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Abstract  

Most human diseases result from complex interactions among multiple genes that yield weak 

or modest effects. Despite the growing awareness of the importance of gene–gene 

interactions, the paradigm of detectable effects of individual variants remains the cornerstone 

of genome association studies with tagSNPs. The interactive effect of two variants is only 

tested once the individual effect of one variant is detected. Both genes however, may have at 

the same time a weak (or even no) marginal effect but an important effect through their 

interaction. In such a situation, current approaches may fail to detect variants having a crucial 

role in the causal chain.  

Here, we propose a new strategy: the 2-locus TDT. It allows the detection of the involvement 

of two genes without individual effect. Our strategy simultaneously uses information on 

biallelic candidate polymorphisms in two genes M and N. We first estimate the relative 

marginal penetrances of the genotype at each locus and of the joint (two-locus) genotype and 

then we test for the interactive effect of the two genes using a likelihood ratio test. 

We show that our approach has good power to detect the effect of two genes in situations for 

which a locus-by-locus strategy would have been unsuccessful. At a time where genome-wide 

association studies are fashionable, we think it is important to consider the strategy of 

studying good candidate pathways with our approach.  

Key Words  
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Introduction  

Most human diseases result from complex interactions among multiple genes that yield weak 

or modest effects and various environmental factors. Despite the growing awareness of the 

importance of gene–gene interactions, the paradigm of detectable effects of individual 

variants remains the cornerstone of genome association studies with tagSNPs. Most current 

research focuses on the development of new statistical methods with the aim of identifying 

the role that interactions may play in the determinism of complex diseases.  

Despite the fact that the concept of gene-gene interactions is not new, this term can be used in 

several different ways.  

Biological interaction, also referred as biological epistasis, was first reported by Bateson [1]. 

It can be explained by physical interactions of proteins between each other or with their target 

and their impact on the phenotype. In fact, a large number of protein-protein interactions 

(such as protein kinases, glycosyl transferases, protein phosphatases, etc., with their protein 

substrates) are involved in and/or regulate a large number of cellular processes, i.e. cell 

growth, cell cycle, metabolic pathways and signal transduction. 

These interactions can be conceptualized as a network where proteins are represented by 

nodes and connect with each other through edges representing their physical interactions. 

The architecture of such a network is quite complex because of the high degree of 

interconnectedness (functional and structural relationships) that may exist amongst its nodes.  

This definition of biological epistasis contrasts the statistical concept used by Fisher [2]. 

Initially, Fisher used the term “epistacy” to refer to the component of phenotypic variance not 

accounted for by additive, dominance, or environmental variances. This term swiftly became 

epistasis. The correspondence between the two concepts is not obvious.  

In practice, the interactive effect is often represented as noise in addition to the main effect. 

This statistical design is not coherent given the biological reality.  
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When one trait is controlled by two genes, traditional statistical methods generally proceed in 

a first step by testing the individual effect of each gene and then when the main effect of one 

gene is established, they test for the interactive effect.  

Among these methods is the logistic regression framework [3-5]. This approach is based on a 

logit function in which the probability of disease is “a function of the genotypes at the two 

loci and of epistatic interactions between them” [5].  

Another method used in such a context is the Conditional Transmission Disequilibrium Test 

(Conditional TDT) [6] which tests, conditionally on one gene, the effect of a second gene and 

their interaction.  

By the use of these methods, interactions have been tested in autism [7], obesity in children 

and adolescents [8], myocardial infarction [9], type 1 diabetes [10], asthma [11], multiple 

sclerosis [12], and other diseases. In all these examples, the main effect of each gene was 

established first.  

According to Templeton [13] and then to Moore [14], epistasis is an ubiquitous component of 

the genetic architecture of common human diseases and complex interactions may be 

important while the individual gene effects are weak. Therefore, interactions have been 

recognized as highly important. However it has become progressively clear that existing 

strategies are inadequate to test for gene-gene interactions in such situations and may fail to 

detect variants having a crucial role in the causal chain. Thus, new statistical and 

computational methods are needed. 

In this paper, we propose a new method applied in the context of studying two candidate 

genes in the same pathway: the 2-locus TDT. Using the attractive property of the classical 

TDT of robustness to population stratification [15], we provide a strategy for detecting 

susceptibility genes with weak or no marginal effect. 
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The 2-locus model  

We consider two candidate biallelic intragenic markers M and N of two genes belonging to 

the same pathway. M and N can either be unlinked or linked with a recombination fraction θ 

but without linkage disequilibrium between their alleles.   

First, we introduce some notation. In the following, let the alleles of marker locus M be 

denoted m1 and m2 and those of N be denoted n1 and n2. Let pm1, pm2, pn1 and pn2 be the allele 

frequencies of m1, m2, n1 and n2, respectively.  

There are nine possible genotypes for the two markers M and N. Thus, we have nine possible 

penetrances which correspond to the probability of being affected given that the person has 

the marker genotypes mxmy nznw where mx, my and nz, nw are the alleles inherited from the 

two parents at the loci M and N, respectively. Subscripts x, y, z, w can be either 1or 2. We 

denote the corresponding probabilities P(affected | mxmy nznw) by f xyzw.  

The penetrances are shown in the following 3 × 3 matrix (table 1). We assume that we do not 

distinguish between the alleles transmitted from the father and those from the mother. 

We denote the marginal penetrances P(affected | mxmy) and P(affected | nznw) at the loci M 

and N by f xy • and f •  zw, respectively.  

Regarding the penetrance matrices, we can distinguish between two models:  

− The general model MG (called also saturated model) whose corresponding parameters may 

have any possible value. This model contains 9 parameters as shown in table 1;  

− A model without interaction between the two genes MR (restricted model). In this case, the 

columns and the lines are proportional. This model includes only 5 parameters which are 

denoted by f (the penetrance for one 2-locus genotype) and the proportionality factors 

µ, ν, ϕ and π (table 2). 
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The 2-locus TDT for testing gene-gene interaction 

We consider a trio data set genotyped for the two candidate markers M and N in two genes. 

Let us assume that there are Κ  independent families, each having two parents and one 

affected child. We denote as the “case genotype” the genotype formed by the two gametes 

transmitted from the parents to the affected offspring. The two non-transmitted gametes form 

the “internal control genotype” as shown in figure 1. 

For two biallelic loci, transmitted and non-transmitted gametes may be summarized in a 9 × 9 

contingency table (table 3). The κ xyzw_x’y’z’w’ are the number of cases where mx, my and nz, 

nw are the alleles transmitted to the affected offspring from the two parents at the loci M and 

N, respectively and mx’, my’ and nz’, nw’ are the alleles non-transmitted from the two parents 

at the loci M and N, respectively. Subscripts x, y, z, w, x’, y’, z’ and w’ can be either 1 or 2. 

The row and column totals for transmitted and non-transmitted genotypes are denoted by  

κ xyzw_• and κ  •_x’y’z’w’, respectively. 

The diagonal elements of the contingency table correspond to homozygous parents at the two 

genes (double homozygote).  

Testing the absence of interaction between the two genes is equivalent to showing that the 

data may be explained as well by a restricted model MR (5 parameters) as under a general 

model MG (9 parameters). Since MR is nested in MG, the 2-locus TDT may be carried out by a 

maximum likelihood ratio test:  

GG

RR

L
L

LRT
max
max

  ln 2−=  

where LG = L(f xyzw | κ  xyzw_•   and κ •_x’y’z’w’) and LR = L(f, µ, ν, ϕ, π | κ xyzw_•  and κ •_x’y’z’w’) are 

the likelihoods of MG and MR, respectively. Details for the LG computation is given in the 
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appendix A. The parameters of the restricted and general models are estimated by their 

Maximum Likelihood Estimator (MLE).  

Under the null hypothesis, this likelihood ratio test follows a chi-square distribution with 4 

degrees of freedom (df), the difference in the number of parameters between the two models.  

Power of the 2-locus TDT when testing interaction under different models 

We perform the power study of the 2-locus TDT by formal computation and thus will present 

asymptotic results. Under the alternative hypothesis of interaction, the 2-locus TDT statistic 

follows a non-central chi-square distribution for which we can calculate for a given specific 

alternative MG
* the non-centrality parameter λ and the power for a given type I error and 

sample size Κ. Details of the calculation are given in the appendix B. 

We calculate the power of the 2-locus TDT when testing the interaction of two biallelic 

candidate genes assuming Hardy-Weinberg equilibrium and no population stratification under 

different situations (models 1A, 1B, 1C and 2). The models 1A, 1B and 1C are defined by the 

same penetrance matrix in table 4. The difference lies in the allele frequency pm1 at the locus 

M. Model 2 is defined by the penetrance matrix in table 5.  

− Model 1 

Using the penetrance matrix in table 4, we may calculate the marginal penetrances according 

to the formulae (1) and (2) given in the appendix B. The marginal penetrances at one locus 

depend on the joint genotype penetrances and the allele frequencies of the other locus. 

Marginal penetrance vectors of the locus M (corresponding to the genotypes m1m1, m1m2 and 

m2m2) are given in table 6 for different values of pn1.  

Power results are given in figures 2A, 2B and 2C for pm1 equals to 0.1, 0.5 and 0.8, 

respectively. 
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§ Model 1A: pm1 = 0.1 

Under the model 1A, we obtain the following marginal penetrance vector at the locus N: 

[0.0259, 0.0248, 0.0263]. The effect of the gene N is very weak.  

When pn1 is varying from 0.1 to 0.3, both genes M and N have weak effects. Therefore, they 

are unlikely to be detected by traditional methods. When pn1 ≥  0.4, the model 1A shows 

however, a strong individual effect of the gene M.  

Figure 2A shows the power of the 2-locus TDT to detect the interaction between the two 

genes M and N. With a sample size Κ = 100 and a type-1 error at 5%, we show that our test is 

overall powerful. The power is greater than 80% for pn1 between 0.05 and 0.9. The maximum 

power is attained when pn1 = 0.2 where the non-centrality parameter λ is maximal. 

The detection of the interaction applying the 2-locus TDT indirectly implies the detection of 

both gene effects. We compare the detection of gene M effect by the 2-locus TDT and by the 

genotypic Transmission Disequilibrium Test (gTDT) [16].  

Figure 2A shows that in the situation of a weak marginal effect of the gene M (see marginal 

penetrances in table 6 when pn1 ≤  0.3), the 2-locus TDT is more powerful than the gTDT for 

detecting the effect of this gene. However, when the gene M has a strong effect (see marginal 

penetrances in table 6 when pn1 ≥  0.4), the gTDT is powerful for detecting the effect of this 

gene but does not detect the effect of the gene N nor their interaction.  

§ Model 1B: pm1 = 0.5 

Under this model, the gene N has an evident effect with a marginal penetrance vector = 

[0.0475, 0.0600, 0.0175].  

Figure 2B shows the same general shape than figure 2A for detecting the interaction between 

the genes M and N by the 2-locus TDT. We also have similar conclusion when we compare 

the power for detecting the effect of the gene M by the 2-locus TDT or by the gTDT.  
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§ Model 1C -  pm1 = 0.8 

Under this model we obtain the following marginal penetrance vector for the gene N [0.0616, 

0.0612, 0.0172]. The gene N has an evident effect. 

In the figure 2C, the power for detecting the interactive effect of the two genes M and N 

applying the 2-locus TDT is greater than 80% for pn1 ≤  0.8 and with a sample size Κ = 100 

and a type-1 error at 5%.  

Besides, the power for detecting the effect of the gene M applying the gTDT doesn’t exceed 

60% whatever the value of pn1. Under this model, the 2-locus TDT is more powerful for 

detecting the effect of this gene (through the interactive effect) than the gTDT.  

Thus, in the model 1, we show that our method is powerful for detecting the interaction 

between two genes. In addition, applying the 2-locus TDT, we may indirectly detect with a 

moderate sample size the effect of both genes (through their interaction) which are not 

individually detectable by usual approach like the gTDT.  

− Model 2 - an example of no marginal effect: (table 5) 

This model, initially described by Li and Reich [17], is the most frequently given to exhibit 

two-locus (or even multi-locus) genetic effects in the absence of any independent main effect. 

Therefore, when allele frequencies are equal (pm1 = pn1 = 0.5) and genotypes are consistent 

with Hardy Weinberg proportions, we obtain a two-locus purely epistatic model.  

It is for this allele frequency that the 2-locus TDT has maximum power.  

For Κ = 100, the non-centrality parameter λ is equal to 100, which corresponds to a high level 

of power (99 %). Applying the gTDT, the individual effect of each gene cannot be detected, 

whereas our method detects the effect of the two genes with a high power. 
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Discussion 

In complex diseases, the trait may occur only if a particular pattern of genes is present at 

different susceptibility loci, and not as a result of a single disease gene alone. In this case, 

each single susceptibility gene may have only a small effect and may not be detected easily 

applying locus by locus methods. Usual methods commonly test first for individual gene 

effect. Once an individual effect has been evidenced, they then test for the interactive effect. 

Consequently, when a first gene is not detected, those methods will stop.    

In this paper, we have described a simple two locus strategy for detecting the interaction 

between two susceptibility genes which may have weak or no marginal effects. The test is 

achieved in two steps. First, the penetrances are estimated using the transmitted and non-

transmitted parent gametes. Secondly, we test the fit of these estimates to an independent 

effect of the two loci (multiplicative matrix). For unbiased estimation of the penetrances, 

homozygous parents are included contrarily to the usual TDT.   

Traditional methods ignore the possibility that effects of multilocus functional genetic units 

play a larger role than the single-locus effect in determining trait variability. They require 

large sample sizes which entail a lack of power and thus limit the identification and the 

characterization of interactive genes. The power study of the 2-locus TDT has been performed 

by formal computation since our test uses asymptotic properties. We show that the 2-locus 

TDT improves the ability to identify gene-gene interactions with the use of moderate sample 

sizes. However, when the markers have low allele frequencies, we will have small cell counts. 

For instance, if the locus M had an allele frequency m1 of 0.1, a sample of 100 trios would be 

expected to have few observations in the contingency table cells corresponding to the 

genotype m1m1. In this situation, we may pool some genotypic categories, for example, the 

rare homozygous with heterozygous (to pool m1m1 with m1m2 in our illustration). This will 

consequently decrease the power of the test.  
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The 2-locus TDT cannot be envisaged in the context of a genome-wide search. Currently, the 

approximate number of tag SNPs to cover the whole human genome is predicted to be over 

500 000 [18]. This means that we have to consider more than 12.5 × 1010 combinations of two 

SNPs. Thus, testing for interaction between the huge number of polymorphisms covering the 

genome - even limited to the second order - is inappropriate. It would generate an intractable 

number of spurious associations or would miss most of the genetic variability that is relevant 

for the trait.  

Therefore, at a time where genome-wide association studies are fashionable, we think it is 

important to consider that it will not cover all situations and also to support the additional 

strategy of studying good candidate pathways. 

By studying candidate variants, we assume prior information that the disease under study is 

probably caused by particular genes. For example, these candidate genes may already be 

recognized as key elements of a metabolic pathway thought to be involved in the disease 

pathogenesis.  

Each gene of a pathway can be first tested applying locus by locus methods. In the absence of 

noticeable main effect, our 2-locus TDT must be applied since we may be in the situation of 

weak or no marginal effect but strong interaction. 

Finally, if there are more than two loci, our method may be in principle easily extended to test 

high-order interactions among several loci, depending on sufficient sample size.  
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Appendix  

A- The 2-locus TDT for testing gene-gene interaction 

We consider two biallelic markers M and N with alleles m1 and m2 and n1 and n2, 

respectively. There are nine possible 2-locus genotypes.  

We denote κ xyzw_x’y’z’w’ the number of trios in which the two parents have transmitted mxmy 

and nznw to the affected offspring for the loci M and N, respectively and untransmitted mx’my’ 

and nz’nw’ for the loci M and N, respectively.  

Let pm1, pm2, pn1 and pn2 denote the allele frequencies of m1, m2, n1 and n2, respectively.  

For the penetrance estimation f xyzw of the genotype mxmy nznw, we maximize the likelihood 

L(f xyzw | κ xyzw_x’y’z’w’) by MLE. Let A denote “affected” and f xyzw =  )nn mm | P(A wzyx . 

) n nmP(m

P(A) | A) n nmP(m
) = n nmP(A | m

wzyx

wzyx
wzyx  

∑ •=
'x',y',z',w

)nnn nm mm) P(mnnn nm mm | mn nmP(m

?
 P(A) 

w'wz'zy'yx'xw'wz'zy'yx'xwzyx

xyzw_  

 The probability of being affected P(A) is calculated by summing over all possible genotypes.  

∑=
wzyx ,,,

wzyxwzyx )nn mP(m  )nn mm |P(A   P(A)  

)nnnn mm mm | nn mP(m w'wz'zy'yx'xwzyx  depends on the Mendelian transmission probabilities 

at each locus and the recombination fraction θ (if the loci are linked).  

)nnnn mm mP(m w'wz'zy'yx'x  are the frequencies of unordered parental genotypes with 

subscripts x, x’, z, z’, y, y’, w, w’ ∈ {1, 2}. )nnnn mm mP(m w'wz'zy'yx'x  is a function of pm1, 

pm2, pn1, pn2. 
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B- Power of the 2-locus TDT 

We perform the power study under any two biallelic locus model in a population with Hardy 

Weinberg equilibrium by formal computation. Results are consequently asymptotic. First, we 

derive the formula under the general model and then under the restricted model.  

Under the general model, we calculate κ xyzw_•  and κ •_ x’y’z’w’ as a function of f xyzw the 

penetrances of the chosen model and the allele frequencies pm1, pm2, pn1, pn2.  

Under the restricted model, we have the following formula.  

Assuming Hardy-Weinberg equilibrium, the marginal probabilities are calculated as follows: 

P(A | mxmy) = f xy  • = (f xy11 × pn1²) + 2 (f xy12 × pn1 × pn2) + (f xy22 × pn2²)  (1) 

P(A | nznw) = f •  zw = (f 11zw × pm1²) + 2 (f 12 zw × pm1 × pm2) + (f 22zw × pm2)²   (2) 

The corresponding probabilities are a function of the penetrances and the allele frequencies.  

We denote [f xy •] and [f • zw] the penetrance vector at each locus, respectively, and [f xyzw] the 

penetrance matrix for the joint genotype whose correspondent elements are f xyzw. In the 

absence of interaction, we have the following equalities:  

)(

][

)(

][

)(

][

AP

f

AP

f

AP

f zwyx
T

xyzw •• ×=   for each x, y, z and w  

where Τ superscript represents the transpose of the vector. 

Under the restricted model, P(mxmy nznw | A) is calculated in the same manner as under the 

general model but using the product of the marginal penetrances given in the equality above. 

The non-centrality parameter λ is calculated as follows: 

 | A)n nm(mP

 | A)]²n nm(mP | A)n nm(m[P
 ?  ?

wzyxM

wzyxMwzyxM

 
R

 
R

 
G*

x, y, z, w

−
= ∑  
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where Κ is the total number of families and 
RMP and 

G*MP  are calculated under the restricted 

model MR corresponding to the null hypothesis of no interaction and under a specific 

alternative MG
* within the general model MG, respectively.  
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Tables  

Table 1. Penetrance matrix of the general model MG for markers M and N 

Gene M  
 

m1m1 m1m2 m2m2 
Gene N 

marginal effect 

n1n1 f 1111 f 1211 f 2211 f • 11 

n1n2 f 1112 f 1212 f 2212 f • 12  

G
en

e 
N

 

n2n2 f 1122 f 1222 f 2222 f • 22  

 Gene M 
marginal effect f 11 •  f 12 • f 22 •  
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Table 2. Penetrance matrix of the restricted model MR without interaction. The lines and the 

columns represent the three genotypes at locus M and N, respectively with parameter f for the 

genotype m1m1 n1n1 and the proportionality factors, µ, ν and ϕ, π.  

Gene M 
 

m1m1 m1m2 M2m2 

n1n1 f f ϕ f π  

n1n2 f µ f ϕ µ F π µ 

G
en

e 
N

 

n2n2 f ν f ϕ ν F π ν  
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Table 3. Transmitted and non-transmitted marker genotypes corresponding to case genotype versus internal control genotype: the first four 

subscripts in the cell counts κ xyzw _x’y’z’w’ refer to the transmitted gametes and the second four subscripts refer to the non-transmitted gametes  

 Non-transmitted genotype = “internal control genotype” 

 
m1m1 
n1n1 

m1m1 
n1n2 

m1m1 
n2n2 

m1m2 
n1n1 

m1m2 
n1n2 … mx’my’ 

nz’nw’ 
… m2m2 

n2n2 
Marginal  

m1m1 
n1n1 

κ1111_1111 κ1111_1112 κ1111_1122 κ1111_1211 κ1111_1212    κ1111_2222 κ 1111_• 

m1m1 
n1n2 
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Table 4. Marker penetrance table for models 1A, 1B and 1C 

Gene M 
 

m1m1 m1m2 M2m2 

n1n1 0.07 0.05 0.02 

n1n2 0.05 0.09 0.01 

G
en

e 
N

 

n2n2 0.02 0.01 0.03 
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 Table 5. Marker penetrance table exhibiting epistasis in the absence of independent marginal 

effects when pm1 = pn1 = 0.5 

Gene M  
 

m1m1 m1m2 m2m2 marginal effect 

n1n1 0 0.1 0 0.05 

n1n2 0.1 0 0.1 0.05 

G
en

e 
N

 

n2n2 0 0.1 0 0.05 

 marginal effect 0.05 0.05 0.05  
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Table 6. Marginal penetrance vector at the locus M as a function of pn1 and the penetrance 

matrix in table 4. 

Marginal penetrance vector at the locus M  
pn1 

f 11 •  f 12 • f 22 • 

0.05 0.0229 0.0177 0.0281 

0.1 0.0259 0.0248 0.0263 

0.2 0.0316 0.0372 0.0232  

0.3 0.0371 0.0472 0.0207 

0.4 0.0424 0.0548 0.0188 

0.5 0.0475 0.0600 0.0175 

0.6 0.0524 0.0628 0.0168 

0.7 0.0571 0.0632 0.0167 

0.8 0.0616 0.0612 0.0172 

0.9 0.0659 0.0568 0.0183 

0.95 0.0679 0.0537 0.0191 
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Figure legends  

 

 

 

 

 

 
 
 

 

 

Fig.  1. At two unlinked loci, the father has genotype m1m2 n1n2, the mother  

m1m1 n1n1. The offspring’s genotype is m1m2 n1n2, which constitute the case genotype. We 

may thus deduce the internal control genotype corresponding to the non-transmitted gametes 

as m1m1 n1n1. 

m1 m2  

 n1 n2 
  m1 m1 
   n1 n1 

 m2 m1 
  n2 n1 

 m1 m1 
  n1 n1 

Case 
genotype  

Internal control  
genotype  
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Fig.  2A. Power of the 2-locus TDT (for detecting the interactive effect between the locus M 

and N) and the genotypic TDT (gTDT for detecting locus M) as a function of pn1 with pm1 

fixed at 0.1, 5% type-1 error and number of families K = 100. 
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Fig.  2B. Power of the 2-locus TDT (for detecting the interactive effect between the locus M 

and N) and the genotypic TDT (gTDT for detecting locus M) as a function of pn1 with pm1 

fixed at 0.5, 5% type-1 error and number of families K = 100. 
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Fig.  2C. Power of the 2-locus TDT (for detecting the interactive effect between the locus M 

and N) and the genotypic TDT (gTDT for detecting locus M) as a function of pn1 with pm1 

fixed at 0.8, 5% type-1 error and number of families K = 100. 

 


