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Abstract 

Background: 

A design combining both related and unrelated controls, named the case-combined-control 

design, was recently proposed to increase the power to detect gene-environment (GxE) 

interaction. Under a conditional analytic approach, the case-combined-control design appeared 

more efficient and feasible than a classical case-control study for detecting interaction involving 

rare events. 

 

Methods: 

We now propose an unconditional analytic strategy to further increase the power for detecting 

gene-environment [GxE] interactions. This strategy allows estimation of the GxE interaction and 

exposure [E] main effects under certain assumptions (e.g. no correlation in E between siblings 

and the same exposure frequency in both control groups). Only the genetic [G] main effect 

cannot be estimated because it is biased. 

 

Results: 

Using simulations, we show that unconditional logistic regression analysis is often more efficient 

than conditional analysis to detect GxE interaction, particularly for a rare gene and strong effects. 

The unconditional analysis is also at least as efficient as the conditional analysis when the gene is 

common and the main and joint effects of E and G are small. 

 

Conclusions: 

Under the required assumptions, the unconditional analysis retains more information than does 

the conditional analysis for which only discordant case-control pairs are informative leading to 

more precise estimates of the odds ratios. 

 

Key words: GxE interaction, unconditional logistic regression analysis, conditional analysis, 

sibling controls, population-based controls 
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The desire to examine gene-environment [GxE] interactions continues to increase 

particularly as molecular genetic technology improves and genotyping costs decrease. However, 

most study designs appear inefficient for detecting interaction involving rare event(s), 

particularly for moderate values of the GxE interaction effect. We recently proposed a design 

using both related and unrelated controls (simultaneously), named the case-combined-control 

design, to increase the power to detect GxE interaction when the involved factors are rare 

without increasing dramatically the number of required study subjects. This design permitted 

estimation of both the GxE interaction and main effects1. For this design to be valid, a number of 

assumptions were required including no population stratification bias, no difference in the 

distribution of variables of interest between cases who have sibling-controls versus those cases 

without such sibling-controls and exchangeability of covariates of interest in cases and sibling 

controls. 

For ease of computation, the proposed analysis was a conditional analysis with each 

matched set comprised of a case, an unrelated control, and an unaffected sibling of the case (for 

the cases with an available sibling control). In addition to the assumptions listed above, this 

analysis approach required homogeneity between the odds ratios of the variables involved in the 

GxE interactions using either of the two types of controls. This conditional analysis strategy 

produced unbiased main effect estimates for the environmental exposure E, negligible bias for 

the interaction effect I, and minimal bias for the genetic effect G (Pascal Wild, InRS, France, 

personal communication). The case-combined-control design appeared more efficient and 

feasible than a classical case-control study for detecting interaction involving rare events. The 

number of available sibling controls per case and the frequencies of the risk factors were the 

most important parameters for determining relative efficiency. The case-combined-control 

design was, however, less efficient for common genes with moderate effects1. 

We now propose an unconditional analytic strategy to further increase the power for 

detecting GxE interactions. Since unconditional analysis uses information from all subjects, an 

increase in statistical power is expected. This strategy allows estimation of the GxE interaction 

effect and the E main effect under certain assumptions. Only the G main effect cannot be 

estimated from the unconditional analysis because it is biased. We present the assumptions and 

requirements needed for the unconditional analysis to be valid for GxE interaction estimation 

H
A

L author m
anuscript    inserm

-00122280, version 1



 4

and illustrate situations when this analytic strategy leads to improved efficiency for detecting 

GxE interaction relative to a conditional analytic approach. 

 

Methods 

The population for the case-combined-control design consists of cases and two types of 

controls, unrelated controls and sibling controls. The parameters for modeling an interaction 

between a genetic factor G and an environmental exposure E are defined in table 1. (Table 1 

here). G and E are assumed to be independent events. Limited examinations have suggested that 

approximately 50% of cases may have appropriate sibling controls2,3; thus, we use this 

observation to represent the average number of available controls per case (defined as F). Thus, 

in most of our evaluations, F=0.5, meaning that approximately half of the cases have a sibling 

control. Table 2 shows the subgroups of the population at different risk of disease when there is a 

GxE interaction. For illustrative purposes, we used an autosomal dominant inheritance model. 

The results showed similar patterns for an autosomal recessive model (data not shown). We 

calculated the expected distributions of the environmental exposure and genetic susceptibility in 

cases, matched unrelated, and matched related controls according to table 2 and as previously 

described1. (Table 2 here). 

 

Simulation studies 

Random numbers were generated to determine the number of controls each case had for 

each of the studies (i.e. one unrelated control plus approximately F having one related control for 

the case-combined-control study; 1 unrelated plus approximately F having a second unrelated 

control for the classical case-control study). 

When E and G were relatively common (e.g. both>0.05), we simulated 2500 data sets 

with 1000 cases: 1000 matched unrelated controls: approximately 500 matched sibling controls 

with F=0.5. When E and G were relatively rare (e.g. either<0.05) (or very rare; e.g. both <0.01), 

we simulated 1000 case-control studies with 5000 (or 10 000) cases: 5000 (or 10 000) unrelated 

controls: approximately 2500 (or 5000) sibling controls. In addition, a second set of 1500 or 

7500 (or 15 000) unrelated controls was matched to the cases to conduct a classical case-

unrelated-control study. All subjects were simulated using random numbers generated by the 
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SAS function RANUNI (SAS, version 8, Cary, NC) to assign each of the cases and controls to 

the different possible E and G categories. 

 

General assumptions/requirements 

For purposes of presentation, we make several assumptions about the study population. 

We assume that there is no population stratification bias. Second, we assume that baseline 

disease risks do not differ in the study population. That is, we assume that there are no other 

factors in addition to G and E that differentially influence risk of disease. To examine the impact 

of this assumption, however, we examine the effect of a family-specific variable denoted by H 

on the estimates of the interaction effect (GxE) and the relative efficiencies. H is defined as 

follows. ORH for a given family was randomly determined from a normal distribution with mean 

of log(2) and variance of 0.5. H was defined such that it was independent of E and G and had no 

confounding effect; the frequency of H was set to 0.1. Thus, H represents that families have 

different baseline risks due to factors other than G or E. We further assume that there is no 

difference in the distribution of variables of interest between cases who have sibling-controls 

versus those cases without such sibling-controls and that there is exchangeability of covariates of 

interest in cases and sibling controls, i.e. that the covariate distribution does not depend on 

calendar time or birth order or geographic location4,5. Finally, we assume homogeneity between 

the odds ratios of the variables involved in the GxE interactions using either of the two types of 

controls1. 

 

Additional assumptions for unmatched strategy 

We assume that there is no correlation in E between siblings leading to the equality 

between the prevalence of E among unrelateds [P(E)unr] and among relateds [P(E)rel], i.e. 

P(E)unr=P(E)rel. Thus, the E main effect odds ratio across control groups is the same, i.e. 
unr
E

rel
E OROR = . This is equivalent to equality in the interaction effect across control groups, i.e. 

unrrel OROR intint = . Further descriptions of these assumptions are presented in the Appendix. 
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Analysis approach 

To assess the proposed analytic strategy, we compared the case-combined-control design 

to a classical case-unrelated-control study. The parameter of interest is the interaction odds ratio 

[RI] defined on a multiplicative scale. We defined the relative efficiency [RE] of the case-

combined-control study compared to a classical case-control study, as the ratio of the variances 

of βI, i.e., the variance of βI of the classical case-control study divided by the variance of βI of the 

case-combined-control study. We used the same case:control ratio, i.e., number of cases/number 

of controls, in the two designs. We compared the RE for the unconditional analyses RE(U) to the 

RE for the conditional analyses RE(C). We denote the ratio of relative efficiencies ( )

( )C

U

RE
RE

, U/C. 

Thus, when U/C>1, the unconditional analysis is more powerful than the corresponding 

conditional analysis; when U/C<1, the unconditional analysis is less powerful. 

For the matched and unmatched strategies, each simulated case-control study was 

analyzed with conditional and unconditional logistic regression, respectively, using the program 

STATA6 with a binary variable for E and a binary variable for G (based on the genotypes and 

inheritance model) 1. 

 

Results 

We compare RE for the unmatched versus the matched strategies for specific situations to 

illustrate the potential improvement in efficiency from the unconditional analysis approach. 

Figure 1 presents RE(U) and RE(C) for different frequencies of G for a dominant gene with RG=3, 

RE=2, RI=5, P(E)=0.2, and F=0.5. The results show a dramatic effect of P(G) on RE for both 

analyses. RE(U) decreases from 1.82 at P(G)=0.001 to 1.12 when P(G)=0.2. The slope for RE(C) is 

less steep as RE(C) decreases from 1.26 to 1.08 when P(G) increases from 0.001 to 0.2. Figure 1 

also illustrates a more pronounced improvement in power for the unconditional analysis relative 

to the conditional analysis when P(G) is rare. For example, U/C=1.44 when P(G) = 0.001 (and 

1.36 when P(G) = 0.01) versus 1.12 when P(G) = 0.1 (and 1.04 when P(G)=0.2). 

The gain and/or change in RE(U) and U/C is insignificant for common genes and/or 

moderate effect estimates. For example, when P(G)=0.2 and RI=RG=RE=1.5, RE(U)=1.03 and 

U/C=1.00. In addition, for moderate effect estimates when P(G) > 0.1, there is little change in 

RE as P(E) changes and U/C approximates one (i.e. 1.00-1.02) (data not shown). 
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(Table 3 here) Table 3 compares RE(U) and RE(C) for different RG, RE and RI effects when 

P(G)=0.01, P(E)=0.2, and F=0.5. The results show that RG and RI have the strongest effect on 

RE(U) and that RE(U) increases substantially as either RG or RI increases. An increase in RE leads 

to a minor increase in RE(U). In contrast, RE and RI have almost no effect on RE(C); only an 

increase in RG leads to any observable increase in RE(C). Thus, U/C ranges from 1.03 for 

moderate effects (RI=RG=RE=1.5) to 2.13 for very strong effects (RG=10, RI=RE=5). Indeed, 

there is generally about a 50% improvement in power for the unconditional analysis compared to 

the conditional analysis with high or very high estimates of RG, RI or even RE. Also, as 

previously mentioned, when P(G) is common, there is little increase in U/C as RE, RG, or RI 

increase from moderate (1.5) to high (5.0) values (data not shown). 

Table 3 also presents the 95% confidence intervals for RI. The lower and upper bounds 

for the unconditional analysis are contained within the bounds for the conditional analysis 

illustrating the improved efficiency for the unconditional analysis. This comparison also serves 

as a check on the validity of the required assumptions for the unconditional analysis. For 

example, when there is a correlation in E between siblings (ORec≠1), thus violating one of the 

required assumptions, the confidence bounds for RI from the unconditional analysis is no longer 

contained within the bounds from the conditional analysis. To illustrate this situation, consider a 

model with P(G)=0.01, P(E)=0.2, RE=1.5, RG=3 and RI=5, and a moderate correlation in E 

between siblings, i.e. ORec=2. Under this scenario, the estimates of P(E) among the related and 

unrelated controls differ by 7.7% and yield biased estimates of RE, RI, and RG for the 

unconditional analysis. This produces 95% confidence intervals of RI that are no longer nested 

(i.e., 95% CI from conditional analysis: 2.89, 9.41; 95% CI from unconditional analysis: 2.55, 

6.54). In addition, as ORec increases, the bias in RE and RI increase (data not shown). Finally, 

table 3 shows that, as expected, as U/C increases, the confidence interval for the unconditional 

analysis becomes narrower relative to the confidence interval for the conditional analysis. 

Incorporation of family-specific baseline risks (represented by H) had no effect on RI for 

either the conditional or unconditional analysis (data not shown). This finding was as expected 

since H was not associated with either G or E. If there had been a correlation with E, for 

example, the results would have been comparable to that observed when ORec≠1 since P(E) 

would not have been equal in the two control groups. Specifically, the unconditional analysis 

would not be valid and estimates of RE, RI, and RG would all be biased. 
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Figure 2 presents RE(U) and RE(C) for different values of F for a rare (P(G)=0.01) and a 

common (P(G)=0.2) dominant gene. F varies from 0% to 200% resulting in 0 to 2 sibling 

controls per case. All other parameters are fixed with P(E)=0.2, RE=2, RG=3, RI=5. The results 

show a similar effect of F on RE for both analyses. When P(G)=0.01, there is a substantial 

increase in RE from F=0.25 to F=1.0 followed by a plateau. The magnitude of the RE is much 

greater for RE(U) compared to RE(C) and U/C varies from 1.3 to 1.5 with a mean improvement for 

the unconditional analysis of 40%. In contrast, when the gene is common (P(G)=0.2), there is a 

negligible change in RE as F increases and there is essentially no difference between the 

unconditional and conditional analyses, i.e., U/C varies from 1.0 to 1.04. 

 

Discussion 

We have shown that unconditional logistic regression analysis of data from a case-

combined-control study to detect GxE interaction is often more efficient than a conditional 

analysis, particularly for a rare gene and strong effects. The unconditional analysis is also at least 

as efficient as the conditional analysis when the gene is common and the main and joint effects 

of E and G are small. Naturally, under the required assumptions, the unconditional analysis 

retains more data information than does the conditional analysis for which only discordant case-

control pairs are informative leading to more precise estimates of the odds ratios7. 

The gain in efficiency for detecting a GxE interaction using unconditional analysis may 

have a non- negligible effect on the feasibility of a study, i.e. on the required sample size. We 

previously illustrated1 several feasible scenarios with 80% power involving a rare gene that 

required about 1000 cases: 1500 controls when a conditional analysis was used. Performing an 

unconditional analysis at the same power (80%) would only require approximately 750 cases, 

leading to a total decrease in study subjects of about 625 (250 cases, 250 unrelated and about 125 

related controls). Obviously, for situations that require many more subjects (e.g. >20 000 cases 

and 30 000 controls), even the substantial increase in efficiency associated with the 

unconditional analysis will not lead to reasonable sample sizes. 

As we previously discussed1, the major assumptions (e.g. no population stratification bias 

for the unrelated controls and no difference in the distribution of variables of interest between 

cases who have sibling-controls versus those cases without such sibling-controls plus 

exchangeability of covariates of interest in cases and sibling controls4,5,8-10 ) required for the 
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case-combined-control study to produce valid estimates of main and/or interaction effects are not 

testable before the data has been collected. If these major assumptions are not met, then 

alternative analytic strategies will be required. However, if these assumptions are met, then 

conducting conditional and/or unconditional analyses will depend on the goals of the study and a 

second set of assumptions. Specifically, for conditional analyses to estimate both main and 

interaction effects, we require that there is homogeneity between the odds ratios of the variables 

involved in the GxE interactions using either of the two types of controls. Additionally, for the 

unconditional analyses to be valid there must be no correlation in E between siblings and the 

same frequency of E in the two control groups. Although P(E)rel = P(E)unr leads to 

unr
E

rel
E OROR =  and unrrel OROR intint = as long as G and E are independent and the other required 

assumptions are met, in real settings, these relationships may be more complicated. Specifically, 

because of confounding, effect modification, etc., the equality of the frequency of E in the two 

control groups may not necessarily translate to equivalency of the effect estimates. Therefore, the 

necessary assumptions for the validity of the unconditional analysis should also include the 

equality unr
E

rel
E OROR = . For purposes of this study, we implicitly assumed that there was no 

correlation within families due to shared, but unmeasured factors. Examination of H with 

different risks across families showed that if H was not correlated with E or G, it had no effect on 

RI or its variance and thus no effect on the relative efficiency. However, if H was correlated with 

E, it would be comparable to having a correlation in E between siblings with different values 

across families leading to different frequencies of E between control groups and therefore invalid 

estimates for the E main effect as well as the GxE interaction effect under an unconditional 

analysis. 

Under the assumptions listed above and detailed in the methods, unconditional analysis 

of data from the case-combined-control study yields unbiased estimates of the E main effect and 

GxE interaction effect. The conditional analysis, however, can serve as a check on the validity of 

the unconditional analysis strategy by evaluation of the confidence intervals for the GxE 

interaction effect estimate RI. Specifically, if the unmatched approach is valid, given the 

increased efficiency for an unconditional versus a conditional analysis, the lower and upper 

bounds for the RI confidence interval from the unconditional analysis should be contained within 

the confidence interval for the conditional analysis. If the confidence interval bounds for the 
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unconditional analysis are not within the bounds for the conditional analysis, then one may 

expect that one or more of the required assumptions is not valid. However, there may be 

situations when the deviation from the required assumptions (e.g. existence of a correlation in E 

between siblings) may be small such that unconditional analysis could still be conducted without 

much bias. Further study is required to determine how robust RE and RI are to small or moderate 

deviation from these assumptions. Moreover, it may be helpful to consider the types of scenarios 

when the required assumptions would be likely to apply. Depending on the disease and 

exposures of interest, external data may be available to provide a priori information about, for 

example, the chances of a correlation in exposure E between siblings. If such a correlation is 

known or strongly suspected, unconditional analysis would not be appropriate and a different 

analytic strategy would be required. 

If the necessary assumptions for the conditional or unconditional analysis of the case-

combined-control design are not met, then one may choose an alternative analytical strategy such 

as polytomous regression or incorporation of weights to account for the differential 

ascertainment of the two control groups. Another possible approach would be to combine the 

conditional and unconditional logistic regressions in a single analysis. That is, one could use a 

conditional likelihood for the sibling controls and a full likelihood for the unrelated controls and 

maximize the product of the likelihoods. Limited simulations using such an approach suggest 

that this analytical strategy is substantially less efficient than the unconditional analysis but 

appears generally as efficient as the conditional analysis (data not shown). An advantage of this 

approach, however, is that it appears to produce minimally biased estimates of RG and RE even 

when there is a correlation in E between siblings. Since this approach may require fewer 

assumptions than either unconditional or conditional analysis strategies, the efficiency reductions 

might be offset by improved estimation capabilities. Further evaluation of this strategy and other 

analytical approaches are planned. If one is interested in estimating the main effect of G, then 

unconditional analysis cannot be conducted. Also, since validity of the unconditional analyses 

requires the same frequency for at least one variable in the interaction for both control groups, it 

follows that unconditional analysis cannot be used to estimate GxG interaction effects. The 

unconditional analysis approach is limited to GxE interactions or ExE interactions so long as at 

least one of the exposure variables is not correlated among siblings and has the same frequency 

in the two control groups. 
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The case-combined-control design was developed to increase efficiency for GxE 

interaction detection by simultaneously using two types of controls. Other designs such as the 

case-control-family design11 and the triads [affected offspring plus two parents] and unrelated 

subjects design12, 13 with simultaneous use of multiple control groups have also been proposed. 

As molecular genetic data becomes more easily collected and less expensive, there will be 

increased opportunities for these types of hybrid designs to increase power for detection of 

genetic or environmental main effects and interaction effects. 

These results show that unconditional analysis of the case-combined-control design to 

estimate GxE interaction is unbiased under certain conditions and may produce a substantial 

increase in power. However, necessary assumptions for such an analysis may not be met for all 

variables of interest. Future studies will examine whether the case-combined-control design 

would still offer advantages over a single case-unrelated-control or case-related-control study 

design in these situations. 
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Appendix 

  Cases Controls 

   related unrelated

E- G- a c e 

 G+ b d f 

E+ G- g i k 

 G+ h j l 

 

The above table shows the E and G distributions for cases, related, and unrelated 

controls. If one is interested in using the case-combined-control design approach to estimate 

main and interaction effects, then the approach requires that there is homogeneity between the 

odds ratios of the variables involved in the GxE interactions using either of the two types of 

controls1. That is, the ORs for G and E for the two control groups are required to be equal. For 

this assumption to be valid, a matched analytic strategy is required since siblings will have a 

greater frequency of G (and also E if there is a positive correlation in E between cases and their 

sibling controls) compared to unrelated controls. 

 

However, if one is mainly interested in estimating the GxE interaction effect, then only 

the equality unrrel OROR intint =  is required where rel denotes related and unr, unrelated controls. 

Thus, from the above table 

af
be

ak
ge

la
he

ad
bc

ai
gc

ja
hc

OROR
OR

OROR
OR

unr
G

unr
E

unr
G,E

rel
G

rel
E

rel
G,E =⇒=  

thus 
le
kf

jc
idOROR unrrel =⇒= intint  

 

For this equality to hold, we assume that G and E are independent. In addition, since G is 

correlated in siblings, we also require no correlation in E between siblings which means that 

P(E)rel = P(E)unr. Given these requirements, from the above table, we have i/c=k/e and j/d=l/f. 
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Thus, unr
E

rel
E OROR =  in addition to unrrel OROR intint =  and an unconditional analysis may be 

performed in the case-combined-control design to estimate the GxE interaction effect. Both the 

GxE interaction effect and E main effect estimates are unbiased. If, however, there is a 

correlation in E between siblings and/or P(E)rel ≠ P(E)unr, then i/c≠k/e and j/d≠l/f. And it 

follows that unr
E

rel
E OROR ≠  and unrrel OROR intint ≠ . Under such a scenario, unconditional analysis of 

case-combined-control data would not be valid. 
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Table 1: Definition of parameters for modelling GxE interaction 

 

 

Symbols 

 

 

Definition 

F Average number of available controls per case 

p Population frequency of the “mutant” allele A 

PG =P(G) Prevalence of the genetic factor G in the population. 

(equal to p²+2p(1-p) under a dominant model and equal to p² under 

a recessive model) 

PE =P(E) Prevalence of the environmental factor E in the population 

RE Odds ratio between E and disease (among those not having G) 

RG Odds ratio between G and disease (among those not exposed to E) 

RI Interaction effect, defined on a multiplicative scale. 
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Table 2: Subgroups of the population at different risk of disease when there is a GxE interaction, where A is an autosomal dominant 

allele1 

 

Exposure Proportion of 
unrelated 
controls 

Relative 
risk 

Proportion of cases Proportion of unaffected siblings (i.e. related controls) according 
to case genotypes 

Case    Sibling genotype 

    [aa] [Aa] [AA] 

E+ [AA] PE p² RE RG RI (PE p² RE RG RI)/Σ* ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
4

1 2p § 
( )

⎟
⎠
⎞

⎜
⎝
⎛ −

2
²1 p £ ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
4

1 2p £ 

E+ [Aa] PE 2p(1-p) RE RG RI (PE 2p(1-p) RE RG RI)/Σ ( )
⎟
⎠
⎞

⎜
⎝
⎛ +−

4
23pp § ( )

⎟
⎠
⎞

⎜
⎝
⎛ +−

2
11 pp £ ( )

⎟
⎠
⎞

⎜
⎝
⎛ +

4
1pp £ 

E+ [aa] PE (1-p)² RE  PE (1-p)² RE/Σ 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ − 11

4
pp § 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −

2
2 pp £ ⎟

⎠
⎞

⎜
⎝
⎛

4
²p £ 

E- [AA] (1-PE) p² RG (1-PE) p² RG /Σ ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
4

1 2p § 
( )

⎟
⎠
⎞

⎜
⎝
⎛ −

2
²1 p £ ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
4

1 2p £ 

E- [Aa] (1-PE) 2p(1-p) RG (1-PE) 2p(1-p) RG /Σ ( )
⎟
⎠
⎞

⎜
⎝
⎛ +−

4
23pp § ( )

⎟
⎠
⎞

⎜
⎝
⎛ +−

2
11 pp £ ( )

⎟
⎠
⎞

⎜
⎝
⎛ +

4
1pp £ 

E- [aa] (1-PE)(1-p)² 1 (1-PE)(1-p)²/Σ 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ − 11

4
pp § 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −

2
2 pp £ ⎟

⎠
⎞

⎜
⎝
⎛

4
²p £ 

 

With : d=0.001 ; ddR1
dR

c
E
E
−+

=  ; ddR1
dR

b
G
G
−+

=  ; 
( )

( )( ) ( )d1cbRc1b1d
bd1cR

a
I

I
−+−−

−
=  

* Σ=PE (p²+2p(1-p) RE RG RI + PE (1-p )² RE + (1-PE)(p²+2p(1-p) RG + (1-PE)(1-p )² 
§ multiply by (1-b)(1-PE) when sib control not exposed to E, and by (1-a)PE when sib control exposed to E 
£ multiply by (1-d)(1-PE) when sib control not exposed to E, and by (1-c)PE when sib control exposed to E 
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Table 3: Comparison of the relative efficiency using either unconditional analysis or conditional 

analysis for different G, E and GxE effects for P(G)=0.01; P(E)=0.2 

 

Simulation 

 values 

Unconditional 

analysis 

Conditional 

analysis 

 

RG RE Rint RE(U) 95%CI RE(C) 95%CI U/C 

Ratio of REs

1.5 1.5 1.5 1.07 0.76;3.15 1.04 0.75;3.24 1.03 

  5.0 1.25 2.80;9.40 1.07 2.71;10.2 1.16 

 3 1.5 1.09 0.78;3.10 1.04 0.76;3.26 1.05 

  5.0 1.33 2.89;9.44 1.05 2.69;10.6 1.26 

3 1.5 1.5 1.28 0.84;2.72 1.19 0.82;2.84 1.07 

  5.0 1.63 3.15;8.51 1.26 3.00;9.56 1.29 

 3 1.5 1.32 0.87;2.72 1.18 0.84;2.94 1.12 

  5.0 1.79 3.26;8.46 1.20 2.96;9.94 1.49 

 5 1.5 1.34 0.86;2.71 1.14 0.82;3.01 1.17 

  5.0 1.85 3.34;8.65 1.14 2.89;10.5 1.63 

 10 1.5 1.34 0.86;2.82 1.07 0.79;3.32 1.25 

  5.0 1.80 3.38;9.20 1.05 2.70;11.4 1.71 

10 1.5 1.5 2.25 1.01;2.31 1.88 0.97;2.45 1.20 

  5.0 3.12 3.77;7.49 2.05 3.49;8.56 1.52 

 5.0 1.5 2.36 1.06;2.36 1.64 0.98;2.69 1.44 

  5.0 3.43 4.35;8.43 1.61 3.48;10.45 2.13 
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Figure 1: Relative efficiency from unconditional analysis, RE(U) (bold-line) and from 

conditional analysis RE(C) (dashed-line) according to the frequency of G for a dominant gene 

with RG=3, RE=2, RI=5, P(E)=0.2, and F=0.5. 
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Figure 2: Relative efficiency from unconditional analysis, RE(U) (bold-line) and from 

conditional analysis RE(C) (dashed-line) according to the number of available sibling controls per 

case for a rare (P(G)=0.01: diamond-symbols) and common (P(G)=0.2: stared-symbols) 

dominant gene with P(E)=0.2; RE=2; RG=3; RI=5. 
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