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ABSTRACT 

 

 Due to the key role of the human chorionic gonadotropin hormone (hCG) in placental 1 

development, the aim of this study was to characterize the human trophoblastic luteinizing 2 

hormone/chorionic gonadotropin receptor (LH/CG-R) and to investigate its expression using the in 3 

vitro model of human cytotrophoblast differentiation into syncytiotrophoblast. We confirmed by in 4 

situ immunochemistry and in cultured cells, that LH/CG-R is expressed in both villous 5 

cytotrophoblasts and syncytiotrophoblasts. However, LH/CG-R expression decreased during 6 

trophoblast fusion and differentiation, while the expression of hCG and hPL (specific markers of 7 

syncytiotrophoblast formation) increased. A decrease in LH/CG-R mRNA during trophoblast 8 

differentiation was observed by means of semi-quantitative RT-PCR with two sets of primers. A 9 

corresponding decrease (~ 60%) in LH/CG-R protein content was shown by western-blot and 10 

immunoprecipitation experiments. The amount of the mature form of LH/CG-R, detected as a 90-kDa 11 

band specifically binding 
125

I-hCG, was lower in syncytiotrophoblasts than in cytotrophoblasts. This 12 

was confirmed by Scatchard analysis of binding data on cultured cells. Maximum binding at the cell 13 

surface decreased from 3511 to about 929 molecules/seeded cells with a Kd of 0.4 - 0.5 nM. 14 

Moreover, on stimulation by recombinant hCG, the syncytiotrophoblast produced less cyclic AMP 15 

than cytotrophoblasts, indicating that LH/CG-R expression is regulated during human villous 16 

trophoblast differentiation.  17 
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INTRODUCTION 18 

 19 

 Human chorionic gonadotropin (hCG) belongs to a family of glycoprotein hormones, which 20 

includes lutropin (LH), thyrotropin (TSH) and follitropin (FSH). These hormones composed of two 21 

non-covalently linked subunits, alpha () and beta (), are active on bicatenary form. The -subunit is 22 

common to all glycoprotein hormones, whereas the -subunits confer the hormonal specificity (Pierce 23 

and Parsons, 1981). Alpha hCG is encoded by a single gene and ßhCG by six genes, one of which, 24 

CGß5, is predominantly expressed in the placenta (Bo and Boime, 1992). HCG is essential for the 25 

initiation and maintenance of early pregnancy. After implantation, hCG is produced by the placenta 26 

and mainly by the trophoblast (Hoshina et al., 1985; Kliman et al., 1986; Muyan and Boime, 1997, 27 

Handschuh et al., 2006). It is used as a diagnostic marker of pregnancy. 28 

 The human placenta is characterized by extensive invasion of the trophoblast in the maternal 29 

uterus, creating direct trophoblast contact with maternal blood (haemochorial placentation). In early 30 

pregnancy, mononuclear cytotrophoblasts (CT) proliferate and invade the maternal endometrium to 31 

form the anchoring villi. (Aplin, 1991). Cytotrophoblasts also differentiate into a multinucleated 32 

continuous layer known as the syncytiotrophoblast (ST). This cell layer, which covers the chorionic 33 

villi, is bathed by maternal blood in the intervillous spaces from early gestation (Richard, 1961; 34 

Midgley et al., 1963; Boyd and Hamilton, 1970; Benirschke and Kaufmann, 2000). This 35 

syncytiotrophoblast is multifunctional, but its primary functions are exchange of oxygen, nutriments, 36 

removal of waste products and hormone production. The syncytiotrophoblast secretes hCG in large 37 

amounts, directly into the maternal blood bathing the chorionic villi in the intervillous space. 38 

 The mechanisms underlying villous trophoblast differentiation remain largely to be explored. 39 

Syncytiotrophoblast formation in vivo and in vitro arises from villous cytotrophoblast fusion and 40 

differentiation. Several factors modulate villous trophoblast differentiation, including EGF (epidermal 41 

growth factor) and EGF receptor expression (Morrish et al., 1987; Alsat et al., 1993), hypoxia (Alsat et 42 

al., 1996), cAMP-dependent protein kinase (PKA) (Keryer et al., 1998), granulocyte-macrophage 43 

stimulating factor (Garcia-Lloret et al., 1994), transforming growth factor  (TGF) (Morrish et al., 44 



 4 

1991) and oxidative stress due to overexpression of copper zinc superoxide dismutase (Frendo et al., 45 

2000a, 2001). The molecular mechanisms underlying trophoblast membrane fusion are poorly 46 

understood. Proteins involved in cell adhesion (cadherin 11) (Getsios and MacCalman, 2003) and cell-47 

cell communication (connexin 43) (Frendo et al., 2003a) are known to be directly involved. We 48 

recently demonstrated the direct involvement of syncytin I, a human endogenous retroviral envelope 49 

glycoprotein (Frendo et al., 2003b), and the presence of syncytin 2, restricted to some villous 50 

cytotrophoblasts (Malassiné et al, 2006). 51 

 Several studies suggest that hCG stimulates villous trophoblast differentiation by acting on the 52 

LH/CG-R (Shi et al., 1993; Cronier et al., 1994; Yang et al., 2003). This receptor, which has seven 53 

transmembrane domains, belongs to the superfamily of G protein-coupled receptors (Pierce and 54 

Parsons, 1981; Loosfelt et al., 1989; McFarland et al., 1989; Minegishi et al., 1990). The LH/CG 55 

receptor gene has been cloned in pig, mouse, rat and human; in humans it is composed of 11 exons 56 

and 10 introns, and its coding region is over 60 kb long (Segaloff and Ascoli, 1993). HCG binding to 57 

its receptor activates adenylate cyclase, phospholipase C and ion channels, which in turn control 58 

cellular cAMP, inositol phosphates, Ca
2+

 and other secondary messengers (Gudermann et al., 1992; 59 

Hipkin et al., 1992). 60 

 The presence of LH/CG-R in human placenta was first described by Alsat (Alsat and Cedar, 61 

1974) and has since been confirmed by other authors (Reshef et al., 1990; Lei and Rao, 1992). 62 

Inhibition of LH/CG-R expression by specific antisense oligodeoxynucleotides during cytotrophoblast 63 

culture results in time- and concentration-dependent inhibition of cytotrophoblast differentiation, 64 

showing that hCG, via its receptor, is an autocrine and paracrine regulator of human placental 65 

syncytiotrophoblast formation (Yang et al., 2003).  66 

 Most of the studies actually done, have used transfected cells with cDNA from LH/CG-67 

receptor in rat or mouse models. In human, the characterization and the modulation of LH/CG-R 68 

expression during syncytiotrophoblast formation is poorly documented. Here we used the 69 

physiological model of cultured primary human trophoblasts (Kliman et al., 1986; Frendo et al., 70 

2000b), in which isolated mononuclear cytotrophoblasts differentiate and fuse to form a 71 

syncytiotrophoblast, which secretes large amounts of hCG and other pregnancy-related hormones. We 72 
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used various methodological approaches to characterize the hCG/LH receptor, and observed its down-73 

regulation during villous trophoblast differentiation. This was confirmed by in situ immunolocalisation 74 

of the hCG receptor in sections of human placenta. 75 

 76 

 77 

MATERIALS AND METHODS 78 

 79 

Placental tissue collection and trophoblast cell culture 80 

These studies were performed in agreement with our local ethics committee and with written informed 81 

consent of patients. Third trimester placentas were obtained immediately after iterative Caesarian 82 

section from healthy mothers delivered at 35-39 weeks of amenorrhea. First trimester placentas (7-12 83 

weeks of gestation) were collected following legal voluntary interruption of pregnancy from women 84 

who gave their written informed consent. Cytotrophoblasts were isolated as previously described 85 

(Alsat et al., 1993). After sequential trypsin (0.25%)/DNase I digestion followed by Percoll gradient 86 

centrifugation (Frendo et al., 2003a), the cells were further purified by negative selection to obtain a 87 

trophoblast preparation not contaminated by other cells, by using a monoclonal anti-human leukocytic 88 

antigen A, B and C antibodies (W6-32HL, Sera Lab, Crawley Down, UK) according to a published 89 

method (Schmon et al., 1991; Cronier et al., 2002). This antibody reacts with most cell types (e.g. 90 

macrophages, fibroblasts, extravillous trophoblasts) but not with villous cyto- or syncytiotrophoblast. 91 

Cytotrophoblasts were diluted to a final density of 2.7x10
6 
cells in 3 ml of minimum essential medium 92 

(MEM) containing 10% fetal calf serum (FCS). Cells were plated in 60-mm plastic dishes (TPP, 93 

Trasadingen, Switzerland) and incubated at 37°C in 5% CO2. Cytokeratin 7 immunocytochemistry 94 

was performed to confirm the cytotrophoblastic nature of the attached cells: about 95-98% of the cells 95 

were positively stained. 96 

 97 

Hormone assay 98 

The hCG concentration was determined in culture medium after 24 and 72 hours of culture by using 99 

an enzyme-linked fluorescence assay (Vidas System, BioMerieux, Marcy l’Etoile, France) with a 100 
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detection limit of 2 mU/ml. The hPL concentration was determined in 4-fold-concentrated conditioned 101 

medium by using a method (Amerlex IRMA, Amersham Pharmacia Biotech) with a detection limit of 102 

0.5 µg/ml. All reported values are means ± SEM of triplicate determinations. 103 

 104 

Immunohistochemistry 105 

Placental samples were obtained after first-trimester abortion. They were fixed by incubation in 4% 106 

formalin for 4 to 12 h at room temperature and then embedded in paraffin, dewaxed in xylene and 107 

rehydrated in ethanol/water. Immunostaining was performed with a universal streptavidin-peroxidase 108 

immunostaining kit (Peroxidase, Dako LSAB®+Kit, DAKO
©
, Glostrup, Denmark). Non-specific 109 

binding was blocked by incubation for 5 min in a blocking reagent containing 3% H2O2 and then in 110 

3% serum albumin in PBS for 30 min. The sections were incubated with the primary antibody for 30 111 

min at room temperature. The primary antibodies (table 1) were polyclonal anti-human LH/CG-R 112 

(LHR-K15, Santa Cruz Biotechnology Inc, CA, USA, at 2 μg/ml), monoclonal anti-cytokeratin 7 113 

(M7018, DAKO
©
, Glostrup, Denmark, at 1 μg/ml), and polyclonal anti-hCG (A0231 against the beta 114 

subunit of hCG, DAKO
©
, Glostrup, Denmark, at 2 μg/ml). Sections were washed in PBS and 115 

incubated with a biotinylated secondary antibody for 15 min. They were then washed three times in 116 

PBS and incubated with streptavidin conjugated to horseradish peroxidase for 15 min. The sections 117 

were washed in PBS and staining was detected by incubation for 30 seconds with the DAB (3,3’- 118 

diaminobenzidine) chromogen. Controls were performed by incubating the sections with nonspecific 119 

IgG at the same concentration as the primary antibody. Successive pre-adsorptions of LH/CG-R 120 

antibody with trophoblastic cells in culture abrogate LH/CG-R immunodetection. 121 

 122 

Immunocytochemistry 123 

To detect desmoplakin, LH/CG-R, hCG, cytokeratin 7 and hPL, cultured cells were rinsed with PBS, 124 

fixed and permeabilized in methanol at -20°C for 8 min. Alternatively, cultured cells were fixed with 125 

4% paraformaldehyde at 4°C for 20 min. After washing once with PBS, the remaining free aldehyde 126 

groups were blocked by adding 50mM NH,Cl for 10 min. A polyclonal anti-desmoplakin (AHP320, 127 

Serotec, Oxford, UK at 2.5 g/ml), two polyclonal anti-LH/CGR (LHR-K15 and LHR-H50, Santa 128 
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Cruz Biotechnology Inc, CA, USA, at 2 µg/ml), two polyclonal anti-hCG (A0231, DAKO
©
, Glostrup, 129 

Denmark at 2 g/ml and SC-7821, Santa Cruz Biotechnology Inc, CA, USA at 2g/l), a monoclonal 130 

anti-cytokeratin 7 (M7018, DAKO
©
, Glostrup, Denmark, at 2.6 g/ml), or a polyclonal anti-hPL 131 

(A0137, DAKO
©
, Glostrup, Denmark, at 1.6 g/ml) was then applied (table 1), followed by 132 

fluorescein isothiocyanate-labeled goat anti-mouse IgG, or fluorescein isothiocyanate-labeled goat 133 

anti-rabbit IgG (Jackson Immuno Research, Baltimore, USA at 1:150), or Alexa 488-labeled donkey 134 

anti rabbit (Molecular probes Inc, OR, USA at 1:400), or Texas red labeled donkey anti goat (Jackson 135 

Immuno Research, Baltimore, USA at 1:400), or Cy
TM3

 goat anti-rabbit IgG, as previously described 136 

(Frendo et al., 2001). The controls, which consisted of omitting the primary antibody or applying the 137 

non specific IgG of the same isotype, were all negative. 138 

 139 

Immunoblotting 140 

Cell extracts were prepared as previously described (Alsat et al., 1996). Protein (70 g) was 141 

solubilized in RIPA (radioimmunoprecipitation) buffer (50 mM Tris, 150 mM NaCl, 1% Triton X100, 142 

1% deoxycholate, 0.1% SDS, pH: 8), and stained markers were submitted to 7.5% SDS-PAGE and 143 

transferred to nitrocellulose sheets. Membranes were immunoblotted with two polyclonal antibodies 144 

against LH/CG-R, LHR-K15 (goat anti human, Santa Cruz Biotechnology Inc, CA, USA) and LHR-145 

H50 (rabbit anti human, Santa Cruz Biotechnology Inc, CA, USA) at 2 g/ml each, and the specific 146 

band was revealed by chemiluminescence (West Pico Chemiluminescent, Pierce, Rockford, IL, USA) 147 

after incubation with an anti-goat or anti-rabbit peroxidase-coupled antibody (Jackson Immuno 148 

Research, Baltimore, USA). To detect actin, cytokeratin 7, hCG and hPL, we proceeded as described 149 

above, except that proteins were immunoblotted with rabbit polyclonal antibody at 0.7 g/ml for actin 150 

(Sigma-Aldrich, MO, USA), rabbit polyclonal antibody at 0.4 g/ml for hCG and 0.32 g/ml for hPL 151 

(DAKO
©
, Glostrup, Denmark) and mouse monoclonal antibody at 0.5 g/ml for cytokeratin 7 152 

(DAKO
©
, Glostrup, Denmark). Successive pre-adsorptions of LH/CG-R antibody with trophoblastic 153 

cells in culture abrogate LH/CG-R immunodetection in western-blot analysis. 154 

 155 
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 156 

Immunoprecipitation and ligand blotting 157 

Protein G Plus-Agarose (Immuno precipitation Reagent, Santa Cruz Biotechnology Inc, CA, USA) 158 

was pre-mixed with a polyclonal antibody against human LHCG-R (K15, Santa Cruz Biotechnology 159 

Inc, CA, USA), or without antibody. Cells (1.0 x 10
6
/well) were seeded in six-well plates and cultured 160 

as previously described. After 24 hours of culture, cells were washed with PBS and scraped free in 161 

ice-cold RIPA buffer. After sonication, the cellular lysate and debris were separated by centrifugation 162 

at 10000 g for 10 min at 4°C. The supernatant was transferred to the protein G-anti-human LHCG-R 163 

immunocomplex and incubated overnight at 4°C on a rocker platform, followed by four washes in 164 

RIPA buffer. Protein was eluted by heating at 60°C for 10 min in 1X electrophoresis sample buffer 165 

(Bio-Rad laboratories, CA, USA). Aliquots were submitted to 7.5% SDS-PAGE and transferred to 166 

nitrocellulose membranes. Membranes were exposed to antibody as previously described, or the blots 167 

were incubated with 
125

I-hCG at 10
-11

 M (PerkinElmer Life and Analytical Sciences Inc. MA, USA) 168 

for 16 h at 4°C in the absence or presence of excess unlabeled hCG at 10
-6 

M (Organon SA, Puteaux, 169 

France). The blots were washed with PBS containing 0.1% Tween 20, then dried. Bound 
125

I-hCG was 170 

visualized by autoradiography and analyzed by Cyclone (Storage phosphorImaging System, Hewlett 171 

Packard, France). 172 

 173 

RNA extraction 174 

Total RNA was extracted from trophoblastic cells after 24 or 72 hours of culture by using the Trizol 175 

reagent (Invitrogen Life Technologies, CA, USA) and was stored at -80°C or at -20°C in 75% ethanol 176 

until use. The total RNA concentration was determined at 260 nm and RNA integrity was checked in 177 

1% agarose gel. The relative LH/CG-R mRNA levels were determined by semi-quantitative reverse 178 

transcriptase-polymerase chain reaction (RT-PCR). The transcript level was normalized to the actin 179 

mRNA level (endogenous control). 180 

 181 

RT-polymerase chain reaction 182 



 9 

RNA samples were pretreated with DNAse I using the RQ1 RNase-Free DNase kit (Promega Inc, WI, 183 

USA). Briefly, we used 5 units of RQ1 RNase-free DNase per 5 micrograms of RNA, we then added 184 

RQ1 RNase-free 10x reaction buffer and TE buffer. Mixture was incubated at 37°C for 30 min and the 185 

digestion was terminated by the RQ1 DNase stop solution. DNase was then inactivated by heating at 186 

65°C for 10 min. 187 

Complementary DNA was synthesized from 5 µg of total RNA. The reaction mixture had a final 188 

volume of 20 µl and contained 375 mM KCl, 250 mM Tris-HCl (pH 8.3), 15 mM MgCl2, 0.1 M DTT, 189 

40 U of RNAsin®, 200 U of reverse transcriptase Superscript II (Invitrogen Life Technologies, CA, 190 

USA), 10 mM each dNTP and 200 ng of random primers (Invitrogen Life Technologies, CA, USA). 191 

Mixture of total RNA, DTT and random primers was heat at 65°C for 5 min. Annealing was run for 10 192 

min at 25°C and primer extension for 50 min at 42°C. An aliquot of the reaction mixture (5 µl) was 193 

then made up to 45 µl with Taq polymerase buffer containing 1 unit of Taq polymerase Platinium 194 

(Invitrogen Life Technologies, CA, USA). Before heating to 94°C (hot-start), 50 pmol of each specific 195 

primer was added. Amplification was run for 40 cycles for LH/CG-R and for 20 cycles for actin, 196 

consisting of 1 min at 94°C (denaturation), 1 min at 55°C (annealing) and 1 min at 72°C (extension). 197 

Oligonucleotide primers specific for the coding sequence of LH/CG-R (NM_000233) were used (Fig. 198 

3A): P1 (+): 5'-CAAGCTTTCAGAGGACTTAATGAGGTC-3'; P1 (-): 5'-AAAGCACAGCAGTGG 199 

CTGGGGTA-3'; P2 (+): 5'-TCGACTATCACTTGCCTACC-3'; P2 (-): 5'-GGAGAAGACCTTCGTA 200 

ACAT-3'; Actin (NM_001101) (+): 5'-GTGGGGCGCCCCAGGCACCA-3'; Actin (-): 5'-CTCCTTA 201 

ATGTCACGCACGATTTC-3'. Amplified products were analyzed by electrophoresis on 1.8% agarose 202 

gels and visualized by ethidium bromide staining. 203 

 204 

Cloning and DNA sequencing of LH/CG-R from trophoblastic cells 205 

PCR products were eluted from agarose gel by using the Macherey Nagel kit (NucleoSpin Extract II, 206 

MN, Hoerdt, France) and purified DNA fragments were cloned into the pCRII-TOPO vector by using 207 

the TOPO-TA Cloning kit (Invitrogen Life Technologies, CA, USA). Positive clones were selected by 208 

PCR and were sequenced by Genome Express (Meylan, France). Both strands of DNA fragments were 209 

sequenced, using Ml3 reverse and Ml3 forward primers. 210 
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 211 

 212 

Intracellular cAMP determination 213 

Cells (1.0 x 10
6
/well) were seeded in six-well plates and cultured as described above. After 24 h or 72 214 

h, cells were preincubated with 10mM IBMX (3-isobutyl-1methylxanthine) for 1 hour to prevent 215 

cAMP degradation and were stimulated for 20 min with 10
-8 

M hCG (C6322, Sigma-Aldrich, MO, 216 

USA). Cells were frozen on dry ice and cAMP was extracted with ice-cold 65% ethanol. The extracts 217 

were dried and kept at -20°C until use. Cyclic AMP was assayed after acetylation by using a method 218 

(Amersham Biosciences, NJ, USA) based on the competition between unlabelled cAMP and a fixed 219 

quantity of 
125

I-labelled cAMP for binding to a cAMP-specific antibody. Bound antibody was 220 

separated from free fraction by magnetic separation with a second antibody Amerlex
TM

-M preparation 221 

that is bound to magnetizable polymer particles. Separation of the antibody bound fraction is effected 222 

either by magnetic separation of the Amerlex
TM

-M suspension or decantation of the supernatant. The 223 

concentration of unlabelled cAMP in the sample was then determined by interpolation from a standard 224 

curve. 225 

 226 

Binding assay and Scatchard analyses 227 

Trophoblastic cells (1.0 x 10
6
/well) were seeded in six-well plates and cultured as described above. 228 

After 24 h or 72 h of culture the cells were washed five times and cultured in DMEM, 0.1% BSA for 2 229 

hours to dissociate any bound endogenous hCG. The cells were then washed and placed in 1 ml of 230 

DMEM containing 0.1% BSA and 1 mM HEPES, pH 7.3. Cells were incubated for 30 min at room 231 

temperature with 0.5 nM 
125

I-hCG and an increasing concentration of unlabelled hCG (from 10
-12 

M to 232 

10
-8 

M, C6322, Sigma-Aldrich, MO, USA) on a shaker platform at 50 cycles/min. At the end of the 233 

incubation period the cells were washed and scraped free, and bound radioactivity was counted. Each 234 

assay was performed in triplicate. Data were analyzed by using the LIGAND fitting program (version 235 

4.97) (Munson and Rodbard, 1980). For Scatchard analysis, the results showing the number of labeled 236 

molecules associated with the cellular membrane were expressed in a number of molecule associated 237 

per seeded cells. For comparison between CT and ST experiments, nuclei were counted at 24h and 72h 238 
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of culture after staining with DAPI, as previously described in the immunocytochemistry section. We 239 

did not observe difference between the number of nuclei at 24h and 72h of culture (CT are non 240 

proliferative cells and apoptosis or cellular loss account for about 4% (data not shown). 241 

125
I-labeled hCG was prepared using chloramine T as oxidant (Hunter and Greenwood, 1962). In a 242 

final volume of 20 µl, hCG (5 µg, 4.4 µM) was added to 0.5 mCi of Na
125

I (Perkin-Elmer Life and 243 

Analytical Sciences, MA, USA; 17.4 Ci/mg, 11.5 µM) neutralized with 0.1 M Mops and poly(ethylene 244 

glycol) 1000 (1%). The reaction in 25 mM Mops buffer pH 7.2 was started by adding 100 µM 245 

chloramine-T for 3 min at room temperature and was stopped by adding 120 µM sodium bisulfite for 3 246 

min and 2 mM NaI for 1 min. The volume was then adjusted to 0.5 ml with Mops-buffered saline (20 247 

mM Mops, 130 mM NaCl, pH 7.2) containing 1 mg/ml BSA. Iodinated-hCG was desalted on a PD10 248 

Sephadex G25-M column in the same buffer. Specific activity of 
125

I-hCG was 2.1-2.4 Ci/µmole 249 

corresponding to about 1 atom of iodine per molecule hCG. 250 

 251 

Statistical analysis 252 

We used the StatView F-4.5 software package (Abacus Concepts, Inc., CA, USA). Values are reported 253 

as means  SEM. Significant differences (p<0.05) were identified by analysis of variance (ANOVA). 254 

 255 

 256 

RESULTS 257 

 258 

Human villous trophoblast differentiation in vitro 259 

We used the primary cell culture model of villous cytotrophoblasts isolated from term placenta 260 

(Kliman et al., 1986; Alsat et al., 1991). Figure 1 shows purified cytotrophoblasts cultured on plastic 261 

dishes for 24 and 72 hours. Mononuclear cytotrophoblasts fused and formed multinucleated 262 

syncytiotrophoblasts, 72 hours after plating (Kliman et al., 1986). Syncytiotrophoblast formation was 263 

associated with a significant increase in hCG and hPL levels in the culture medium (Fig. 1 I). 264 

Concomitantly, immunostaining for hCG (Fig. 1 A and B) and hPL (Fig. 1 F and H) showed an 265 

increase in intensity during in vitro syncytiotrophoblast formation. HPL, expressed mainly by the 266 
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syncytiotrophoblast (Handwerger, 1991), was detected by immunostaining at 72 h (Fig. 1 D and H) 267 

but not at 24 h (Fig. 1 C and F). Immunostaining of cytokeratin 7, expressed by trophoblastic cells 268 

(Blaschitz et al., 2000), was positive at 24 h (Fig. 1 C and E) and 72 h (Fig. 1 D and G). 269 

These results showed that differentiation of isolated cytotrophoblasts into a syncytiotrophoblast is 270 

associated with an increase in the expression and secretion of hCG and hPL, hormones mainly 271 

synthesized by the syncytiotrophoblast. 272 

 273 

Decrease in LH/CG-R protein levels during in vitro trophoblast differentiation 274 

As shown in figures 2 A and B, LH/CG-R was expressed by cultured cytotrophoblasts. The LH/CG-R 275 

immunostaining shown in this figure was obtained with the polyclonal antibody LHR-K15. Another 276 

antibody (LHR-H50) gave the same results (data not shown). LH/CG-R was expressed in both 277 

cytotrophoblasts (24 h) and syncytotrophoblasts (72 h), with punctuate immunolabeling. LH/CG-R 278 

immunostaining appeared stronger in cytotrophoblasts than in syncytiotrophoblasts. Double 279 

immunostaining for LH/CG-R (LHR-50) and hCG (C-20) of trophoblasts cultured for 48 hours (Fig. 2 280 

C and D respectively, merge Fig. 2 E) illustrated the dynamics of the process. A mononucleated 281 

cytotrophoblast (Fig. 2 C arrow head) expressed LH/CG-R, whereas aggregated trophoblasts showed 282 

and heterogenous immunostaining of both LH/CG-R and hCG (Fig. 2 E). To validate this observation, 283 

western-blot analysis was performed on extracts of cytotrophoblasts (24 h) and syncytiotrophoblasts 284 

(72 h) (Fig. 3 A). At 24 h and 72 h of culture, two major bands with molecular masses (estimated from 285 

SDS gels) of 65-75 kDa and 85-95 kDa were observed, as described in other cellular models and in 286 

mammalian cells transfected with LH/CG-R cDNA. In the literature, the 85-95 kDa band corresponds 287 

to the mature LH/CG-R present at the cell surface, and the 65-75 kDa band is the precursor of the cell-288 

surface receptor (for review see Ascoli et al., 2002).  289 

Our results show that the expression of the mature LH/CG-R and its precursor (respectively designated 290 

m and p in Fig. 3 A) decreases during cytotrophoblast differentiation. At the same time, actin 291 

expression remains constant. Normalization of mature LH/CG-R protein expression to actin 292 

expression showed a significant decrease (58.6 ± 6.7%; p< 0.0001) in cell-surface receptor expression. 293 

We obtained similar results with the two antibodies used (LHR-K15 and LHR-H50). 294 
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Interestingly, in the same cellular extracts, the decrease in precursor and mature LH/CG-R expression 295 

coincided with an increase in hCG and hPL expression (Fig. 3 A). 296 

To further characterize LH/CG-R expression during trophoblast differentiation, we performed 297 

immunoprecipitation (IP) with anti-human LH/CG-R antibody (K15). Cellular extracts were purified 298 

by immobilized anti-receptor antibody (IP) and eluates were analyzed by SDS-PAGE and 299 

immunoblotting using the receptor-specific antibody (K15). A 90 kDa band corresponded to the 300 

mature form of LH/CG-R (m), and a major band of 75 kDa corresponded to the precursor (p). 301 

To determine which molecular form of the receptor bound the hormone, we used 
125

I-hCG in ligand-302 

blot experiments (Fig. 3 B). Incubation of the IP blot with 
125

I-hCG (10
-11

M) revealed a major band of 303 

90 kDa. This band was absent when the blot was incubated with an excess of unlabeled hCG (10
-6 

M), 304 

showing that the 90-kDa LH/CG-R specifically binds the hormone. In these conditions, 
125

I- hCG 305 

binding to the mature form of the receptor (90 kDa) was lower in the syncytiotrophoblast than in 306 

cytotrophoblasts. 307 

 308 

Decrease in LH/CG-R mRNA expression during in vitro trophoblast differentiation 309 

We conducted semi-quantitative RT-PCR experiments with two different sets of primers (P1 and P2) 310 

(for primer positions see Fig. 4 A). To avoid contamination by genomic DNA, each primer was 311 

located on a separate exon and RNA extracts were pretreated with DNAse I.  312 

As shown in figure 4 B, amplification of the 647-bp and 282-bp fragments, obtained with primers P1 313 

and P2 respectively, indicated that LH/CG-R mRNA was significantly less abundant in the 314 

syncytiotrophoblast (72 h) than in cytotrophoblasts (24 h). No significant difference was noted in the 315 

actin mRNA level. We obtained similar results with the two sets of primers. The amplification 316 

products were then purified from the agarose gel and cloned into the pCRII-TOPO vector. Sequencing 317 

confirmed that both the 647-bp and 282-bp fragments were part of the human LH/CG receptor. 318 

Normalization of LH/CG-R mRNA to actin mRNA after RT-PCR with primer sets P1 and P2 showed 319 

a significant decrease in LH/CG-R mRNA levels during differentiation (Fig. 4 C). With the P1 320 

primers, LH/CG-R mRNA levels fell from 0.33 ± 0.01 at 24 h to 0.13 ± 0.01 at 72 h (p< 0.0001). A 321 

similar decrease was observed with the P2 primers (from 0.82 ± 0.02 at 24 h to 0.36 ± 0.01 at 72 h; p< 322 
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0.0001). Although the amplification product obtained with primers P2 appeared to be at least twice as 323 

abundant as that obtained with primers P1 (probably because the P2 amplicon is about half the length 324 

of the P1 amplicon), the size of the decrease in LH/CG-R levels at 72 h was similar with the two 325 

primer sets (respectively 2.5- and 2.3-fold). 326 

 327 

Decrease in 
125

I-hCG binding to cell-surface LH/CG-R during in vitro trophoblast differentiation 328 

To confirm the decrease in LH/CG-R mRNA and protein levels, we performed binding saturation 329 

experiments with iodinated hCG at 24 h and 72 h of culture (Fig. 5). Scatchard analysis of binding 330 

data showed that the number of molecules bound per seeded cell at 24 h of culture (cytotrophoblasts) 331 

was 3511±693. After differentiation, at 72 h of culture, this number fell significantly (p=0.02) to 332 

929±583. No significant difference in Kd values was observed between 24 h (0.5±0.1 nM) and 72 h 333 

(0.4±0.1 nM). 334 

 335 

LH/CG-R stimulation during in vitro trophoblast differentiation 336 

In order to confirm the reduction in functional mature hCG receptor expression at the 337 

syncytiotrophoblast surface compared to the cytotrophoblast surface, we determined cAMP production 338 

in response to an effective hCG concentration for 20 min (Fig. 6). As cAMP is a second messenger for 339 

hCG signaling in trophoblastic cells, the decrease in LH/CG-R transcript and protein levels ought to be 340 

associated with a decrease in cAMP production. Determination of the most effective hCG 341 

concentration was carried out by stimulating trophoblasts with 10
-12 

M to 10
-6 

M hCG; 10
-8 

M hCG was 342 

the most effective concentration (data not shown). As shown in figure 6, hCG-stimulated cAMP 343 

production by trophoblasts was higher at 24 h than at 72 h of culture (p= 0.0021). Trophoblast 344 

stimulation by hCG (10
-8 

M) at 24 h of culture induced at least a 2-fold increase in cAMP production 345 

compared to the basal level (p= 0.0016), but did not induce detectable cAMP production at 72 h of 346 

culture (p= 0.7644). In contrast, epinephrine (which stimulates camp production and is used as a 347 

positive control) induced similar cAMP production at 24 h and 72 h of culture, indicating that the cells 348 

were functional and that the decrease in cAMP production observed at 72 h was not due to a defective 349 

cAMP pathway. 350 
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Immunolocalization of LH/CG-R in villous sections 351 

These in vitro findings were confirmed by examining placental LH/CG-R expression in situ, on villous 352 

sections. First-trimester placenta was chosen because cytotrophoblasts are more abundant than at other 353 

stages of pregnancy and form a continuous layer. 354 

LH/CG-R was detected in villous cytotrophoblasts and syncytiotrophoblasts. Use of a polyclonal 355 

antibody raised against the extracellular domain of human LH/CG-R showed that LH/CG-R is mainly 356 

expressed by the cytotrophoblast layer (Fig. 7 A). Weaker staining was observed in the 357 

syncytiotrophoblast (ST). LH/CG-R was also expressed by perivascular cells (VC) of the villous core. 358 

We obtained similar results with two other monoclonal antibodies (LHR 29 and LHR 1055) which 359 

recognize two different epitopes of the extracellular domain of LH/CG-R (Vuhai et al., 1990; Méduri 360 

et al. 1997) (data not shown). No staining was detected in negative control sections  (Fig. 7 D). 361 

Interestingly, strong hCG immunostaining was observed in the syncytiotrophoblast (Fig. 7 B) while 362 

cytokeratin 7 was mainly located in the cytotrophoblast layer (Fig. 7 C). 363 

 364 

 Taken together, these results strongly suggest that the expression of a functional cell-surface 365 

LH/CG-R decreases during cytotrophoblast differentiation into a syncytiotrophoblast. 366 

 367 

 368 

DISCUSSION 369 

 370 

 By using several complementary methods and a well-characterized in vitro model of human 371 

villous trophoblast differentiation, we clearly observed that LH/CG-R mRNA and protein expression 372 

is lower in syncytiotrophoblasts than in cytotrophoblasts and that this down-regulation is associated 373 

with an apparent decrease of receptor activation by its specific hormone. These results differ from 374 

those of two previous studies published by CV. Rao, who described stronger expression of LH/CG-R 375 

in syncytiotrophoblasts than in cytotrophoblasts (Reshef et al., 1990; Lei and Rao, 1992). This 376 

divergence may come from the use of different tools. Anti-human LH/CG-R antibodies were not 377 

available in the early 1990s, and most immunohistochemical and western-blotting studies used 378 
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antibodies raised against the N-terminal part of the rat LH/CG receptor. The amino acid sequence 379 

identity between the rat and human receptors is 85%, with the strongest similitude in the 380 

transmembrane portion of the molecule and not in the N-terminal region (Segaloff and Ascoli, 1993). 381 

Moreover, experiments involving radiolabeled probes, such as northern blotting and in situ 382 

hybridization, used porcine cDNA with 88% sequence identity to the human sequence. In this study, 383 

we cloned PCR fragments of the human hCG/LH receptor from villous cytotrophoblasts and used 384 

antibodies specific for the human receptor. 385 

 HCG, which is produced in large amounts by the syncytiotrophoblast, plays an important role 386 

in cytotrophoblast differentiation into syncytiotrophoblast. An increasing number of studies have 387 

investigated the central role of hCG and its receptor in the trophoblastic differentiation process. Many 388 

authors have described down-regulation of LH/CG-R expression by increasing concentrations of hCG. 389 

Indeed, exposure of ovarian or testicular cells expressing the endogenous LH/CG-R to a high 390 

concentration of hCG down-regulates cell-surface receptor expression. This coincides with a decrease 391 

in the abundance of LH/CG-R transcripts (Segaloff et al., 1990; Peegel et al., 1994; Hoffman et al., 392 

1991; LaPolt et al., 1990; Hu et al., 1990). It is noteworthy in this respect that hCG is secreted in large 393 

amounts during syncytiotrophoblast formation. The decrease in cell-surface receptor expression was 394 

confirmed in our study by the clear decrease in cAMP production by the syncytiotrophoblast after 395 

stimulation by recombinant hCG. Interestingly, the decrease in cAMP production by the 396 

syncytiotrophoblast was not due to a loss of affinity or to weak binding between the receptor and its 397 

hormone, as we found no difference in LH/CG-R Kd values between 24 h and 72 h of culture. 398 

Moreover, Scatchard plots clearly showed that the maximum number of hCG molecules bound per 399 

seeded cell was significantly lower at 72 h of culture than at 24 h (~74%). This result confirms the 400 

decrease of LH/CG-R (~60%) observed by western-blot analysis. The difference in LH/CG-R decrease 401 

(60% versus 74%) may be due to the technical approaches used for the purpose. By western-blot 402 

analysis, we quantified the mature form of the LH/CG-R in proteins from total cellular extracts. In 403 

binding experiments, we used living cells, meaning that only the mature form of the LH/CG-R present 404 

at the cell surface was quantified. Some mature forms internalized or present in the endosome might 405 

not be accessible to 
125

I-hCG. 406 
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 LH/CG-R desensitization has been described in rat ovary and is accompanied by a transient 407 

loss of responsiveness to LH, the receptor being temporarily uncoupled from its Gs protein (Segaloff 408 

et al., 1990). We observed here that syncytiotrophoblast stimulation by recombinant hCG (10
-8 

M) did 409 

not induce detectable cAMP production although the cAMP pathway was functional as shown by 410 

epinephrine stimulation. This loss of responsiveness to recombinant hCG may thus be due in part to 411 

cell-surface receptor desensitization.  412 

 Western blotting showed that two major species of LH/CG-R with molecular masses of 65-75 413 

kDa and 85-95 kDa were expressed by cytotrophoblasts and by syncytiotrophoblasts. 414 

Immunoprecipitation experiments and ligand blot analysis confirmed that the 65-75 kDa band was the 415 

intracellular precursor of the cell-surface receptor and that the 85-95 kDa band corresponded to mature 416 

LH/CG-R present at the cell surface, as shown by its ability to bind specifically labeled 
125

I-hCG. Our 417 

results show that the expression of the mature LH/CG-R and its intracellular precursor decreased 418 

during cytotrophoblast differentiation. Furthermore, the precursor form seemed to be more strongly 419 

expressed than the mature form in trophoblastic cells. Most studies of these two forms of LH/CG-R 420 

have used mammalian cells transfected with the cDNA for the porcine, rat or human receptor (for 421 

review see Ascoli and al., 2002), but as shown here, primary cultured human trophoblasts may be an 422 

excellent model for studying the maturation of the intracellular precursor into the mature cell-surface 423 

protein. Recently, Pietila et al using transfection models have shown that regulation of the immature 424 

form into the mature form might considered be important in LH/CG-R expression (Pietila et al., 2005). 425 

 In this study, we characterized for the first time, in a human physiological model, the 426 

expression and regulation of LH/CG-receptor. We demonstrate, both in situ and in vitro, that LH/CG-427 

R is expressed by human cytotrophoblasts and, albeit to a lesser extent, by the syncytiotrophoblast. 428 

LH/CG-R expression thus seems to be regulated during villous trophoblast differentiation, and this 429 

regulation may involve down-regulation of the receptor by its ligand. Abnormal regulation of this 430 

process might be involved in trisomy 21-associated pregnancies, in which we recently observed an 431 

abnormal glycosylated form of hCG associated with defective syncytiotrophoblast formation (Frendo 432 

et al., 2000b, 2004). Abnormal syncytiotrophoblast formation might lead to complications such as 433 

preeclampsia and intrauterine growth retardation. 434 
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FIGURE LEGENDS 593 

 594 

Fig. 1 In vitro human villous trophoblast differentiation. (A) and (B): hCG immunodetection after 595 

24 and 72 hours of culture of villous cytotrophoblasts isolated from term placentas. At 24 hours the 596 

cells are sparse or aggregated (A). At 72 hours, they have fused to form the syncytiotrophoblast, 597 

characterized by multiple nuclei and a strong positive immunofluorescent staining for hCG (B). Nuclei 598 

were labeled with DAPI (blue fluorescence). (C) and (D): co-immunolocalization of cytokeratin 7 (in 599 

green) and hPL (in red) at 24 hours (C) and 72 hours of culture (D). Nuclei are stained blue with 600 

DAPI. HPL, known to be expressed mainly by the syncytiotrophoblast, was detected by 601 

immunostaining at 72 h (H) but not at 24 h of culture (F). Cytokeratin 7 immunostaining, was positive 602 

at 24 h (E) and 72 h (G). (I): levels of hCG and hPL (expressed respectively in milli-international 603 

units per milliliter and micrograms per milliliter of medium) secreted into the culture medium at the 604 

indicated times. Since cells were plated in triplicate (see Experimental procedures), hCG and hPL 605 

levels were determinated for each plate. ND: non detectable. Results are means ± SEM of the three 606 

culture dishes. This figure illustrates one experiment representative of three. Scale for pictures A-D: 1 607 

cm = 30 µm. Scale for pictures E-H: 0.5 cm = 30 µm. 608 

 609 

Fig. 2 LH/CG-R immunodetection during in vitro trophoblast differentiation. (A) and (B): 610 

immunostaining for LH/CG-R by using the polyclonal antibody LHR-K15 raised against the human 611 

LH/CG receptor. LH/CG-R was expressed in both cyto- (A; 24h) and syncytotrophoblasts (B; 72h), 612 

albeit more strongly in cytotrophoblasts. (E): co-immunodetection of LH/CG-R and hCG by using the 613 

polyclonal antibodies LHR-H50 (C; in green) and hCG-C20 (D; in red) respectively at 48 hours of 614 

culture. Single trophoblast (arrowed) was stained for LH/CG-R and aggregated trophoblasts were 615 

stained for both LH/CG-R and hCG. Nuclei were labeled with DAPI (blue fluorescence). Scale for 616 

pictures A and B: 0.5 cm = 30 µm; scale for pictures C-E: 1 cm = 15 µm. 617 

 618 

Fig. 3 LH/CG-R protein expression during in vitro trophoblast differentiation. (A) and (B): 619 

Western-blot analyses (A) were performed using the same antibody on extracts from cytotrophoblasts 620 



 25 

(24 h) and syncytiotrophoblasts (72 h). At 24 h and 72 h of culture, two major bands with molecular 621 

masses of 65-75 kDa, corresponding to the precursor (p) of the cell-surface receptor and 85-95 kDa, 622 

corresponding to the mature LH/CG-R (m) present at the cell surface, were observed. The histogram 623 

presents the normalization of mature LH/CG-R protein expression (m) by actin expression (43kDa) 624 

(***: p< 0.0001). Results are expressed as the mean ± SEM of three culture dishes. In the same 625 

cellular extracts, decrease in precursor and mature LH/CG-R expression was concomitant with an 626 

increase in hCG (38kDa) and hPL (22 kDa) expression. (B): immuno-precipitation and ligand-blot 627 

analysis. Cellular extracts were purified by immobilized anti-receptor antibody. Eluates were analyzed 628 

by SDS-PAGE and immunoblotting using the receptor-specific antibody. A 90 kDa band 629 

corresponding to the mature form of LH/CG-R (m) and a major band with a molecular mass of 75 kDa 630 

corresponding to the precursor (p) were observed. Incubation of the IP blot with labeled 
125

I-hCG (10
-631 

11
M) revealed a major radioactive band at a molecular weight of 90 kDa, which was not detected when 632 

the blot was incubated with an excess of unlabeled hCG (10
-6 

M). Figures A and B illustrate one 633 

experiment representative of five. 634 

 635 

Fig. 4 LH/CG-R mRNA expression during in vitro trophoblast differentiation. (A): diagram 636 

showing the seven transmembrane domains of the LH/CG-receptor and the location of the primers sets 637 

used in this study. The two sets of primers (P1 and P2) are located on the extracellular domain. P1 638 

amplifies a fragment of 647-bp in the exons 2-9 and P2 amplifies a fragment of 282-bp in the exons 1-639 

5. (B): Ethidium bromide-staining gel of one representative of five independent experiments. Semi-640 

quantitative RT-PCR experiments with both the primers P1 and P2 shows respectively a 647-bp and a 641 

282-bp amplified fragment. RT-PCR products were separated on 1.8% agarose gel and analysed by 642 

densitometry. Sequencing confirmed that both the 647-bp and the 282-bp fragments are part of the 643 

LH/CG receptor. (C): histograms represent the normalization of LH/CG-R mRNA by actin mRNA 644 

after RT-PCR with primers sets P1 (upper histogram) and P2 (lower histogram). Data are expressed as 645 

mean ± SEM of five independent experiments similar to the one shown in B. bp: base pairs; ***: p< 646 

0.0001. 647 

 648 
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Fig. 5 Scatchard analyses of 
125

I-hCG binding to trophoblasts during in vitro differentiation. 649 

Binding was performed for 30 minutes at room temperature, on cells at 24 hours () or 72 hours () 650 

of culture. The apparent dissociation constants (Kd) and the maximum number of molecules bound per 651 

mg of protein at 24 hours and 72 hours of culture were calculated by the LIGAND program (lower 652 

table). Results are expressed as the mean ± SEM of three experiments. 653 

 654 

Fig. 6 Intracellular cAMP production after LH/CG-R stimulation during in vitro trophoblasts 655 

differentiation. Stimulation of cells at 24 hours and 72 hours of culture was performed with 10
-8

 M of 656 

hCG or with epinephrine (used as a positive control) for 20 min and compared to non stimulated cells 657 

(0). **: p< 0.005 and ***: p< 0.0001 658 

 659 

Fig. 7 Immunolocalization of LH/CG-R, hCG and cytokeratin 7 in villous sections. (A): 660 

immunohistochemical staining of LH/CG-R, using the polyclonal antibody (H50) raised against the 661 

extracellular domain. Villous cytotrophoblasts (CT), syncytiotrophoblast (ST) and perivascular cells 662 

(VC) of the villous core were positively stained. (B): a strong immunostaining of hCG was observed 663 

in the syncytiotrophoblast. (C): immunostaining of cytokeratin 7 was mainly located in 664 

cytotrophoblasts layer. (D): No staining was observed in control sections treated with non specific 665 

isotypic immunoglobulins. 666 


