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Abstract

Background: Nodes of Ranvier correspond to specialized axonal domains where voltage-gated

sodium channels are highly concentrated. In the peripheral nervous system, they are covered by

Schwann cells microvilli, where three homologous cytoskeletal-associated proteins, ezrin, radixin

and moesin (ERM proteins) have been found, to be enriched. These glial processes are thought to

play a crucial role in organizing axonal nodal domains during development. However, little is known

about the molecules present in Schwann cell processes that could mediate axoglial interactions.

The aim of this study is to identify by immunocytochemistry transmembrane proteins enriched in

Schwann cells processes that could interact, directly or indirectly, with axonal proteins.

Results: We show that syndecan-3 (S3) and syndecan-4 (S4), two proteoglycans expressed in

Schwann cells, are enriched in perinodal processes in rat sciatic nerves. S3 labeling was localized in

close vicinity of sodium channels as early as post-natal day 2, and highly concentrated at nodes of

Ranvier in the adult. S4 immunoreactivity accumulated at nodes later, and was also prominent in

internodal regions of myelinated fibers. Both S3 and S4 were co-localized with ezrin in perinodal

processes.

Conclusions: Our data identify S3 and S4 as transmembrane proteins specifically enriched in

Schwann cell perinodal processes, and suggest that S3 may be involved in early axoglial interactions

during development.

Background
Clustering of voltage-gated Na+ channels at nodes of Ran-
vier is an essential aspect of the fast saltatory propagation
of action potential along myelinated axons. The nodes are
devoid of myelin and flanked by paranodes where lateral
loops of glial cells are tightly attached to the axon by sep-
tate-like junctions. Thus, axoglial interactions generate
distinct axonal domains characterized by specific multi-

molecular complexes (see [1] for a review). Several pro-
teins are highly concentrated in the nodal axolemma,
including Na+ channels, comprised of an α subunit,
Nav1.2, replaced by Nav1.6 later during development,
and a β subunit [2,3]. Nodal Na+ channels interact with
ankyrin G [4], which is associated with βIV-spectrin [5],
and with two cell adhesion molecules, Nr-CAM and the
186 kDa isoform of neurofascin [6]. These nodal axonal
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proteins are similar to those found at axonal initial seg-
ments and are thought to form a highly interconnected
multimolecular meshwork. However, in contrast to initial
segments, enrichment of these proteins at nodes of Ran-
vier is dependent on myelinating glial cells in both central
and peripheral nervous systems [7-11]. In the central
nervous system where there is no direct contact between
oligodendrocytes and the nodal axolemma, a diffusible
factor may trigger the clustering of nodal proteins [3,8]. In
contrast, in peripheral nerves, the nodal axolemma is cov-
ered by microvilli emanating from myelinating Schwann
cells, and a direct contact with Schwann cells may be
required for node formation [7,10,11]. However, little is
known about the molecules present in Schwann cells
processes that could mediate the organization of axonal
nodal proteins. Ezrin, radixin and moesin (ERM pro-
teins), three homologous proteins that are enriched in
microvilli of epithelial cells, are also concentrated in
Schwann cells microvilli [12,13]. They co-localize with
ezrin-binding protein 50 kDa (EBP-50) [12]. Since clus-
tering of these proteins occurs early during development
at the time of the initial accumulation of ankyrin G and
Na+ channels in the axon, a direct or indirect role of
microvilli in the organization of nodal regions is very
likely. In support of this hypothesis a recent work has
demonstrated that myelinating Schwann cells emit long
processes at the tip of which ERM proteins are enriched in
a Rho A-dependent fashion [14]. These tips overlap with
zones of ankyrin G accumulation in the axon. ERM pro-
teins are regulated cytoplasmic cross-linkers between actin
cytoskeleton and transmembrane proteins [15], and can-
not mediate direct nodal axoglial contacts. Therefore it is
of interest to identify transmembrane proteins enriched in
Schwann cells perinodal processes that could interact with
axonal proteins, either directly or indirectly.

Syndecans are a family of proteoglycans (syndecan 1–4,
here abbreviated as S1–4) containing heparan sulfate and
chondroitin sulfate sugar chains [16,17]. They are type I
membrane proteins, with an ectodomain containing sev-
eral glycosaminoglycan attachment sites, a transmem-
brane domain and a short C-terminal cytoplasmic tail.
Their extracellular chains bind to a variety of growth fac-
tors and extracellular matrix proteins. Many cytoplasmic
partners of syndecans have also been isolated, with scaf-
folding or signaling properties [18,19]. Here we have
investigated the localization of S3, known to be expressed
in Schwann cells [20], and S4, an ubiquitous protein, in
rat sciatic nerve. Using specific antibodies we found that
both are enriched in Schwann cells perinodal processes.

Results
Production of specific antibodies against S3 and S4

To detect the membrane-associated forms of S3 and S4 we
raised antibodies against their cytoplasmic domains. As

the cytoplasmic tail of each syndecan encompasses two
highly conserved regions, C1 and C2, flanking a variable
region (V) unique to each syndecan (Fig. 1A), sera were
affinity-purified using another fusion protein encompass-
ing only the variable part of the cytoplasmic region of the
cognate protein to avoid cross-reactivity. The specificity of
the purified antibodies was tested using GFP-fusion pro-
teins encompassing the intracellular region of the various
syndecans and expressed in COS-7 cells (Fig.
1B,1C,1D,1E). Both S3 and S4 antibodies were selective
for their cognate antigen by immunoblotting (Fig. 1B,1D)
and by immunofluorescence (Fig. 1.C, 1E).

Distribution of S3 in sciatic nerve

S3 is the most abundant syndecan in the central and
peripheral nervous systems, with a peak of expression in
the first postnatal week [21]. In the adult central nervous
system it is present along axons [22]. S3 is also expressed
in Schwann cells [20] in which it allows adhesion to α4
Type V collagen [23]. In sections of neonatal rat sciatic
nerves, S3 was reported to be present in membranes of
Schwann cells and/or neurons [20], but its localization
was not investigated at later stages. We studied the distri-
bution of S3 immunoreactivity in sections of adult rat sci-
atic nerve, in parallel with that of Na+ channels (Nav), and
shaker-type K+ channels (Kv1.1) enriched in juxtaparan-
odal regions [24]. S3 labeling was concentrated in narrow
bands corresponding to nodal gaps (Fig. 2A). This locali-
zation was almost identical to that of Nav (Fig. 2B). How-
ever, in sections perpendicular to the nerve axis, the ring
of S3 immunoreactivity was wider than the ring of Nav
and appeared to surround it (Fig. 2C). Thus, the two pro-
teins were not co-localized in the axon, indicating the
presence of S3 in the Schwann cells perinodal processes.
In teased fibers from rat sciatic nerve, a similar distribu-
tion was observed (Fig. 2D). In this preparation S3 labe-
ling was clearly located around the nodal axon. In sciatic
nerve sections as well as in teased fibers, all nodes that
were identifiable by Nav immunoreactivity were stained
with anti-S3 antibodies.

Distribution of S4 in sciatic nerve

S4 is ubiquitously expressed and cooperates with integrins
to form focal adhesions [18,19]. However, its localization
in nerves is not known. In adult rat sciatic nerve, S4 anti-
bodies labeled several structures (Fig. 3). A diffuse and
irregular labeling was observed along myelinated fibers at
the level of internodes, whereas paranodal regions were
consistently immunonegative (Fig. 3A, 3B arrowheads).
Although S4 labeling often appeared more pronounced in
the vicinity of paranodal regions, suggesting a possible
enrichment at juxtaparanodes, it did not co-localize with
Kv1.1 (Fig. 3B). S4 immunoreactivity was also concen-
trated at nodes, identified by Nav co-staining (Fig. 3A).
Higher magnification confocal study in sections parallel
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Characterization of antibodies against S3 and S4Figure 1
Characterization of antibodies against S3 and S4. (A) Organization in three sub-regions, C1, C2 and V (upper panel), 
and amino acid alignment of the cytoplasmic C-terminal regions of human S1–S4. Antibodies were raised against the entire 
cytoplasmic tails of S3 or S4, and purified by affinity on peptides encompassing only the variable (V) regions (underlined peptide 
sequences). Dashes represent gaps in the sequence introduced to optimize alignment. The position of the residues in the entire 
sequence of the proteins is indicated (aa). TM, transmembrane region. (B-E) Specificity of S3 and S4 antibodies was tested by 
immunoblotting (B, D) and immunocytochemistry (C, E) using COS-7 cells transfected with GFP-fusion proteins expressing 
either the intracellular regions of S1 to S4 (B-E, S1–S4) or only the variable regions of S3 and S4 (B and D, S3V and S4V). Anti-
bodies directed against GFP (anti-GFP) were used to verify the expression of the proteins. COS-7 cells transfected with the 
vector alone were used as mock control in immunoblotting experiments (-). Anti-S3 and anti-S4 antibodies recognized specifi-
cally GFP-fusion proteins encompassing S3 and S4 intracellular region, respectively. Scale bars: 20 µm.



BMC Neuroscience 2003, 4 http://www.biomedcentral.com/1471-2202/4/29

Page 4 of 9

(page number not for citation purposes)

(Fig. 3C) or perpendicular (Fig. 3D) to the nerve axis dem-
onstrated that nodal S4 immunofluorescence was located
peripherally to Na+ channels, indicating its presence in the
Schwann cells perinodal processes and not in the axon.
Although S4 nodal labeling was less conspicuous than
that of S3, due to the immunoreactivity of myelinated fib-
ers, careful examination of the sections showed that all
nodes, identified by Nav staining, were also labeled by S4
antibodies.

Colocalization of S3 and S4 with ezrin

We compared the distribution of S3 and S4 to that of ezrin
in adult rat sciatic nerves. As previously described, ezrin
immunoreactivity was concentrated in perinodal proc-
esses (Fig. 4A), the position of which was easily identified
by double labeling with antibodies to paranodin/Caspr, a
marker of paranodal regions [25]. Co-immunostaining
revealed a complete colocalization of ezrin and S3 (Fig.
4B) or S4 (Fig. 4C). These results strongly indicate that S3
and S4 are co-localized with ezrin in the microvilli of
Schwann cells.

Distribution of S3 and S4 in sciatic nerve during 

development

Aggregates of nodal proteins start to appear early during
myelination of peripheral nerves [11]. We examined the
distribution of S3 and S4 with respect to the localization
of Nav during the development of sciatic nerve in rat
pups, from post-natal days 2 to 21 (P2 to P21, Fig. 5). At
P2, Nav clusters were readily detectable (Fig. 5A.a,
arrows). In the same sections, spots of concentrated S3
immunoreactivity were clearly distinguishable from the
labeling of the rest of the fibers (Fig. 5A.b, arrows). How-
ever, S3 and Nav labeling did not exactly overlap, but
appeared to be in very close contact with each other (Fig.
5A.a-c, insets). At P6, as the number of presumptive nodes
increased, S3 and Nav immunoreactivities were always
closely associated (Fig. 5A.d-f). This pattern remained
similar at later stages, as nodal aggregates enlarged and
acquired their mature form (Fig. 5A.g-l). When pairs of
heminodes were observed [11], both were stained for S3
and Nav (Fig. 5A.g-i, arrowheads). As development pro-
ceeded, the immunoreactivity along nerve fibers
decreased, and at p21 S3 staining appeared virtually
restricted to the nodes of Ranvier (Fig. 5A.j-l), as in the
adult (Fig. 2).

The developmental pattern of S4 immunoreactivity was
also examined in rat sciatic nerves. At P2 although some
S4 labeling was visible, with a few cells more intensely
stained, no overlap of labeling with Nav was observed and
there was no indication of the accumulation of S4 at pre-
sumptive nodes (Fig. 5Ba-c). Some nodal labeling was vis-
ible at P6 (Fig. 5B.d-f), and became more frequent at P12
and P21 (Fig. 5B.g-l). A general increase of S4 immunore-
activity in internodal regions of myelinated fibers
occurred during development (Fig. 5B), leading to a pat-
tern similar to that observed in adult rats (Fig. 3).

Discussion
Our results identify two proteoglycans, S3 and S4, as
novel components of nodal regions in rat sciatic nerve.
There are similarities between the distributions of the two
proteins. Both S3 and S4 were found concentrated in
Schwann cells perinodal processes, co-localized with

Localization of S3 in nodal regions of the PNSFigure 2
Localization of S3 in nodal regions of the PNS. (A-C) 
Sections through rat sciatic nerve at P30 were labeled with 
antibodies to S3 (green) and K+ channels (Kv1.1, A, red) or 
Na+ channels (Nav, B-C, red). Superposition of the two labels 
is shown (merge). Note that on sections perpendicular to 
nerve axis, S3 immunoreactivity is peripheral to Nav labeling. 
(D) Teased fiber from rat sciatic nerve stained for S3 (green) 
and Kv1.1 (red) showing that S3 immunoreactivity is on both 
sides of the node. B-D: confocal stacks. Scale bars: 10 µm (A, 
D), 1 µm (B, C).
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ezrin, surrounding the sodium channel clusters. S3 and S4
are therefore likely to be both localized in Schwann cells
microvilli. There were also marked differences between
the distributions of the two proteins. S3 was detected in
the vicinity of sodium channels aggregates very early in
development, at a time when ezrin is also enriched in
Schwann cells processes [12,14], whereas accumulation of
S4 near sodium channels occurred progressively during
the first postnatal weeks. In adult nerves S3 was highly
concentrated at nodes as compared with any other cellular
structures in the sciatic nerve. In contrast, S4 was also
detected in the internodal region of myelinated fibers.
These results show that at least two proteoglycans of the
syndecan family are transmembrane components of
Schwann cells microvilli. Since these molecules are
known to have a number of intracellular and extracellular
partners, it is likely that they play similar and perhaps
complementary roles in the structural organization of
nodal regions, as well as in signal transduction in glial
processes.

Syndecans are thought to play a role in the regulation of
cytoskeleton organization (for a recent review see [26]).
S2 can regulate the actin cytoskeleton in different cell
types, and S4 is present in focal adhesions of a number of
cell lines [18]. S1 ectopically expressed in primary
Schwann cells transiently co-localizes with actin filaments
during cell spreading [27]. In the same transfected cells,
S1 crossed-linked with anti-S1 antibodies co-localizes
with actin filaments [28]. This localization is dependent
on a specific region of the cytoplasmic region of the pro-
tein [29]. Several studies have suggested that signaling

through the core protein of syndecans could regulate
cytoskeleton organization through their clustering, bind-
ing to cytoplasmic proteins, and regulation of intracellu-
lar protein phosphorylation (for review see [26]). In this
context, the ERM proteins may function as adaptors that
couple syndecans to cytoskeletal proteins since S2 has
been shown to interact with ezrin through a motif con-
served in the others syndecans [30,31]. All these observa-
tions raise the interesting possibility that both S3 and S4
might provide plasma membrane anchors for ERM pro-
teins in Schwann cells perinodal processes [12-14], and
therefore be indirectly linked to actin microfilaments that
are also enriched in microvilli [32]. In addition, the con-
served C-terminal motif of syndecans can interact with
PDZ (PSD-95 / discs large / ZO-1) domain-containing
scaffold proteins syntenin [33], CASK/LIN [34,35], and
synectin [36]. These interactions may coordinate cluster-
ing of receptors and also connection to the actin cytoskel-
eton [18,19]. It is not known whether syntenin, synectin
or CASK/LIN are enriched in nodes of Ranvier, but it
seems likely that these or other PDZ-containing proteins
could be involved in the organization of perinodal glial
processes.

S3 heparan sulphate chains bind to fibroblast growth fac-
tor-2 (FGF-2) [37] and heparin-binding growth-associ-
ated molecule (HB-GAM) also known as pleiotrophin or
midkine [38]. FGF-2 and its high affinity receptor [39], as
well as HB-GAM [40], are expressed by Schwann cells. In
neuroblastoma cells S3 can activate neurite outgrowth in
response to HB-GAM through a cortactin/src kinase-medi-
ated pathway [41]. This raises the possibility that S3 might

Localization of S4 in nodal regions of the PNSFigure 3
Localization of S4 in nodal regions of the PNS. Sections through rat sciatic nerve at p30 were labeled with antibodies to 
S4 (A-D, green) and Na+ (Nav, A, C-D, red) or K+ (Kv1.1, B, red) channels. Superposition of the labels is shown (merge). The 
paranodal regions are not labeled with antibodies against S4 (A, B, arrowheads). On sections perpendicular to nerve axis (D), 
S4 immunoreactivity is peripheral to Nav labeling. C, D: confocal stacks. Scale bars: 10 µm (A, B), 1 µm (C, D).
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be involved in the formation and growth of Schwann cells
nodal processes [14]. On the other hand, S4 binds to
fibronectin and drives the formation of focal adhesions
[42], while interaction of S4 with tenascin-C decreases
adhesion [43]. A similar role of S4 could be important in
the nodal area where loose axoglial contacts contrast with

the tight septate-like junctions of neighbouring paran-
odes. S4 plays also a role in signaling through its cytoplas-
mic tail that binds and activates the catalytic domain of
PKCα in the presence of phosphatidyl-inositol-4,5-
bisphosphate [44,45]. Moreover, S4 regulates signaling by
Rho family GTPases and focal adhesion kinase [46], and
is able to bind to α-actinin [47]. All these interactions that
have been described in the context of focal adhesions,
may also have functional relevance for the organization of
cortical cytoskeleton in Schwann cells microvilli.

Whether S3 and S4 could interact with axonal membrane
proteins and contribute to the organization of the nodal
region remains to be determined. Although S3 and S4 null
mutant mice display relatively mild phenotypes [48-50],
suggesting some redundancy between proteoglycans, their
peripheral nerves have not been studied. It will be
interesting to examine carefully the axoglial interactions
and the molecular organization at nodes of Ranvier in
these mice, as well as in double mutant mice.

Conclusions
In summary our findings show the enrichment of two syn-
decans in the perinodal processes of Schwann cells. These
proteoglycans are receptors for extracellular proteins and
growth factors. Syndecans are able to organize scaffolding
proteins and activate signaling pathways involved in the
reorganization of actin cytoskeleton, through tyrosine
phosphorylation and activation of Rho family GTPases.
Thus, they may be pivotal in the organization of Schwann
cells growing tips and microvilli that seem to play an
important role in the early interaction with nodal axonal
proteins [14]. Since S3 accumulates earlier than S4, it is a
candidate for being involved in the earliest steps of nodes
of Ranvier formation.

Methods
Antibodies and constructs

Monoclonal antibodies sources were as follows: voltage-
gated Na+ channel α subunit (PAN Nav, clone K58/35)
[51] and ezrin (clone 3C12) [52], Sigma; Kv1.1 (clone
K20/78) [53], Upstate Biotechnology; green fluorescent
protein (GFP), Roche. Polyclonal antiserum against par-
anodin/Caspr (L-51) was described previously [25]. Alexa
Fluor 488- and 594-conjugated goat anti-rabbit and anti-
mouse antibodies were from Molecular Probes (Leiden,
Netherlands). HRP-conjugated goat anti-mouse and anti-
rabbit antibodies were from Amersham. Antibodies
against S3 and S4 were generated by immunizing rabbits
with the intracellular region of the human proteins (S3:
residues 410–442; S4: residues 171–198, Fig. 1) fused to
glutathione-S-transferase (GST), and affinity-purified on
GST-fusion proteins encompassing only the variable
region of the respective syndecans (S3: residues 420–439;
S4: residues 181–194). Constructs for GST- and GFP-

S3 and S4 co-localize with ezrin in nodal regions of PNSFigure 4
S3 and S4 co-localize with ezrin in nodal regions of 
PNS. (A) Sections through rat sciatic nerve at p30 were 
labeled with antibodies to ezrin (Ez, red) and to paranodin/
Caspr (Pnd, green), a marker of paranodal regions. (B, C) 
Sections were double labeled with antibodies to S3 (B, green) 
or S4 (C, green) and antibodies to ezrin (Ez, red). Superposi-
tion of syndecan and ezrin labelings is shown (merge). Two 
different nodes are shown in each case. B, C: confocal stacks. 
Scale bars: 4 µm (A), 1 µm (B, C).
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Developmental profile of S3 and S4 in rat sciatic nerveFigure 5
Developmental profile of S3 and S4 in rat sciatic nerve. Sections through rat sciatic nerve at P2, P6, P12, and P21 were 
labeled with antibodies to S3 (A, green) or S4 (B, green) and Na+ channels (Nav, A, B, red). Superposition of the two labels is 
indicated by arrows. At P2, S3 and Nav labelings appear to be in very close contact with each other (A.a-c, insets). For S3, a 
pair of heminodes is indicated by arrowheads (A.g-I). A, B: confocal stacks. Scale bars: 10 µm.
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fusion proteins were generated by RT-PCR, verified by
sequencing, and expressed using pGEX (Pharmacia) and
pEGFP vectors (Clontech), respectively. For S1 and S2, the
sequences fused to GFP encompassed residues 280–313
and 170–201 of rat S1 and human S2, respectively.

Cell culture, immunoblotting and immunocytochemistry

COS-7 cells transfection and immunoblotting were done
as described [54]. For immunocytochemistry, cells were
fixed for 20 min in 4% PFA/PBS, permeabilized with 0.2%
Triton X-100 in PBS for 10 min, and incubated sequen-
tially with primary and secondary antibodies for 30 min
at room temperature. Immunostaining of cryostat sec-
tions (10 µm) of sciatic nerve tissues was performed
essentially as previously described [9]. Sections were fixed
for 20 min in methanol/acetone (50/50 vol/vol) at -20°C
(for labeling with Nav antibodies) or in 4% PFA/PBS at
room temperature (for labeling with Kv1.1, ezrin and par-
anodin antibodies), pre-incubated for 1 hour at room
temperature in 0.2% porcine skin gelatin and 0.25 % Tri-
ton X-100 in PBS (PGT buffer), before incubation with
primary antibodies (diluted in PGT) overnight at 4°C.
After washing with PBS, coverlips were incubated for 2
hours at room temperature with secondary antibodies
(diluted in PGT), washed again with PBS, and mounted in
Vectashield. Images were acquired using a Leica epifluo-
rescence microscope equipped with a CCD camera or a
Leica SP laser Scanning microscope. Teased fibers were
prepared from sciatic nerve as described [55]. Briefly,
twenty-one days-old rats were perfused with 2% PFA in
phosphate buffer (PB) at 4°C. Nerves were dissected out,
post-fixed with 2% PFA in PB for 30 minutes at 4°C, and
washed 1 hour in PB, before teasing and spreading on
slides. Immunostaining was performed as for cryostat sec-
tions, except that slides were blocked and incubated with
antibodies in PB, 0.2% porcine skin gelatin, 0.25 % Triton
X-100 and 10% goat serum. Antibodies dilutions were:
anti-S3 (1:300); anti-S4 (1:100); anti-Nav (1:100); anti-
Kv1.1 (1:200); anti-paranodin (1:1000); anti-ezrin
(1:400); anti-GFP (1:200); secondary antibodies (1:400).

Abbreviations
S: syndecan

ERM: ezrin, radixin, moesin
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