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SUMMARY

Diverse aspects of host-pathogen interactions have been studied using non-mammalian hosts

such as Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster and

Danio rerio for more than 20 years. Over the last two years, the use of these model hosts to

dissect bacterial virulence mechanisms has been expanded to include the important human

pathogens Vibrio cholerae and Yersinia pestis. Innovative approaches using these alternative

hosts have also been developed, allowing new antimicrobials to be isolated through screening

large libraries of compounds in a C. elegans-Staphylococcus aureus infection model.  Host

proteins needed by Mycobacterium and Listeria during their invasion and intracellular growth

have been uncovered by high-throughput dsRNA screens in a Drosophila cell culture system,

while immune evasion mechanisms deployed by Pseudomonas aeruginosa during its

infection of flies have been identified. Together, these reports further illustrate the potential

and relevance of these non-mammalian hosts for modelling diverse aspects of bacterial

infection in mammals.
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INTRODUCTION

The use of mammalian models to identify and understand virulence factors of human

pathogens is indispensable. Alternative models, such as the amoeba Dictyostelium

discoideum, the nematode Caenorhabditis elegans, the insect Drosophila melanogaster and

the fish Danio rerio are, however, complementary systems for such studies [1-5]. This is

possible because many human pathogens are of low species specificity and can infect hosts

ranging from insects and nematodes to fish, as well as other mammals. They rely on universal

virulence factors that are involved in the infection process regardless of the host. These can be

identified and characterised using genetically tractable and inexpensive non-mammalian

models. In addition, the molecular and genetic tools developed with these simple organisms

combined with their well-studied cellular biology and/or immunology allow one to decipher

the complex interactions between host and pathogen.

The four organisms listed above have in common many characteristics, such as ease of culture

and full sequenced genomes, that make them very useful as model hosts [1]. These alternative

hosts are being used for approaches as diverse as testing the virulence of chosen pathogen

mutants [6,*7], screening large banks of pathogen mutants for those with attenuated virulence

[8, *9, *10] or dissecting the host mechanisms involved in pathogen invasion and intracellular

replication [**11, *12, *13].

In addition, they have unique features relevant to the study of specific aspects of host-

pathogen interactions. The amoeba D. discoideum is a professional phagocyte that can be used

to decipher the molecular basis of phagocytosis and phagosome maturation [4]. Additionally,

it can give insights into how certain intracellular bacterial pathogens survive in the

phagolysosome [14]. The fly D. melanogaster possesses a very well-studied innate immunity

[15] that has contributed to the understanding of immune mechanisms in mammals. More
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recently, it has been used to analyze the mechanisms used by pathogens to evade the host

immune system [*16, 17, **18]. Finally, genetic screens for bacterial virulence genes in a

vertebrate with a fully developed immune system [19] are possible with the fish D. rerio. This

review focuses on recent work with the alternative model hosts D. discoideum, C. elegans,

D. melanogaster and D. rerio in these new investigative paradigms.

New infections modelled with alternative hosts.

An increasing number of human bacterial pathogens are being tested in non-mammalian hosts

in order to study conveniently their virulence. In addition to established models such as

Pseudomonas aeruginosa [20,21], Salmonella typhimurium [22-24] or Serratia marcescens

[25,26], several pathogens including Listeria monocytogenes [27,28], Yersinia pestis (see

below) and Vibrio cholerae, the causal agent of cholera, have recently been added to the list

of micro-organisms able to cause lethal infection of the nematode and the fly.

In humans, expression of Cholera toxin (CT) by V. cholerae provokes a rise in cAMP in the

intestinal epithelium, the opening of ion channels and consequently loss of water into the

intestinal lumen. In mice, this secretory diarrhea can be successfully treated with the channel

blocker clotrimazole. It has now been reported that oral V. cholerae infection of the fruit fly

leads to the death of the animals in a manner somewhat similar to that observed in humans,

including rapid weight loss [*7]. CT is required for full virulence in the fly model and,

remarkably, flies with loss-of-function mutations in genes encoding homologues of the known

targets of CT resist infection. Furthermore, clotrimazole can help cure flies infected with V.

cholerae [*7].

During the lethal colonization of the C. elegans intestine by V. cholerae, on the other hand,

CT does not appear to play an important role [6]. But, using a reverse genetic approach,

Vaitkevicius and colleagues demonstrated that the quorum sensing regulated protease PrtV is
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essential for this killing. Moreover, they obtained data [6] suggesting that this protease is

important for V. cholerae in its natural niche [29] for its resistance to the marine plankton that

graze on it. Finally, they measured an increased IL-8 secretion in human epithelial intestinal

cells exposed to a V. cholerae prtV deletion mutant, compared to the parental strain,

suggesting a role for this protease in modulating (directly or indirectly) the host response in

vertebrates [6].

Together, these reports illustrate to what extent nematode and fly can be relevant for the study

of the causative agent of cholera. Importantly, the work by Blow and colleagues offers the

perspective of using Drosophila to screen for chemicals that inhibit CT in vivo, following a

precedent set by the Ausubel lab using C. elegans [**30].

In vivo screens for new antimicrobials

The massive use of antibiotics combined with the high adaptation capacity of bacteria has

created the public-health problem of human pathogens resistant to multiple antibiotics.

Therefore, there is a real need for new antibiotic molecules. Moy and colleagues cleverly used

an infection system involving a C. elegans immunocompromised mutant and Enterococcus

faecalis [**30] to screen for synthetic (6,000) and natural (>1,000) molecules that promoted

host survival (FIGURE 1). This in vivo screen not only permitted the identification of 8

molecules affecting bacterial growth in vitro (MIC < 35 µg/ml), but also of 8 other products

either impairing pathogen virulence or boosting host innate immunity in the absence of

significant in vitro activity (MIC > 125 µg/ml) [**30]. Even though the efficiency and

toxicity of the identified molecules does need to be tested in mammals, this system represents

a very promising screening platform to identify in vivo new antibacterial molecules. A similar

system involving flies to identify antifungal drugs is also being developed [31,32].

Random screens for the identification of bacterial virulence genes
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Three recent reports using D. discoideum, C. elegans, and D. rerio as hosts to screen bacterial

mutant libraries of Klebsiella pneumoniae, Y. pestis, and Streptococcus iniae, respectively,

have further strengthened the relevance of these simple hosts.

K. pneumoniae is an important human pathogen that, as its name suggests, causes pneumonia.

Its interaction with alveolar macrophages can be modelled using D. discoideum as a surrogate

phagocyte. D. discoideum is normally able to feed on wild-type Klebsiella. Benghezal and

colleagues elegantly combined the genetics of D. discoideum and the genetics of K .

pneumoniae. They first identified a new gene (phg1) [33] rendering the amoeba especially

susceptible to infection and unable to grow on Klebsiella. Then, they isolated Klebsiella

mutants that supported the growth of the phg1 mutant amoeba [*10]. Among the mutated

bacterial genes were several required for LPS and amino-acid biosynthesis. They tested

several of the isolated bacterial mutants in a mouse pneumonia model and found an

attenuation of virulence [*10].

The genetic manipulation of both host and pathogen allowed them to create a 2D virulence

array showing that distinct groups of host genes are necessary to resist infection by various

bacterial pathogens and mutants (FIGURE 2). They were also able to demonstrate

conservation of both virulence factors and defence genes since Drosophila phg1 mutants are

more susceptible to K. pneumoniae infection [*10].

Y. pestis, the causative agent of plague, can form a biofilm that is important for its

dissemination via its vector, the flea. A Y. pestis biofilm can also accumulate on the head of

C. elegans, and this is clearly a more accessible model to study biofilm function than looking

in the gut of the flea [34]. But as biofilm formation is only one aspect of Y. pestis

pathogenicity, Styer and colleagues developed a nematode-based infection system to identify

Y. pestis virulence genes not related to biofilm formation [*9]. They showed that a biofilm-

deficient mutant of Y. pestis colonises the intestine of C. elegans and provokes an early death.
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They used this infection model to screen a bank of Y. pestis mutants for those with attenuated

virulence in the worm. Remarkably, despite the differences between nematodes and

mammals, they identified two genes whose products are necessary for induction of mouse

death in an intranasal mouse model of Y. pestis pathogenesis, genes that had previously not

been implicated in Y. pestis virulence [*9].

S. iniae is a bacterial pathogen able to infect fish and humans. In order to analyze the

interaction between streptococcal pathogens and their natural hosts, Miller and colleagues

created a bank of bacterial mutants and screened it using zebrafish [8]. They wished to

identify bacterial mutants specifically deficient in their capacity to disseminate in the brain.

To facilitate the screening process, they used a Signature-Tagged Mutagenesis strategy [35]

that permitted the analysis of fish co-infected by a pool of 12 distinct mutant strains. Doing

so, they screened 1,128 signature-tagged transposon bacterial mutants and determined which

bacterial mutants were not present in brain extracts from infected fish. Interestingly, 7 out of

the 41 bacterial mutants isolated had transposon insertions in genes potentially coding for

surface polysaccharides, major components of the capsule. Finally, using the bacterial

mutants they isolated, they showed in a human whole blood assay for phagocytosis that S.

iniae’s capsule is involved in invasion and survival in human macrophages [8].

These three studies further validate the use of non-mammalian hosts for large-scale screens to

identify bacterial virulence genes relevant to infection in mammals. Moreover, the genetic

manipulation of the host as exemplified by the work of Benghezal et al., expands the range of

models available for this kind of screening approach, in a manner reminiscent of the directed

modification of mice, via trangenesis [36] or the creation of human-mouse chimeras [37], but

without any of the ethical concerns.

Identification of host molecules required for pathogenesis and how the pathogen evades

the immune system.
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The host factors involved in the infection processes are not restricted to “immunity” genes

such as those coding for interleukins or Toll-like receptors (TLRs). This is especially the case

for intracellular bacterial pathogens that have to enter the cell and avoid being degraded in

phagolysosomes. Therefore, intracellular bacteria have developed many ways to hijack the

endocytic or phagocytic routes [38,39]. Macrophages are often confronted by intracellular

pathogens as they are professional phagocytes. Three recent studies used the Drosophila S2

macrophage–like cell line to perform large scale RNAi screens to identify host factors

required for entry and survival of intracellular bacterial pathogens.

The first two analyses combined automated microscopy with the use of GFP-tagged

Mycobacterium fortuitum [*13] or Listeria monocytogenes [*12] to screen a bank containing

21,300 dsRNAs (targeting >95% of annotated Drosophila genes in a redundant fashion). They

showed that factors involved in vesicle trafficking and actin cytoskeleton organization are

necessary for internalization and intracellular survival of these two pathogens. Moreover, they

identified a Drosophila homologue of the scavenger receptor CD36 as being crucial for L.

monocytogenes and M. fortuitum entry into the S2 cells, while being dispensable for

phagocytosis in general [*12,*13]. Based on these observations, the study was extended to

mammalian cells and new roles in bacteria uptake described for members of the CD36 family.

This work also highlighted a role for autophagy in the control of L. monocytogenes infection

[*12].

In contrast to these two studies that used automated microscopy, a third study was performed

manually [**11].  In this painstaking project, interest was focused especially on the

interaction between the L. monocytogenes toxin listeriolysin O (LLO) and host factors that

allow the bacteria to escape from the phagosome. The authors combined RNAi against the

host with bacterial mutants for LLO. In a first set of experiments, they used an LLO-deficient

bacterial strain and screened for dsRNAs that restored the capacity of these mutants to escape
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into the cytoplasm. The corresponding genes would be expected to be elements of the host

pathways targeted by LLO. In a second set of experiments, they used a bacterial mutant

producing a LLO toxin lacking a PEST sequence (and thus with a longer half-life). They

screened for dsRNAs that rendered S2 cells more susceptible to this stable toxin to determine

which host enzymes control LLO toxicity. Based on their results, they propose a model in

which the pore-forming LLO inserts into the membrane of the L. monocytogenes-containing

phagosome, thus impairing its acidification and maturation. Concerning the host’s control of

LLO toxicity, their screen identified SPT, an enzyme necessary for sphingolipid metabolism,

as a key factor for host resistance [**11].

The experimental systems described in these three reports can thus be used to shed light on

the complex interactions between the host and an intracellular pathogen that are both fighting

for their survival. But just as is the case for any model system, the results come with a number

of caveats. It is well known that a dsRNA can interfere with off-target genes and so generate

false positive results [40]. And conversely, important genes can be missed if they are not

expressed in or on S2 cells, as is indeed the case for some receptors involved in phagocytosis

(Istvan Ando and Dan Hultmark, personal communication). Nevertheless, in the long term, by

combining large-scale screens in the host and the pathogen, it will be possible to define a

host-pathogen interactome (Figure 2) [41].

Extracellular bacterial pathogens are usually not able to survive phagocytosis. Many,

however, have developed strategies to counteract the humoral arm of the host immune system.

A handful of recent articles have demonstrated that Pseudomonas infection of

D. melanogaster is a most suitable system to study the host immune response and to uncover

the strategies used by the pathogen to elude defence mechanisms. In one article, the role of

the Pseudomonas exotoxin ExoS was directly addressed by ectopic expression in the eye or

by ubiquitous expression of this bacterial protein in the fly [17]. The authors showed with
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these transgenic systems that ExoS inhibits the activity of a host RhoGTPase in vivo and that

ubiquitous ExoS expression impairs the phagocytic capacity of fly macrophages without

affecting anti-microbial peptide gene induction [17]. In a complementary study, Liehl and

colleagues used host and pathogen mutants to demonstrate that the Pseudomonas AprA

metalloprotease directly degrades fly antimicrobial peptides [**18]. This protease thereby acts

as a virulence factor by enhancing bacterial survival within the host body fluid. In addition to

these reports, Apidianakis and colleagues compared microarray results from flies infected by

virulent or avirulent P. aeruginosa strains [*16]. Strikingly, this analysis revealed an as yet

uncharacterised mechanism used by P. aeruginosa in the early phases of the infection to limit

Drosophila antimicrobial genes expression at the transcriptional level.

Together, these studies illustrate the potential use of genetically tractable non-mammalian

hosts, with characterized immune systems, to decipher the mechanisms pathogens employ to

evade the host immune system. As exemplified above, it is possible to have a global approach

and/or to address precisely the role of a specific bacterial protein.

CONCLUSIONS

Molecular and physiological conservation within different bacteria and across eukaryotic

species renders the study of host-pathogen interaction using non-mammalian models

especially attractive. Moreover, it is likely that many of the virulence mechanisms that

pathogens use during their infection of humans in fact evolved since they favour survival in

the natural ecological niche and so are best studied using their natural predators, such as

D. discoideum and C. elegans. After a period when these model systems were used in

essentially one-sided approaches (e.g. screening banks of bacterial mutants for virulence

genes or identifying the host targets of bacterial virulence factors), more and more studies are

now exploiting a combination of bacterial and host genetics to address the molecular basis of
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pathogenicity and defence. The future promises to reveal details of the intimate but deadly

dance between pathogen and host that has been going on since the birth of eukaryotes.
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FIGURES

Figure 1

Protocol used by Moy and colleagues [**30] to screen in vivo for new antimicrobial

compounds using an established C. elegans-E. faecalis infection system. After culture and

amplification of nematode numbers on growth plates (seeded with the Escherichia coli strain

OP50) synchronised populations of worms are transferred to infection plates, seeded with

E. faecalis strain MMH594. After 8 hours, worms are washed off the plates and

approximately 25 individuals added to each well of a 96-well microtitre plate and then

assayed for their survival.  Compounds or extracts that extended worm survival by 2- to 3-

fold were selected for further analyses. While this screen was carried out manually, the

availability of the Union Biometrica Biosort (http://www.unionbio.com/products/copas2.html)

allows automation of the different steps.

Figure 2

Hypothetical host-pathogen two dimensional array inspired by data from Benghezal et al.

[*10]. The ability of host mutants to resist (green) or to be killed (red) by different bacterial

strains and bacterial mutants is indicated. Gene names are arbitrary with hrg and pvf for Host

Resistance Gene and Pathogen Virulence Factor, respectively. Based on this matrix, it can be

speculated that hrg-1 encoded protein is specifically involved in a mechanism necessary for

host resistance to bacterial virulence factors encoded by pvfB and pvfC. The hrg-3-pvfD

interaction would correspond to the case described by Liehl and colleagues [**18] with hrg-3

and pvfD being the Drosophila Imd and Pseudomonas aprA genes, respectively. Finally,

HRG-2 and HRG-4 can be host proteins necessary for bacterial invasion by pathogen C and

pathogen B and C, respectively, corresponding to the observations described in the reports by

Philips et al. and Agaisse et al. [*12, *13].
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