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ABSTRACT 

Purpose: 

Interest is increasing in studying gene-environment (GxE) interaction in disease etiology. 

Study designs using related controls as a more appropriate control group for evaluating GxE 

interactions have been proposed but often assume unrealistic numbers of available relative 

controls. To evaluate a more realistic design, we studied the relative efficiency of a 1:0.5 

case-sibling-control design compared to a classical 1:1 case-unrelated-control design and 

examined the effect of the analysis strategy. 

 

Methods: 

Simulations were performed to assess the efficiency of a 1:0.5 case-sibling-control design 

relative to a classical 1:1 case-unrelated-control design under a variety of assumptions for 

estimating GxE interaction. Both matched and unmatched analysis strategies were examined. 

 

Results: 

When using a matched analysis, the 1:1 case-unrelated-control design was almost always 

more powerful than the 1:0.5 case-sibling-control design. In contrast, when using an 

unmatched analysis, the 1:0.5 case-sibling-control design was almost always more powerful 

than the 1:1 case-unrelated-control design. The unconditional analysis of the case-sibling-

control design to estimate GxE interaction, however, requires no correlation in E between 

siblings. 

 

Conclusions: 

Our results suggest that in most settings, a matched analysis is required and that 1:1 case-

unrelated-controls design will be more powerful than a 1:0.5 case-sibling-control design. 

 

 

Key words: case-control study, GxE interaction, sibling controls, study design, conditional 

analysis, unconditional analysis. 
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INTRODUCTION 

Interest is increasing in studying gene-environment (GxE) interaction in disease etiology. In 

general, two types of control groups are used for examining GxE interactions: unrelated (e.g. 

population-based) or related (e.g. sibling) controls. To date, most studies of GxE interactions 

have used unrelated controls. This use of unrelated controls, however, has been questioned 

because of the potential problem of population stratification (1-6). This potential bias from 

stratification was thus the motivation for some authors to propose the use of related controls 

as a more appropriate control group for evaluating genetic factors (7, 8). Witte et al. compared 

a case-control design with at least 1 control per case using population-based controls to a 

design using sibling (or cousin) controls. The results showed that population-based controls 

were most efficient for evaluating a genetic main effect, with siblings being the least efficient 

control group. In contrast, sibling controls were the most efficient group for detecting a GxE 

interaction effect. This gain in relative efficiency decreased as the frequency of the genetic 

factor increased (7, 8). 

However, some of these evaluations may have assumed unrealistic numbers of available 

relative controls. For example, a review of chronic diseases like cancer have suggested that 

about 50% of cases may have an available sibling control (e.g. breast and stomach cancers) 

(9, 10)(unpublished data). Thus, in order to perform a more realistic comparison, we used 

simulations to compare a 1:1 case-unrelated-control study to a 1:0.5 case-sibling-control 

design where half of the cases have a sibling control. We also examined the effect of the 

analysis strategy on the efficiency of the design recognizing that for the 1:0.5 case-sibling-

control design, the unconditional analysis used twice as many cases as did the conditional 

analysis. 

 

METHODS 

Study population 

The population for the proposed studies consisted of cases and two types of controls, 

unrelated controls and sibling controls. We assumed that for 50% of cases it was possible to 

obtain an appropriate sibling control. Thus, we had a 1:1 case-unrelated-control study and a 

1:0.5 case-sibling-control study. We further assumed that there was no difference in the 

distribution of variables of interest between cases who have sibling controls versus those 

cases without such sibling controls and that there was exchangeability of covariates of interest 

in cases and sibling controls (i.e. the covariate distribution did not depend on calendar time or 
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birth order or geographic location). We compared the 1:0.5 case-sibling-control design to the 

1:1 case-unrelated-control study using simulations. 

Table 1 shows the parameters for modeling an interaction between a genetic factor G and an 

environmental exposure E. G and E were assumed to be independent events. We define PE as 

the prevalence of the environmental factor E in the population, PG as the prevalence of the 

genetic factor G in the population. We further define the genetic factor G where the alleles at 

the locus are classified as A (variant) or a (wild), with population frequency p of the A allele 

and population frequency q for the a allele, where p+q=1. For a dominant model, AA and Aa 

represent subjects with G and AA represents subjects with G under a recessive model. Thus, 

PG=p2+2pq for a dominant model, and PG=p2 for a recessive model. Finally, we define RE as 

the odds ratio between E and disease (among those not having G), RG as the odds ratio 

between G and disease (among those not exposed to E) and RI as the interaction effect, 

defined on a multiplicative scale. 

We calculated the expected distributions of E and G in cases, matched unrelated, and matched 

related controls. Table 1 shows the subgroups of cases and unrelated controls at different risks 

for disease under a dominant genetic model and the genotype distributions of the case siblings 

calculated conditionally on the case genotypes. When there was a correlation in E between 

siblings (OREC), the probability that a case’s sibling was exposed to E was defined as in 

Goldstein et al.(11) (see Appendix for details). 

 

Simulation studies 

Random numbers were generated to determine which case had a related control for each of 

the studies (i.e. each case had one unrelated control and approximately half of the cases had 

one related control). 

When E and G were relatively common (e.g. both>0.05), we simulated 2500 data sets with 

1000 cases:1000 matched unrelated controls:approximately 500 matched sibling controls. 

When E and G were relatively rare (e.g. either<0.05) (or very rare; e.g. both ≥0.01), we 

simulated 1000 case-control studies with 5000 (or 10,000) cases:5000 (or 10,000) unrelated 

controls:approximately 2500 (or 5000) sibling controls. All subjects were simulated using 

random numbers generated by the SAS function RANUNI (SAS, version 8, Cary, NC) to 

assign each of the cases and controls to the different possible E and G categories. 
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Analysis strategies 

For the matched and unmatched analysis strategies, each simulated case-control study was 

analyzed by conditional and unconditional logistic regression using the program STATA (12) 

with a binary variable for E and a binary variable for G (based on the genotypes and 

inheritance model) and GxE interaction defined on a multiplicative scale. 

For the unmatched strategy, we assumed that there was no correlation in E between siblings 

leading to the equality of the prevalences of E among unrelated controls (PEunr) and related 

controls (PErel), i.e. PEunr=PErel. Thus, in such situations, an unconditional analysis may be 

used to estimate the GxE interaction effect (See Appendix for further discussion). 

To assess the efficiency of the 1:0.5 case-sibling-control design compared to a classical 1:1 

case-unrelated-control study, we defined the relative efficiency (RE) as the ratio of the 

variances of βI, i.e., the variance of βI from the classical 1:1 case-unrelated-control study 

divided by the variance of βI for the 1:0.5 case-sibling-control study. Variance of βI for a 

given design was calculated as the average of the variances of βI from each simulated data set. 

Thus, when RE>1, the 1:0.5 case-sibling-control design was more powerful than the classical 

1:1 case-unrelated-control study; when RE<1, the reverse was true. We also compared RE for 

the unconditional analyses [RE(U)] to RE for the conditional analyses [RE(C)]. 

We compared RE(C) according to different frequencies of G and E (PG, PE), the main effect of 

G and E (RG, RE), and the GxE interaction effect (RI). In addition, we compared the 

unconditional analysis strategy to the conditional strategy for these same variables. 

To evaluate the feasibility of these study designs in GxE interaction assessment, sample sizes 

for different scenarios were calculated using the computer program Quanto (8,13, 14) for the 

1:1 case-control unconditional and the 1:0.5 case-sibling-control conditional analyses. For the 

1:0.5 case-sibling-control unconditional analysis; sample sizes were approximated by the 

conditional 1:0.5 case-sibling-control sample sizes multiplied by ( )
( )U

C
RE
RE

. 

 

RESULTS 

For completeness, we initially compared the 1:0.5 case-sibling-control design to a 1:0.5 case-

unrelated-control design using conditional analysis for both dominant and recessive genes. 

Since the analysis used a conditional approach (i.e., only matched cases and controls were 

analyzed such that the 1:0.5 comparison was essentially a 0.5:0.5 comparison), the results for 

this comparison were equivalent to the comparison of a 1:1 case-sibling-control design to a 
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1:1 case-unrelated-control design. Therefore, as expected and previously shown by 

Gauderman (8), the 1:0.5 case-sibling-control design was almost always more efficient than 

the 1:0.5 case-unrelated-control design for both dominant and recessive models (data not 

shown). The gain in relative efficiency increased as RG increased and decreased as PG 

increased. Variation in RE and RI had little effect on RE. When PG was very frequent (e.g. 

=0.5), the relative efficiency was generally less than 1 for moderate values of RG and RI. 

We also directly compared a 1:1 case-unrelated-control design to a 1:0.5 case-sibling-control 

design using conditional logistic regression, even though the numbers of cases and controls 

differed. Specifically, because of the conditional analysis approach, the 1:1 case-unrelated-

control design had twice as many subjects available for the analysis compared to the 1:0.5 

case-sibling-control design. Comparison of a 1:1 case-unrelated-control sample to a 1:0.5 

case-sibling-control sample showed, as expected, that the 1:1 case-unrelated-control design 

was almost always more efficient than the 1:0.5 case-sibling-control design. The efficiency of 

the 1:1 case-unrelated-control design was generally 1.5 to 2 times more efficient than the 

1:0.5 case-sibling-control design for reasonable parameter estimates. Only when RG was very 

high (e.g. ≥10 ) (see table 2) or PG was very small, was the 1:0.5 case-sibling-control design 

more efficient than the 1:1 case-unrelated-control design . 

Finally, we compared a 1:1 case-unrelated-control design to a 1:0.5 case-sibling-control 

design using unconditional logistic regression. We assumed no correlation in E between 

siblings as is necessary for validity of the unconditional analyses. In general, the 1:0.5 case-

sibling-control design was more efficient than the 1:1 case-unrelated-control design. Only 

when RG was moderate (e.g. RG=1.5) did RE decrease to less than 1. The unconditional 

analysis was always more efficient than the conditional analysis (cf. table 2). RE increased 

more substantially for the unconditional analysis than the conditional analysis as RG, RE and 

RI increased. Moreover, for numerous scenarios, the 1:0.5 case-sibling-control design which 

had been less efficient than the 1:1 case-unrelated-control design under a conditional analysis 

strategy, became more efficient than a 1:1 case-unrelated-control design when unconditional 

analysis was used. For example, for a rare dominant gene with RE=1.5 or 5, RI=1.5 or 5 and 

RG=3, RE<1 for conditional analysis versus RE>1 for unconditional analysis. Similar trends, 

although with slightly lower RE, were observed for an equivalent recessive genetic factor (cf. 

table 2). 

Figure 1 shows the variation of RE according to PG using conditional analyses (solid lines) 

and unconditional analyses (dashed lines) for different PE values with RE=1.5, RG=3.0, and 

RI=5. RE decreased as PG increased; RE also increased as PE increased with steeper slopes 
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observed in the unconditional analyses. As shown in figure 1, RE<1 for all conditional 

analysis scenarios presented; thus, the 1:1 case-unrelated-control design, with twice as many 

subjects involved in the analysis, was always more efficient than the 1:0.5 case-sibling-

control design. In contrast, for the unconditional analysis, RE>1 when PG≤0.1 and PE>0.1. 

Table 3 presents sample size (i.e. feasibility) calculations for the 1:0.5 case-sibling-control 

design using either unconditional or conditional analysis and for the 1:1 case-unrelated-

control design using unconditional analysis. Table 3 shows that for a common gene (PG=0.2) 

and moderate values of RE and RG (=1.5) (panel A) the sample sizes required to achieve 80% 

power for detecting RI≥5 were similar for the 1:1 case-unrelated-control design and for the 

1:0.5 case-sibling-control design analyzed using unconditional analysis. When RI decreased, 

the sample sizes required increased to unrealistic numbers for all designs examined (e.g. 

RI=1.5; >5,700 cases and controls). For a rare gene (PG=0.001) with RE=2 and RG=5 (panel 

B), for selected scenarios, neither the 1:1 case-unrelated-control design nor the 1:0.5 case-

sibling-control design analyzed using conditional analysis reached realistic sample sizes even 

when RI was large (>15,000 subjects for the 1:1 case-unrelated-control design and >6,000 

subjects for the 1:0.5 conditional case-sibling-control design). In contrast, for RI>5, the 1:0.5 

case-sibling-control design analyzed using unconditional analysis could approach realistic 

sample sizes (< 3,000 subjects). Panel C shows sample size requirements for a range of 

different values of PG with RE=2, RG=3, and RI=5. When G was common (e.g. PG=0.2), even 

though the 1:1 case-unrelated-control design was the most efficient design, the difference in 

required sample sizes between the traditional design and the 1:0.5 case-sibling-control design 

analyzed using unconditional analysis was not substantial. And when G was rare (e.g. 

PG≤0.01), the 1:0.5 case-sibling-control design analyzed using unconditional analysis was the 

most feasible design with realistic sample sizes. 

 

DISCUSSION 

We have shown that when we used an unmatched strategy, the 1:0.5 case-sibling-control 

design was almost always more powerful than the 1:1 case-unrelated-control design except 

for weak genetic factors (RG≤1.5). In some scenarios with a common genetic factor (e.g. 

PG=0.2), the sample sizes required to achieve comparable power for the 1:1 case-unrelated-

control design and the 1:0.5 case-sibling-control design (analyzed using unconditional 

analysis) were similar. Because of the sampling approach, the 1:0.5 case-sibling-control 

design required more cases. Therefore, if case recruitment is a limiting factor for a study, then 

the 1:1 case-unrelated-control design may be a more appropriate design. Conversely, if 
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number of controls is the limiting factor, then the 1:0.5 case-sibling-control design may be 

more advantageous. 

Another critical issue involves the number of available sibling controls. For this study, we 

assumed that 50% of cases had an available sibling control. If fewer than 50% of the cases 

have one available sibling control, the efficiency of the case-sibling-control design relative to 

the 1:1 case-unrelated-control design will decrease as the number of available siblings 

decreases. 

The validity of the analysis for a case-sibling-control design requires a number of critical 

assumptions. Unfortunately, the assumptions of no difference in the distribution of variables 

of interest between cases who have sibling controls versus those cases without such sibling 

controls and exchangeability of covariates of interest in cases and sibling controls (15, 16) are 

not testable before the data have been collected. In addition, for validity of unconditional 

analyses that requires no correlation in E between siblings to estimate unbiased main 

environmental and/or GxE interaction effects, evaluation of the independence of E in siblings 

also requires completion of data collection. Conditional analysis, however, may serve as a 

check on the validity of the unconditional analysis strategy through evaluation of the 

confidence intervals for the E and GxE interaction effect estimates (RE,RI). Specifically, if the 

unmatched approach is valid, given the increased efficiency for an unconditional versus a 

conditional analysis (partly because of the larger sample size for the unconditional analysis), 

the lower and upper bounds for the RE and RI confidence intervals from the unconditional 

analysis should be contained within the confidence limits for the conditional analysis. If the 

unconditional analysis confidence interval bounds are not within the bounds for the 

conditional analysis, then one may expect that one or more of the required assumptions is not 

valid. 

The unmatched approach is not valid to estimate either the G main effect or a GxG interaction 

effect because genotypes are not independent within sibling pairs. However, if one is 

interested in estimating the main effect of G or a GxG interaction effect, then the case-sibling-

control design may still be used with a conditional analysis strategy. 

Other study designs have been proposed to examine interaction (e.g.7, 17-24). For approaches 

that permit estimation of both main and interaction effects, the principle of these designs is 

similar to the approach that uses sibling controls, that is, increasing the frequency of the rare 

factors through over-sampling, to increase the power of the study. Among strategies that over-

sampled rare factors among the control group, flexible matching strategies (20, 25) with 

varying proportions of an environmental matching factor among selected unrelated controls 
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increased the power and efficiency to detect GxE interactions in case-control studies. The 

highest efficiency was observed for a rare exposure that was a strong risk factor. However, 

this design is not recommended if the main effect of the matching factor has not been 

thoroughly studied or if one is interested in additive risk interactions. 

Other designs have been proposed for examining main effect(s) and GxE interactions 

including relatives as controls (1, 7, 8, 21, 22, 24, 26). Few such designs have been evaluated 

for GxE interaction assessment (1, 7, 8, 24). Relative control subjects were less efficient than 

population-based-control subjects for detecting the genetic factor main effect, except when 

cases with a positive family history were over-sampled (24). However, relative control 

subjects were the most efficient group for detecting GxE interactions as we also observed here 

for either matched designs (comparison of sibling and unrelated control designs with equal 

numbers of cases and controls) or unmatched designs (comparison of 1:0.5 case-sibling-

control to 1:1 case-unrelated-control designs). 

Our results show that unconditional analysis of the 1:0.5 case-sibling-control design to 

estimate GxE interaction is unbiased under certain conditions and may produce a substantial 

increase in power for GxE interaction assessment. However, because of the critical 

assumptions required for the validity of this approach, in practice, we may find that there are 

few situations when unconditional analysis of a case-sibling-control study may be used. In 

such situations, using 1:1 case-unrelated-controls design will be more powerful than a 1:0.5 

case-sibling-control design requiring a matched analytical strategy. 
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APPENDIX 

Probability that the cases’ sibling is exposed to E 

We define m as the probability that a case’s sibling is exposed to E if the case is exposed to E 

(P(ES=E+| EC=E+)). Similarly, we define (1-w) as the probability that a sibling has not been 

exposed to E given the case has not been exposed (P(ES=E-| EC=E-)). 

Given exchangeability for E, the frequency of E is the same in the case and her sibling control 

thus uniquely determining the joint exposure distribution between the two siblings by 

constraining the marginal probabilities to be equal. Thus, 
( )

E
E

P1
m1P

w
−
−

=  . We use the following 

equation to define the exposure relationship between a case and his/her sibling control, 

EECE
EEC

PORP1
POR

m
+−

= . When OREC=1, m=PE and there is no correlation in E between siblings 

 

Validity of unconditional analysis using related-controls 

 

  Cases Controls 
   related unrelated

E- G- a c e 
 G+ b d f 

E+ G- g i k 
 G+ h j l 

 

 

The above table shows the E and G distributions for cases, related, and unrelated controls. 

To be valid, unconditional analysis using related-controls should lead to unbiased estimates 

for the ORs of interest. Specifically, if one is primarily interested in estimating the GxE 

interaction effect, then only intOR  needs to be unbiased. This requirement translates into the 

equality of unrrel OROR intint =  where rel denotes related controls and unr, unrelated controls. 

Thus, from the above table ORint equals 

af
be

ak
ge

la
he

ad
bc

ai
gc

ja
hc

OROR
OR

OROR
OR

unr
G

unr
E

unr
G,E

rel
G

rel
E

rel
G,E =⇒=  

thus 
le
kf

jc
idOROR unrrel =⇒= intint  equation (1) 
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For this equality, we assume that G and E are independent i.e P(E|G)=PE . In addition, since G 

is correlated in siblings, we require no correlation in E between siblings such that PErel=PEunr 

which is equivalent to P(E|G)rel=P(E|G)unr, that is, i/(i+c)=k/k+e=>i/c=k/e. Then, from 

equation (1), we have i/c=k/e and j/d=l/f as conditions to yield unrrel OROR intint = . Thus, when 

there is no correlation in E between siblings, unr
E

rel
E OROR =  in addition to unrrel OROR intint =  

and an unconditional analysis can be performed in the case-related-control design to estimate 

the GxE interaction effect. Both the GxE interaction effect and E main effect estimates are 

unbiased. If, however, there is a correlation in E between siblings and/or PErel≠PEunrel, then 

i/c≠k/e and j/d≠l/f. And it follows that unr
E

rel
E OROR ≠  and unrrel OROR intint ≠ . Under such 

scenario(s), unconditional analysis of case-related-control data would not be valid. 
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Table1: Subgroups of the population at different risk of disease when there is a GxE interaction. (27) 

 

Exposure Proportion of 
unrelated controls 

Relative risk Proportion of cases Proportion of unaffected siblings (i.e. related 
controls) according to case genotypes 

Case    Sibling genotype 
    [aa] [Aa] [AA] 

E+ [AA] PE p² RE RG RI (PE p² RE RG RI)/Σ* ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
4

1 2p § 
( )

⎟
⎠
⎞

⎜
⎝
⎛ −

2
²1 p £ ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
4

1 2p £ 

E+ [Aa] PE 2p(1-p) RE RG RI
† (PE 2p(1-p) RE RG RI)/Σ ( )

⎟
⎠
⎞

⎜
⎝
⎛ +−

4
23pp § ( )

⎟
⎠
⎞

⎜
⎝
⎛ +−

2
11 pp £ ( )

⎟
⎠
⎞

⎜
⎝
⎛ +

4
1pp £

E+ [aa] PE (1-p)² RE PE (1-p)² RE/Σ 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ − 11

4
pp § 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −

2
2 pp £ ⎟

⎠
⎞

⎜
⎝
⎛

4
²p £ 

E- [AA] (1-PE) p² RG (1-PE) p² RG /Σ ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
4

1 2p § 
( )

⎟
⎠
⎞

⎜
⎝
⎛ −

2
²1 p £ ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
4

1 2p £ 

E- [Aa] (1-PE) 2p(1-p) RG
‡ (1-PE) 2p(1-p) RG /Σ ( )

⎟
⎠
⎞

⎜
⎝
⎛ +−

4
23pp § ( )

⎟
⎠
⎞

⎜
⎝
⎛ +−

2
11 pp £ ( )

⎟
⎠
⎞

⎜
⎝
⎛ +

4
1pp £

E- [aa] (1-PE)(1-p)² 1 (1-PE)(1-p)²/Σ 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ − 11

4
pp § 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −

2
2 pp £ ⎟

⎠
⎞

⎜
⎝
⎛

4
²p £ 

With : d=0.001 ; ddR1
dR

c
E
E
−+

=  ; ddR1
dR

b
G
G
−+

=  ; 
( )

( )( ) ( )d1cbRc1b1d
bd1cR

a
I

I
−+−−

−
=  

Where  a=P(D|G+,E+)=risk of disease given a person has G (G+) and E (E+); b=P(D|G+,E-)=risk of disease given a person has G+ and E-; 
c=P(D|G-,E+)=risk of disease given a person has G- and E+ and d=P(D|G-,E-)=risk of disease given a person does not have G or E (G-, 
E-) 
† equal RE under a recessive gene ‡ equal 1 under a recessive gene 
* Σ=PE (p²+2p(1-p)) RE RG RI + PE (1-p )² RE + (1-PE)(p²+2p(1-p)) RG + (1-PE)(1-p )² , under dominant gene 
Σ=PE p² RE RG RI + PE (2p(1-p)+ (1-p)² ) RE + (1-PE)(p²) RG + (1-PE)((1-p )² +2p(1-p)), under recessive model : 
§ multiply by (1-d)(1-PE) when sib control not exposed to E, and by (1-c)PE when sib control exposed to E 
£ multiply by (1-b)(1-PE) when sib control not exposed to E, and by (1-a)PE when sib control exposed to E 
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Table 2: Relative efficiency (RE) of the 1:0.5 case-sibling-control design compared to the 
traditional 1:1 case-unrelated-control design using either conditional RE(C) or unconditional RE(U) 
analysis for different G, E and GxE effects for a dominant or a recessive gene with PG=0.01; 
PE=0.2. 
 

Simulation 
 values 

Relative Efficiency 

   1:0.5 case-sib / 1:1 case-unr 
RG RE Rint  RE(C)  RE(U) 

  Dominant gene 
3 1.5 1.5 0.77 1.07 
3 1.5 5 0.84 1.61 
3 5 1.5 0.62 1.13 
3 5 5 0.60 2.03 
10 1.5 1.5 1.81 2.53 
10 1.5 5 2.03 3.79 
10 5 1.5 1.40 2.68 
10 5 5 1.28 4.28 

  Recessive gene 
3 1.5 1.5 0.63 0.84 
3 1.5 5 0.67 1.18 
3 5 1.5 0.54 0.87 
3 5 5 0.53 1.49 
10 1.5 1.5 1.26 1.77 
10 1.5 5 1.38 2.61 
10 5 1.5 0.99 1.86
10 5 5 0.91 2.99 
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Table 3: Feasibility (i.e. sample sizes) of the 1:0.5 case-sibling-control design (using either unconditional analysis or conditional 
analysis) and the 1:1 case-unrelated-control design (using unconditional analysis) for a dominant gene. Numbers of cases and controls 
required to have 80% power to detect an interaction using a two-sided test at the 5% level are presented. 
 

 1:0.5 case-sibling-control 1:1 case-control 
 unconditional conditional unconditional 
 case ctrl (total) Case ctrl (total) case (total) 
RI A. PG =0.2, PE =0.2, RE =1.5, RG=1.5 
1.5 4,224 2,112 (6,336) 5,420 2,710 (8,130) 2,855 (5,710)
3 519 259 (778) 694 347 (1,041) 358 (716)
5 234 117 (351) 332 166 (498) 163 (326)
8 147 73 (220) 218 109 (327) 99 (198)
10 122 61 (183) 194 95 (285) 82 (164)
RI B. PG =0.001, PE =0.2, RE =2, RG=5 
3 17,653 8,827 (26,480) 29,778 14,889 (44,667) 37,795 (75,590)
5 5,173 2,587 (7,760 11,112 5,556 (16,668) 16,565 (33,130)
8 1,988 994 (2,883) 5,834 2,917 (8,751) 9,596 (19,192)
10 1,274 637 (1,911) 4,406 2,203 (6,609) 7,762 (15,524)
PG C. PE =0.2, RE =2, RG=3, RI =5 
0.2 278 139 (417) 382 191 (573) 167 (334)
0.1 258 129 (387) 406 203 (609) 238 (474)
0.05 323 162 (485) 550 275 (825) 406 (812)
0.01 846 423 (1,269) 1,890 945 (2,835) 1,794 (3,588)
0.005 1,614 807 (2,421) 3,588 1,794 (5,382) 3,533 (7,066)
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Figure 1: Relative efficiency (RE) according to the frequency of G for a dominant gene and for different values of PE with RI=5, 
RE=1.5, RG=3. RE is defined as the ratio of the variance of βI of the classical 1:1 case-control study design divided by the variance of 
βI of the 1:05 case-sibling-control design using either conditional analysis (solid lines) or unconditional analysis (dashed lines). 
(PE=0.5: starred-solid and -dashed lines; PE=0.1: circled-solid and -dashed lines; PE=0.01: squared-solid and -dashed lines) 
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