2 microM) did not modify the
APD (Fig. 4Ab). Conversely, the addition of E-4031 (2 mi-
croM) to the Ringer solution containing lindane (3.4 mi-
croM) lengthened APD, APD,, and APD (Fig. 4B).

Discussion

The present study shows that micromolar concentrations
of lindane shortened the action potential duration APD
and increases a quinidine and E-4031-sensitive outward
current in frog auricle.

Our data show that the shortening of the duration of the
repolarizing phase (APD,, and APD,) of the AP is the
first significant event occurring in response to the applica-
tion of a lindane concentration as low as 0.34 microM.
This effect is then followed by a shortening of the plateau
duration APD,, which is clearly visible only at a ten times
higher concentration.

Voltage-clamp experiments indicate that lindane increases
an outward current (I,,;). This current develops in the
presence of TEA, known to block the delayed K+ current,
in the control solution and under conditions where Ca2+
current has previously been blocked by Cd2+, suggesting
that a lindane-increased Ca2+ influx may not be directly
involved in the development of I, The lindane-in-
creased I, cannot be attributed to the opening of lin-
dane-induced ionic channels since lindane has been
shown to be devoid of ionophoretic properties in planar
lipid bilayers [9]. Our data show that the lindane-in-
creased I still persists in the presence of Sr2+ which is
known to block the background Iy;[12] and Iy c,[13] cur-
rents in cardiac tissues. Our findings reveal that quinidine
inhibits the effect of lindane on I, ;;. Quinidine is an open
channel blocker of the cardiac rapid delayed rectifier K*
current (Ig;) [14-17]. In addition, they show that micro-
molar concentrations of E-4031, a specific blocker of Iy,
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Effects of lindane on frog atrial myocytes membrane current Membrane current was recorded on voltage-clamped
frog atrial myocytes bathed in a control Ringer solution containing TTX (0.6 microM), Cd2* (I mM) and TEA (10 mM). A).
Superimposed traces of the current (upper traces) elicited by a 170 mV depolarizing step potential applied from HP = -100 mV
(lower trace). (white circle) control solution; (black circle) control solution containing lindane (1.7 microM) B). Current-volt-
age relationships plotted for the outward current measured at the end (500 ms) of the clamp potential steps, HP = -100 mV.
(white circles) control solution; (black circles) control solution containing lindane (1.7 microM); (black triangles) control solu-
tion containing lindane and Sr2* (5 mM); (black squares) control solution containing lindane, Sr2* and quinidine (0.5 mM).

[14,15], prolong the APD in frog auricle, are able to pre-
vent or to reverse the APD shortening induced by lindane
and in addition suppressed the lindane-increased I ;.
These observations indicate that Iy, participates to the AP
repolarization in frog auricular cells, as in mammalian
cardiac tissues [18,19]. This current is sensitive to quini-
dine and E-4031 but, as reported in rabbit ventricular cells
[20], itis not sensitive to Sr2+ or Ba2+. The data also reveal
that lindane increases I;. The mechanism by which lin-
dane increases I, is probably not the result of a direct ac-
tivation of the channel Iy, believed to be encoded by the
human ether-a-go-go related gene (HERG) [21-25], and
which is involved in long QT syndrome, a cardiac disorder
characterized by syncope, seizure and sudden death which
can be congenital, idiopathic or iatrogenic [26]. HERG K*
channel regulation depends on protein-kinase (PK)-de-
pendent pathways. In guinea pig ventricular myocytes, the
shift of the activation of HERG K+ channel induced by
phorbol ester involves a PKA-dependent pathway [27]. A
PKC-dependent pathway links a G protein-coupled recep-
tor that activates phospholipase C to modulate the Herg
channel in Xenopus oocytes co-expressing the channel
and tyrotropin releasing hormone receptor [28]. Accord-
ing to Heath and Terrar [29], I, is thought to be regulated
by PKC which is activated by beta-adrenoceptors stimula-
tion in guinea-pig ventricular myocytes. Lindane activates

PKC activity in rat brain and liver tissues [30]. In addition,
it has been shown that dynamic regulation of the Herg K+
channels may be achieved via receptor-mediated changes
in phosphatidyl inositol bisphosphate (PIP2) concentra-
tions; elevated PIP2 accelerated activation and slowed in-
activation kinetics [31]. But single exposure of rats to
lindane (100 mg / kg) did not cause any significant
change in phosphoinositide levels in erythrocyte mem-
brane and cerebrum 2 or 24 h after exposure [32].

Conclusions

In conclusion, the results presented show for the first time
that the rapid delayed outward current I, involved in the
repolarization of the cardiac AP, is increased by micromo-
lar concentrations of lindane and may be responsible for
the alterations of the AP duration induced by the pesti-
cide. Although the mechanism by which lindane may in-
crease Iy, remains to be elucidated, the consequences of
the effect of lindane on Iy, are of toxicological interest
since this current is involved in cardiac disorder.

Materials and methods

Experiments were performed at 20-21°C on quiescent
whole auricle isolated from frog heart and on myocytes
isolated enzymatically from the auricle.
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Table |: Effect of lindane on spontaneously beating frog atrial action potential (AP) AP was recorded using intracellular microelectrodes
before and after successive and cumulative addition of lindane to the Ringer solution (control).

Treatments RP (mV) 0S (mV) APD, (ms) APD 4 (ms) APD |4 (ms)
control -90.3 2.0 243+ 12 1629 450 £ 13 532 13
lindane 0.34 microM 90.0% 1.5 23013 I57+8 422+ 5" 514+ 6*
lindane 1.7 microM 919+ I 269+ 1.4 154+8 420+5 510£5
lindane 3.4 microM 918+ 1.0 207+ 13 128+ 7+ 44+6 507 £5
lindane 6.8 microM 927+ 1.7 180+ 1.7 12 423+7 501 +9

(RP) resting membrane potential; (OS) amplitude of the overshoot; (APDg) duration of the AP measured at 0 mV; (APD,g) and (APD() duration of
the AP measured at a membrane potential + 40 mV and + 10 mV higher than RP, respectively. The data are mean values * s. e. mean of 12 AP
recorded from 2 different atriums. P < 0.05: * lindane 0.34 microM versus control; * lindane 3.4 microM versus lindane 0.34 microM.

Solutions

The composition of the frog standard Ringer solution was
(mM): NaCl, 110.5; CaCl,, 2; KCl, 2.5; HEPES-NaOH
buffer, 10; pH 7.35. The Ca2+-free solution, used for cells
isolation, was obtained by simple Ca2+ removal and con-
tained 600 mU / ml type I collagenase (Sigma) and 1.5
mU / ml type XIV protease (Sigma). Tetrodotoxin (TTX;
0.6 microM; Sankyo, Japan) and CdCl, (1 mM) were add-
ed to the standard solution to inhibit the peak Na* current
(Ina) and L-type Ca2+ current (Ig,), respectively. Tetrae-
thylammonium (TEA, Sigma-Aldrich Chimie, Saint
Quentin Fallavier, France), quinidine (Sigma-Aldrich
Chimie) were used to block delayed K* current; E-4031
(Alamone, Jerusalem, Israel) was used to inhibit the rapid
delayed outward current; SrCl, (5 mM) and BaCl, (2 mM)
to block the inward rectifying K+ current (Ix;) and the
Ca2+-activated K+ current (Ig.c,). Lindane (Merck, Gm-
bH) was dissolved in acetone.

Recordings of membrane potentials

Spontaneously beating action potentials (AP) were re-
corded on quiescent whole auricle, by means of intracel-
lular microelectrodes used in the "floating mode". The tip
length (less than 5 mm) of conventional glass microelec-
trodes (filled with 3 M KCl, 25-30 Mohms resistance, tip
potential less than = 3 mV) was connected to the input
stage of the differential voltage follower by means of a
thin Ag / AgCl wire. The following AP parameters were
measured: RP: resting membrane potential; OS: over-
shoot, AP duration (APD): APD,, duration of the plateau
measured at 0 mV; APD,, and APD;: duration of the AP
at the end of the plateau and of the repolarization phase
were measured at a membrane potential + 40 mV and + 10
mV higher than RP, respectively [33].

Recordings of membrane currents

Membrane currents were recorded on single myocytes dis-
persed by enzymatic digestion of the auricle of frog heart
[34]. After isolation of the auricle from the heart, the ex-

ternal epithelial sheet surrounding the auricular tissue was
carefully detached and removed. The epithelial-free auri-
cle was then pinned at the bottom of an isolating chamber
in which the solutions used for the dissociation were
maintained at 30°C and gently stirred with a small mag-
net. The auricle was successively bathed for 30 min : i) in
a Ca2+-free Ringer solution, ii) in a Ca2+*-free Ringer solu-
tion containing ethylene glycol tetra acetic acid (EGTA)
neutralised with NaOH (0.1 mM), iii) in a Ca2+-free Ring-
er solution then, iv) in a Ca2+-free solution containing
collagenase and protease. All solutions were filtered and
oxygenated. When the tissue was digested, the auricle was
rinsed twice (10 min) with a Ca2?+*-free Ringer solution
and then bathed in a standard Ringer solution and kept at
4°C. Before experimentation, cells were dispersed in a
Petri dish (outer diameter 33 mm, depth 10 mm, Corn-
ing, New-York, USA) filled with Ringer solution (1 ml) by
gently shaking the digested auricle. Patch clamp pipettes
(Propper Manufacturing glass, id 1.2 mm, wall 0.2 mm,
resistance 1.5 to 2.5 Mohms) were filled with a solution
containing (mM); KCl, 150; Na2-creatine phosphate, 5;
ATP, 5; EGTA neutralised with KOH, 5; HEPES (KOH)
buffer, 10; pH = 7.3. The cell current was monitored using
an Axopatch 220B amplifier feedback amplifier (Axon In-
struments, Foster City, USA). Starting from a holding po-
tential (HP) of -100 mV, the membrane potential (V) was
displaced in rectangular steps of 10 mV at a rate of 0.2 Hz.
Positive potentials correspond to depolarization, positive
currents correspond to outward current [34].

Transmembrane potentials and currents were recorded
with a Labmaster acquisition card (DMA 100 OEM, Dipsi,
Cachan, France), driven by Acquis 1 software linked to the
mass storage of a desk computer (AT 80486 DX 33), and
displayed on an oscilloscope Nicolet 310 (Nicolet, Madi-
son, WI, USA).
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Effects of E-4031 on the lindane-induced outward current Membrane current was recorded on voltage-clamped frog
atrial myocytes bathed in a control Ringer solution containing TTX (0.6 microM), Cd2* (I mM), TEA (10 mM) and Ba2* (2
mM). A). Superimposed traces of the current elicited by a 170 mV depolarizing step potential applied from HP = -100 mV (c)
before and after lindane (1.7 microM) application (traces a) and subsequent addition of E-4031 (I microM) to the solution con-
taining lindane (traces b); (white circle) control solution: (black circle) control solution containing lindane; (white square) con-
trol solution containing lindane and E-4031. B). Current-voltage relationships plotted for the outward current measured at the
end (500 ms) of the clamp potential steps, HP = -100 mV. (white circles) control solution; (black circles) control solution con-
taining lindane (1.7 microM); (white squares) control solution containing lindane and E-4031 (| micro M).

Statistical analysis of data

Numerical data are expressed as mean values % s. e. mean,
n corresponds to the number of preparations tested. The
data were analyzed using the paired Student's t-test using
Sigmaplot software (Jandel, Erkrath, Germany) and differ-
ences were considered significant at P < 0.05.

List of abbreviations
AP: action potential

APD: action potential duration

APDy: duration of the plateau measured at 0 mV

APDy: duration of the AP at the end of the plateau meas-
ured at a membrane potential + 40 mV higher than RP

APD;: duration of the AP at the end of the repolarization
phase measured at a membrane potential + 10 mV higher
than RP

EGTA: ethylene glycol tetra acetic acid

HP: holding potential

IP5: inositol 1, 4, 5 triphosphate

Ix.ca: CaZ+-activated K+ current
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Effects of E-4031 (I microM) and lindane (3.4 microM) on the action potential (AP). Superimposed traces of the
AP recorded on frog auricle using intracellular microelectrodes. A. a): AP recorded before and after addition of E-403 | to the
Ringer solution; b) further addition of lindane to the solution containing E-4031. B). AP recorded in the Ringer solution con-
taining lindane before and after further addition of E-4031.

I;: inward current

Ik;: inward rectifying K+ current
Ioue: outward current

I, rapid delayed outward current
microM: micromolar

mM: millimolar

mm: millimeter

ms: millisecond

mV: millivolt

mU / ml: milliunit per milliliter
OS: overshoot

PA: picoampere

PIP2: phosphatidyl inositol bisphosphate
PK: protein kinase

RP: resting membrane potential
TEA: tetraethylammonium

TTX: tetrodotoxin

V: clamp step potential
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