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Abstract

Background: With an influenza pandemic seemingly imminent, we constructed a model simulating

the spread of influenza within the community, in order to test the impact of various interventions.

Methods: The model includes an individual level, in which the risk of influenza virus infection and

the dynamics of viral shedding are simulated according to age, treatment, and vaccination status;

and a community level, in which meetings between individuals are simulated on randomly generated

graphs. We used data on real pandemics to calibrate some parameters of the model. The reference

scenario assumes no vaccination, no use of antiviral drugs, and no preexisting herd immunity. We

explored the impact of interventions such as vaccination, treatment/prophylaxis with

neuraminidase inhibitors, quarantine, and closure of schools or workplaces.

Results: In the reference scenario, 57% of realizations lead to an explosive outbreak, lasting a mean

of 82 days (standard deviation (SD) 12 days) and affecting 46.8% of the population on average.

Interventions aimed at reducing the number of meetings, combined with measures reducing

individual transmissibility, would be partly effective: coverage of 70% of affected households, with

treatment of the index patient, prophylaxis of household contacts, and confinement to home of all

household members, would reduce the probability of an outbreak by 52%, and the remaining

outbreaks would be limited to 17% of the population (range 0.8%–25%). Reactive vaccination of

70% of the susceptible population would significantly reduce the frequency, size, and mean duration

of outbreaks, but the benefit would depend markedly on the interval between identification of the

first case and the beginning of mass vaccination. The epidemic would affect 4% of the population if

vaccination started immediately, 17% if there was a 14-day delay, and 36% if there was a 28-day

delay. Closing schools when the number of infections in the community exceeded 50 would be very

effective, limiting the size of outbreaks to 10% of the population (range 0.9%–22%).

Conclusion: This flexible tool can help to determine the interventions most likely to contain an

influenza pandemic. These results support the stockpiling of antiviral drugs and accelerated vaccine

development.
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Background
There are increasing concerns that an A/H5N1 influenza
pandemic is imminent. Based on data from recent pan-
demics, 50 countries have developed pandemic prepared-
ness plans and most industrialized countries are
stockpiling antiviral drugs [1]. An international workforce
has been created to develop an H5N1 vaccine [2], and
immunogenicity trials are promising [3,4].

Public health decision-making will be based largely on
experience with past pandemics, but models are needed to
plan and evaluate interventions based on vaccination,
antiviral prophylaxis/therapy, quarantine, and closure of
public places. As the transmissibility and pathogenicity of
emerging influenza viruses cannot be predicted, and nei-
ther can their pandemic potential, such models should be
flexible enough to be adapted to a wide range of situa-
tions. They must deal with various types of populations
and test different kinds of interventions, used together or
in isolation.

Recent papers focus on the containment of an outbreak in
a rural area of Southeast Asia, where a pandemic virus
seems most likely to emerge [5,6], or on strategies for mit-
igating the severity of a pandemic in the United States or
Great Britain, where a virus is likely to spread secondarily
[7,8]. The authors used different methodologies, but the
results of both studies showed that a nascent pandemic
could be contained by using a combination of antiviral
drugs and confinement measures. Another paper sug-
gested that, in the United States, vaccination (particularly
of children) could be very effective [9].

We have developed a model for simulating the spread of
influenza virus infection in the community during a pan-
demic. The model includes not only individual parame-
ters, which take into account the risk of infection and the
dynamics of viral shedding according to age, treatment,
and vaccination status, but also community parameters,

in which meetings between individuals are simulated by
the use of a complex random graph.

Methods
Individual-centered model of influenza infection, illness, 

and health-care use

A computer model was first developed to describe influ-
enza infection and its consequences for a given individ-
ual. We used the classical four-stage model of infection, as
follows: Susceptible (S – may be infected), Exposed (E – is
infected but cannot transmit the disease), Infectious (I – is
infected and can transmit the disease), and Recovered (R
– can no longer transmit the disease and is immune to
new infections).

The three basic parameters used to describe transitions
between the different stages were the person-to-person
transmission rate, which is assumed to vary with the age
of susceptible and infectious individuals and with the
time since infection; the length of the latent period (time
between infection and onset of infectivity); and the length
of the infectious period.

In order to obtain a biologically realistic description of the
person-to-person transmission process, we assumed that
infectivity varies with time since infection and is propor-
tional to the degree of viral shedding by infected individ-
uals (Table 1). Based on data from experimental studies in
which viral shedding was measured in volunteers chal-
lenged with wild-type influenza viruses [10,11], we mod-
eled the kinetics of infectivity by using [l.c. gamma]
density functions with a fixed offset of 0.5 days, corre-
sponding to the latent period (Figure 1). The profiles thus
obtained were consistent with those of a prospective
household-contacts survey conducted in France, with
peak infectivity between the second and third days after
infection, infectivity lasting a maximum of 10 days, and
1.8-fold-higher daily infectivity of children compared
with adults [12,13]. Finally, we modulated individual sus-
ceptibility by age, again based on the results of the pro-

Table 1: Parameters describing the transmissibility and pathogenicity of influenza virus.

Parameter Baseline values Sources

Infectivity profiles Adapted from [13], and consistent (to a scale factor) with 
[10,15–21]

Latent period 0.5 days

Peak 2.5–3 days

Duration <10 days

Relative susceptibility [5,13]

Children (0–18 years) 1.15

Adults (19–65 years) 1

Elderly (>65 years) 1

Proportion of asymptomatic individuals (children, adults, elderly people) 30% [48]; also used in [6]

Relative infectivity of asymptomatic individuals 50% Assumption also used in [6]
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spective survey, in which we showed that susceptibility
was higher in children than in adults [14]. The infectivity
profiles were then scaled by a factor that was identical for
children and adults in order to obtain attack rates consist-
ent with those reported during pandemics in children and
adults or the elderly (see below). The resulting probability
of transmission during a hypothetical meeting lasting
throughout the infective period between a susceptible
child and a single infected child was 64%; the correspond-
ing probability of transmission between a susceptible
adult and a child was 58%; the corresponding values for
permanent meetings between a single infected adult and a
susceptible child and adult were 42% and 37%, respec-
tively.

As influenza virus infection is not always symptomatic, we
postulated that 30% of infected individuals would not be
sufficiently ill to be identifiable [6], and that these sub-
jects would be half as infective as other subjects. For symp-
tomatic individuals, we postulated that the duration and
intensity of symptoms would be proportional to infectiv-

ity, based on the observation that the onset of symptoms
after experimental infection coincides with a sharp
increase in viral shedding [10,15-21], i.e. the incubation
period is equal to the latent period.

For case and contact tracing, and for access to interven-
tions (treatment, prophylaxis, etc.), patients must be seen
by a physician. We postulated that most symptomatic
subjects would seek medical advice (90%), and that 40%
of those who consulted would do so within the first day
after onset, 30% the second day, and 30% after the second
day. These rates were chosen to be higher than those
observed during a seasonal influenza epidemic [12], as
public awareness would be higher in a pandemic situation
and as antiviral treatment would be available only from a
physician. Finally, we postulated that 80% of individuals
who consulted a physician would remain confined to
their home for one week.

We postulated that 5% to 13% of symptomatic subjects
(depending on age) would be hospitalized for serious

Infectivity profiles of individuals according to time since influenza infectionFigure 1
Infectivity profiles of individuals according to time since influenza infection. A latent period of 0.5 days was postu-
lated. Black dots represent infectivity in children and grey dots, infectivity in adults or elderly subjects.
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complications and that 20% to 30% of those hospitalized
would die. The case-fatality rates thus ranged from 1% to
4%, in keeping with data collected during previous pan-
demics [22,23] The average hospital stay was set at 12
days, based on French national statistics on hospitaliza-
tion for pneumonia and influenza [24]. We postulated
that transmission could not occur between patients or
from patients to hospital staff, owing to strict application
of preventive measures.

Community model

The community model was based on a complex random
graph realistically describing meetings between individu-
als. We first generated a set of individuals based on a par-
ticular demographic profile (gender, age groups, and
household sizes) adapted from French national census
data [25], in which each individual is assigned to a house-
hold and a place of occupation (for example, a school for
a child, or a workplace for a working adult). Households
and places of occupation were assigned to districts, and
children were preferentially assigned to schools located in
the district where they lived; 20% of working adults were
assigned to workplaces located in other districts. In the
reference simulation, 23% of individuals were children,
67% were adults (80% in employment), and 10% were
elderly.

Two types of bidirectional graphs were generated. First, a
fully connected graph was generated for each household,
as we assumed that every household member would make
daily meetings with all other household members (if
any).

For schools, workplaces and other locations (nursing
homes, hospital, etc), meetings between individuals were
modeled with the Barabasi-Albert (BA) random graph
[26]. The BA graph was developed in the late 1990s to
describe systems in which the probability that a node will
have a given number of connections with other nodes

does not depend on the size of the system. This type of
graph can correctly describe systems such as links on the
worldwide web and citations in scientific journals
[27,28]. It can also provide a realistic representation of
social contacts: the first application of this method was to
describe the network of movie actors [28]).

BA graphs are built up from a small initial numbers of

nodes (three, for example), in two steps: a growth step, in

which a new node with m connections is added; and a

preferential attachment step, in which the nodes to which

the new node connects are chosen. The probability Π that

the new node will be connected to node i depends on the

connectivity ki of that node, such that .

The probability density P(k) that a node in the network is

connected to k other nodes is independent of the size of

the system and has a power law distribution, that is P(k) ~

Ak-γ, where [l.c. gamma] is 3 and coefficient A is propor-

tional to the square average connectivity of the network (A

~ m2). The average connectivity of a BA graph is 2m.

Various BA graphs were generated for the various loca-
tions simulated here (Table 2).

Figure 2 describes the resulting connectivity (k) of the sim-
ulated population (100 simulations). The connectivity
clearly followed a power-law distribution for k values >10.
The mean connectivity was 11.9 (standard deviation (SD)
0.28), with differences according to age: 13.6 (SD 0.06)
for children, 12.3 (SD 0.41) for adults, and 4.8 (SD 0.14)
for elderly people. We also calculated a weighted connec-
tivity by scaling each connection by a factor representing
the part of the week during which individuals met and
during which transmission could occur if one individual
was infectious and the other susceptible. For example,
meetings between household members, assumed to occur

Π( )k k ki i j
j

= ∑

Table 2: Parameters describing the community model simulating the spread of influenza.

Place Size Graph Assignment Meetings

Households 1 to 6 Fully connected D

Schools

Elementary 5 classes; 20 children and 2 
adults per class

Each class is modeled using a BA graph (m = 2); 
supplementary random links between individuals 
belonging to different classes.

Children living in the 
district

WD

Secondary 13 to 15 classes; 30 students 
and 3 teachers per class

Children and students are linked to teachers. One college for 5 districts WD

Workplaces 6 to 3000 according to Zipf 
distribution [49]

BA graph (m = 6) 80% from the district; 20% 
from outside the district

WD

Nursing homes 45 elderly people, 50 
employees per nursing home

BA graph (m = 6) WD

District All individuals BA graph (m = 1) WE

BA Barabasi-Albert; D every day; WD every working day; WE every weekend
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every morning and every evening of each working day and
during the entire weekend, corresponded to 9/14ths of a
week. Meetings between employees or school children
were equivalent to 5/14ths of a week. The resulting
weighted connectivity was 3.87 (SD 0.09), meaning that
an individual in our simulated network had an average of
nearly 4 permanent meetings with other individuals. We
characterized the mixing of the simulated population by
computing a mean local clustering coefficient C, defined
as the mean fraction of existing connections between con-
tacts of each individual. C reflects the existence of cliques,
or communities: it is the mean probability that two indi-
viduals are connected, given that they share a common
network contact. The mean local clustering coefficient of
the simulated graphs was 0.20 (SD 0.02). Finally, the
mean shortest path (the minimum number of contacts)
between two randomly chosen individuals in our simu-
lated population was 3.6 (SD 0.15). Thus, our networks
exhibited substantial clustering and small-world proper-
ties consistent with current knowledge of human social
networks [29].

Simulation process and empirical calibration

Each simulation started with the generation of a network
of 10,000 individuals and one infected individual. In
order to deal with heterogeneities of susceptibility or con-
nectivity between individuals, we proceeded as follows:
we first randomly chose one infected individual and then
simulated the first generation of secondary infections.
Then each individual infected during the first generation
was used as the initial infective in a new simulation where
the network and the population were reset to their initial
values. The selection of an individual from the first gener-
ation ensures proper sampling of the initial infected indi-
vidual in a heterogenous contact network [30].

A discrete time step (half a day) was chosen. At each time
point, meetings between infectious and susceptible indi-
viduals were derived from the graph, and transmission of
influenza virus during each meeting was simulated by
comparing a uniform random number with the calculated
probability of transmission. The per-meeting probability
of transmission was calculated as the product of infectivity

Connectivity distribution of the simulated populationFigure 2
Connectivity distribution of the simulated population.
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(depending on time since infection) and the relative sus-
ceptibility of the contact, and was adjusted for other
parameters (vaccination, treatment, etc.). The simulations
stopped after the maximal length of the infectious period
following the last transmission event.

A critical parameter in the epidemiology of infectious dis-
eases is the basic reproductive number (R0). R0 is defined
as the average number of secondary infections produced
by a single infected person in a fully susceptible popula-
tion. In our model, analytical calculation of R0 is not fea-
sible [6]. For this reason, we proceeded by simulation,
randomly choosing one infective subject as described
above, and then counting the number of secondary infec-
tions.

Figure 3 shows the distribution of the numbers of second-
ary infections averaged over 8000 trials. In 22.2% of trials,
no secondary cases were generated by the introduction of
a single infectious individual into the community. The
mean R0 was 2.07 and the disease generation time, which

represents the mean interval between infection of a given
person and infection of all the people that this individual
infects, was 2.44 (SD 1.48) days.

We then explored the sensitivity of the basic reproductive
number to the number of meetings and to the per-meet-
ing probability of transmission. Parameters describing the
meetings (mean weighted connectivity between 1 and 7)
and per-meeting transmissibility (0.1 to 3 times the refer-
ence value) were varied on a 10 [multiplication sign] 10
grid with 40 simulations for each combination of param-
eters. Normal regression analysis with a log link was per-
formed with the mean number of secondary cases as the
response variable and weighted connectivity and per-
meeting transmissibility as predictors. As expected, the
mean weighted connectivity and the per-meeting trans-
missibility correlated independently with the basic repro-
ductive number (Figure 4).

The observed rates of seroconversion and illness due to
the pandemic strains that circulated during the 20th cen-

Distribution of the basic reproductive number R0Figure 3
Distribution of the basic reproductive number R0. There were 8000 simulations. Superscripts indicate the numbers of 
simulations generating a number of secondary infections greater than 10.
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tury were used to calibrate the model, and particularly to
scale infectivity. During the 1957 pandemic, serological
infection rates as high as 75% were observed among chil-
dren and 25% among adults [31]. In 1918, during the first
pandemic wave, the attack rate of clinical influenza was
maximum in children (40%) and then fell gradually with
age, reaching 9% in people aged 75 years or more. An
average attack rate of 34% was reported during the 1957
pandemic, with an age distribution similar to that
observed during the first pandemic wave of 1918 [23].
The age distribution of attack rates during the 1968 pan-
demic was noticeably different, with values decreasing less
markedly with age, ranging between 41% and 43% in
children, but remaining above 30% in all other age groups
[23]. Most of these rates were obtained from studies of
families with children (which tend to overestimate the
true attack rates in the general population), but served as
benchmarks for empirical calibration of our model. The
shape and length of the pandemic curve were also consist-

ent with those reported in cities during the 1918 pan-
demic [32].

Results
Reference scenario

Two hundred realizations were simulated for each sce-
nario. Three patterns were observed. No secondary infec-
tions were generated in 20% of simulations (see above).
In 23% of simulations, a limited number of infections
occurred and the epidemics always affected fewer than
five subjects per 1000 (Figure 5). In the remaining 57% of
simulations, explosive growth occurred and the epidemic
affected an average of 46.8% of subjects (SD 1.7%). The
mean duration of the outbreaks, defined as the time
between the first secondary infection and the last infec-
tion, was 82 days (SD 12 days). The cumulative incidence
rate of influenza infection was much higher in children
than in adults, including the elderly. The mean clinical
attack rate was 33% (SD 1%), 1.7% (SD 0.16%) of the

Sensitivity analysis of the basic reproductive number R0Figure 4
Sensitivity analysis of the basic reproductive number R0. The figure shows the isopleth of R0 as a function of weighted 
connectivity and multiples of baseline per-meeting probabilities of transmission. The bold line corresponds to R0 = 2.07. Curves 
were plotted using the following regression equation: R0 = Exp([minus]0.485 + 0.347 [multiplication sign] multiple of the base-
line per-meeting probability of transmission + 0.14 weighted connectivity).

mean weighted connectivity

p
e
r 

m
e
e
ti
n
g
 t
ra

n
s
m

is
s
ib

ili
ty

(x
 b

a
s
e
lin

e
)

1

2.07

3

4

2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

3.0



BMC Medicine 2006, 4:26 http://www.biomedcentral.com/1741-7015/4/26

Page 8 of 14

(page number not for citation purposes)

Simulation of the reference scenario for a flu pandemic (no intervention)Figure 5
Simulation of the reference scenario for a flu pandemic (no intervention). The top figure describes the distribution 
of the numbers of secondary cases following introduction of a single infected individual into the population (200 simulations), 
and the bottom figure describes the infection curves of simulated outbreaks. The bold line is the average of the simulated out-
breaks.
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population was hospitalized, and 0.36% (SD 0.07%) died
from influenza (a value intermediate between the 1918
pandemic (0.6%) and the following two pandemics
(0.04%–0.01%) [33]). The number of workdays lost per
working adult was 1.37 (SD 0.07). Other results, averaged
over 200 realizations, are shown in Table 3.

Intervention scenarios

We first simulated the effectiveness of neuraminidase
inhibitors in individuals who sought medical advice and
were treated for five days. We assumed that treatment
reduced infectivity and clinical severity (including the risk
of complications and death) by 28% [5]. We also assumed
that treatment would not affect the mean number of
workdays lost per patient. Table 4 shows the results for a
treatment coverage rate of 90%. An outbreak was simu-
lated in 53% of cases and the size of the outbreaks and the

clinical attack rate were only slightly affected by treat-
ment, owing to a decrease in transmissibility (Table 4).
However, the rates of hospitalization and death
decreased, mainly as a result of a lower risk of complica-
tions in treated individuals. It is noteworthy that drug
stockpiles sufficient for 25% of the population coverage
would permit the treatment of 90% of patients who con-
sult a physician.

Several randomized controlled trials have demonstrated
the preventive effectiveness of neuraminidase inhibitors
(see [34] for a recent review). We postulated that a 10-day
course of prophylaxis with neuraminidase inhibitors
would reduce susceptibility to influenza virus infection by
80% during each meeting [35,36]. We tested two scenar-
ios, one with prophylaxis of household contacts but no
treatment of the index case, and one combining treatment

Table 3: Reference scenario for a flu pandemic after one initial case (no intervention). Estimates are cumulative numbers per 100 

inhabitants, unless otherwise specified.

Outcomes Outbreak
n = 114

All simulations
n = 200

Mean Minimum-Maximum Mean

Infections

Total 46.8 42.3–50.5 26.7

Children (0–18 years)a 76.5 71.9–79.7 43.6

Adults (19–65 years) a 39.9 34.8–44.0 22.8

Elderly (>65 years) a 25.3 20.8–30.1 14.4

Physician visits 31.2 28.0–33.7 17.8

Hospital admissions 1.74 1.30–2.30 0.99

Deaths 0.36 0.17–0.55 0.21

Lost workdaysb 137 118–150 78

aPer 100 individuals of a given age
bPer 100 working adults

Table 4: Treatment with neuraminidase inhibitors of 90% of individuals consulting a physician for 'flu-like' symptoms. Estimates are 

cumulative numbers per 100 inhabitants, unless otherwise specified.

Outcomes Outbreak; n = 106 All simulations; n = 200

Mean Minimum-Maximum Mean

Infections

Total 43.3 38.5–48.0 23.0

Childrena 72.5 67.9–76.4 38.4

Adultsa 36.5 30.6–41.8 19.3

Elderlya 22.3 18.6–26.0 11.8

Physician visits 28.0 24.3–31.2 14.9

Hospital admissions 0.98 0.66–1.18 0.52

Deaths 0.21 0.12 – 0.32 0.11

Lost workdaysb 125 107–141 66

Treatment units (doses)c 243 215–269 129

aPer 100 individuals of a given age
bPer 100 working adults
cTwo per day of treatment, five days per patient



BMC Medicine 2006, 4:26 http://www.biomedcentral.com/1741-7015/4/26

Page 10 of 14

(page number not for citation purposes)

of the index case and prophylaxis of household contacts.
Table 5 shows the results for 70% coverage of household
contacts and index cases. Combined treatment and
prophylaxis would slightly reduce the burden of influenza
outbreaks by comparison with contact prophylaxis with-
out treatment of index cases.

We then examined the impact of 10-day confinement to
home of all members of households in which a case was
identified by a physician, combined with prophylaxis of
household contacts and treatment of the index case. This
strategy would increase effectiveness by comparison with
similar scenarios not involving confinement: coverage of
70% of affected households would be sufficient to reduce
the risk of an outbreak by 52%, restricting it to 17% of the
population (range 0.8%–25%) (Figure 6). The mean
duration of the outbreak would be increased (119 days,
SD 22) by comparison with the reference scenario and
influenza virus would persist in the population for more
than five months in 25% of simulations.

We also modeled a scenario in which mass vaccination
would begin a certain time after identification of the first
case (0, 14, 28 days) and in which the target level of vac-
cine coverage would be achieved within 14 days. We pos-
tulated that individual protective immunity would be
achieved two weeks after vaccination and that vaccination
would reduce susceptibility by 80% during each meeting
(leaky vaccine, meaning that vaccinated individuals
would respond by acquiring partial immunity, rather than
acquiring either complete immunity or no immunity at all
[37]). Mass vaccination could take place in schools, work-
places, nursing homes, hospitals, and physicians' offices.

We assumed that vaccination would lead to the loss of
0.04 workdays per working adult [38].

Reactive mass vaccination would significantly reduce the
frequency, size, and mean duration of outbreaks (Figure
6), but the benefit would depend closely on how long it
took to begin vaccination after identification of the first
case (Table 6).

Finally, we simulated an intervention in which schools
and workplaces are closed when a threshold number of
infections (5/1000 subjects in our example) has been
reached in the population and are reopened 10 days after
the last observed case of infection. This strategy could be
used if vaccines and/or antiviral drugs were in short sup-
ply or ineffective. Table 7 shows the results of closure of
schools alone or both schools and workplaces. This strat-
egy would be very effective, but would clearly be associ-
ated with massive time off work.

Discussion
Using a realistic description of influenza infection in the
individual subject, we show that an influenza pandemic
with a burden comparable to that of 20th-century pan-
demics might be mitigated by combining measures aimed
at reducing meeting frequency and virus transmissibility.
This conclusion is based on several assumptions [5,6] and
would be influenced by average infectivity, variability of
infectivity [39], and the frequency and patterns of meet-
ings between individuals [40], as these two dimensions
govern the basic reproductive number. We found that an
average R0 of 2.07 can provide attack rates and pandemic
curves consistent with those reported in previous pan-

Table 5: Household contact prophylaxis with antiviral drugs, with or without treatment of the index cases. The interventions are 

applied in 70% of households in which one member consults a physician. Estimates are cumulative numbers per 100 inhabitants, unless 

otherwise specified.

Outcomes Prophylaxis
(Outbreak, n = 90)

Prophylaxis + treatment
(Outbreak, n = 98)

Mean Minimum-Maximum Mean Minimum-Maximum

Infections

Total 36.1 32.1–40.1 34.2 30.8–37.4

Childrena 61.8 57.0–66.2 58.5 53.1–64.5

Adultsa 30.2 25.6–35.0 28.8 24.2–33.4

Elderlya 16.8 11.2–21.2 14.9 11.3–18.9

Physician visits 23.8 21.8–27.0 22.2 19.6–24.8

Hospital admissions 1.18 0.70–1.57 0.77 0.59–0.98

Deaths 0.25 0.13–0.43 0.16 0.06–0.28

Lost workdaysb 106 94–122 100 85–116

Treatment units (doses)c 196 179–210 393 356–435

aPer 100 individuals of a given age
bPer 100 working adults
cTwo per day of treatment, five days per patient; one per day of prophylaxis, 10 days per person
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Table 6: Reactive vaccination of 70% of the susceptible population according to the interval between implementation and identification 

of the first case in the community. Estimates are cumulative numbers per 100 inhabitants, unless otherwise specified.

Outcomes Interval (days) 

0
(Outbreak, n = 121)

28
(Outbreak, n = 122)

Mean Minimum-Maximum Mean Minimum-Maximum

Infections

Total 4.2 0.5–15.7 36.1 2.0–46.9

Childrena 8.6 0.7–31.5 62.6 4.6–77.7

Adultsa 3.0 0.4–11.9 29.7 1.4–40.2

Elderlya 1.6 0.0–5.8 18.1 0.5–27.8

Physician visitsb 1.6 0.0–10.3 23.9 1.3–31.2

Hospital admissions 0.15 0.01–0.5 1.34 0.06–1.92

Deaths 0.033 0–0.14 0.29 0.02–0.51

Lost workdaysc 11 1–44 103 5–137

Vaccination 69.8 69–71 61.6 44–71

aPer 100 individuals of a given age
bPhysician visits for 'flu-like' illness (excludes visits for influenza vaccination)
cPer 100 working adults

Impact of interventions on infection curves of simulated outbreaksFigure 6
Impact of interventions on infection curves of simulated outbreaks.
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demics, including the devastating 1917/1918 pandemic.
This value was consistent with that reported in previous
studies, where R0 ranged from 1.4 to 2.4 [7,8]. It should be
noted that a random choice of the initial infected individ-
ual would lead to a strong underestimation of R0 (1.4 in
our model). Findings would also be most sensitive to
parameters governing the natural history of influenza ill-
ness or health-care use. One-way sensitivity analysis
showed that the lengths of the latent or incubation peri-
ods or the proportion of physician visits occurring during
the first day of illness might strongly modify the dynamics
of the epidemic or the effectiveness of interventions (see
Additional files 1 and 2). Changes that occur during epi-
demics, such as increased virus fitness for human-to-
human transmission [41] and spontaneous changes in
meeting rates in response to the perceived risk, must also
be considered. The severity of an epidemic would also be
highly sensitive to the efficacy of preventive or therapeutic
treatments or vaccination, efficiency of case identification,
timely implementation of control measures, population
coverage, and public compliance [42]. The number of
unknown parameters is too large for meaningful sensitiv-
ity analysis. In addition, the characteristics of the next
pandemic influenza virus strain cannot be reliably pre-
dicted, and neither can the effectiveness of control meas-
ures. For example, a critical factor not included in this
work is the possible emergence of resistance to antiviral
drugs [43,44]. However, it could be useful to collect pan-
demic-independent information on patterns of social
meetings and the precise mechanism by which influenza
usually spreads during winter epidemics in temperate
countries. The choice of the BA scale-free network for
describing person-to-person meetings within places of
occupation may be questionable [45], but BA networks
generate broad heterogeneity in meeting patterns, which
may contribute to generating 'superspreading' events [46].

The 20/80 rule, which suggests that 20% of individuals are
responsible for 80% of transmission events, can be tested
on epidemiological datasets [47].

Conclusion
This flexible tool can help to determine the interventions
most likely to contain an influenza pandemic. At present,
our results support the stockpiling of antiviral drugs and
accelerated development of vaccines.
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Table 7: Impact of closing institutions when >5 infections per 1000 subjects are observed in the community. Estimates are cumulative 

numbers per 100 inhabitants, unless otherwise specified.

Outcomes Closing schools
(Outbreak, n = 111)

Closing schools and workplaces
(Outbreak, n = 101)

Mean Minimum-Maximum Mean Minimum-Maximum

Infections

Total 9.7 0.5–19.5 1.1 0.6–2.1

Childrena 10.3 1.6–23.1 2.0 0.6–3.8

Adultsa 9.9 0.6–23.7 0.8 0.4–1.5

Elderlya 6.1 0.3–14.5 0.8 0.1–3.2

Physician visits 6.4 0.6–14.1 0.7 0.4–1.4

Hospital admissions 0.36 0.03–0.9 0.04 0.0–0.11

Deaths 0.081 0–0.3 0.009 0.0 – 0.04

Lost workdaysb 324 80–464 1885 977–5484

Duration of closure (days) 101 13–107 27 14–78

aPer 100 individuals of a given age
bPer 100 working adults
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