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Abstract

Background: Because loops connect regular secondary structures, analysis of the former depends
directly on the definition of the latter. The numerous assignment methods, however, can offer
different definitions. In a previous study, we defined a structural alphabet composed of |16 average
protein fragments, which we called Protein Blocks (PBs). They allow an accurate description of
every region of 3D protein backbones and have been used in local structure prediction. In the
present study, we use this structural alphabet to analyze and predict the loops connecting two
repetitive structures.

Results: We first analyzed the secondary structure assignments. Use of five different assignment
methods (DSSP, DEFINE, PCURVE, STRIDE and PSEA) showed the absence of consensus: 20% of
the residues were assigned to different states. The discrepancies were particularly important at the
extremities of the repetitive structures. We used PBs to describe and predict the short loops
because they can help analyze and in part explain these discrepancies. An analysis of the PB
distribution in these regions showed some specificities in the sequence-structure relationship. Of
the amino acid over- or under-representations observed in the short loop databank, 20% did not
appear in the entire databank. Finally, predicting 3D structure in terms of PBs with a Bayesian
approach yielded an accuracy rate of 36.0% for all loops and 41.2% for the short loops. Specific
learning in the short loops increased the latter by |%.

Conclusion: This work highlights the difficulties of assigning repetitive structures and the
advantages of using more precise descriptions, that is, PBs. We observed some new amino acid
distributions in the short loops and used this information to enhance local prediction. Instead of
describing entire loops, our approach predicts each position in the loops locally. It can thus be used
to propose many different structures for the loops and to probe and sample their flexibility. It can
be a useful tool in ab initio loop prediction.

Background been widely analyzed. They have been studied from two
Since the first descriptions of protein structures by Pauling  principal points of view - assignment and prediction.
and Corey [1,2], their repetitive secondary structures have
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Different approaches can be used for assigning secondary
structures to a 3D protein structure. The most common is
DSSP [3], which is based on hydrogen bonding patterns.
STRIDE [4] relies on the same criteria with slightly differ-
ent parameters and computes backbone dihedral angles.
DEFINE [5] uses an inter-Ca distance matrix that corre-
sponds to ideal repetitive secondary structures. PCURVE
[6] is based on the helicoidal parameters of each peptide
unit and generates a global peptide axis. Finally, PSEA [7]
bases its assignments only on the Ca position, using dis-
tance and angle criteria. Not surprisingly, these methods
do not assign the same state to all residues, especially
those located at the beginning and end of repetitive struc-
tures. For instance, DSSP, DEFINE and PCURVE only
assign 65% of residues to the same state [8].

Several prediction methods have been developed [9], and
accuracy rates climb to 80% with neural networks and
sequence homology [10]. Secondary structures do not,
however, entirely describe the 3D protein structure. Coils
account for more than 40% of residues. In the conven-
tional 3-state description, they are associated with only
one state, defined as non-helicoidal and non-extended.
The coil state is in fact composed of really distinct local
folds, such as turns [11]. Several studies have attempted to
analyze loops [12,13] and predict their conformations
[14], but they still fail to take a significant portion of resi-
dues into account.

Protein structure descriptions that use a library or set of
small prototypes, i.e., N states rather than the conven-
tional three, can help improve definitions of these regions
and may also improve prediction. Such a library consti-
tutes a structural alphabet [15,16] and is composed of
structural prototypes. Because these describe all the local
folds, repetitive structures as well as coils, they allow a bet-
ter approximation of the entire protein structure. Thus,
they can be used to reconstruct protein structures [17] or
to predict the local structure [18]. In a previous study, we
defined a structural alphabet composed of 16 protein frag-
ments, each 5 residues in length, called Protein Blocks
(PBs, cf. Figure 1) [19]. They have been used to describe
3D protein backbones [20-22] and to predict local struc-
tures [19,23]. Our structural alphabet is particularly
informative [24] and is thus useful for pre-processing
before ab initio and new fold prediction.

We focus here on the study of small loops that connect
two repetitive structures. We first analyze the classic sec-
ondary structure assignments with the five above-men-
tioned methods. Secondly, we describe the short loops
with our structural alphabet and analyze the sequence-
structure relationship in these local structures. Finally, we
make local predictions based on the amino acid
sequences.

http://www.biomedcentral.com/1471-2105/5/58

Results

Secondary structure assignments

As noted by Woodcock et al. [25], a serious problem raised
by the variety of methods for secondary structure assign-
ment is that they often yield differing results. A consensus
method has been proposed to lessen this effect [8]. Here
we used an agreement rate, denoted as C;, which is the
proportion of residues associated with the same state.
Table 1 summarizes the correspondence between the sec-
ondary structure assignments from the five methods. It
clearly highlights three points: (i) with its default param-
eters, DEFINE yielded results very different from the other
methods, as shown by its C; values, close to 62%; (ii)
DSSP and STRIDE produced nearly identical assignments,
with C; equal to 95%. Of the remaining assignments, 4%
corresponded to confusion between o-helices and coils,
and the remaining 1% to confusion between B-strands
and coils; (iii) all the other comparisons gave a mean C;
of 80%, with 6-7% confusion between a-helices and coils
and 12-13% between B-strands and coils.

In addition, DEFINE was the only method to confuse a-
helices and B-strands. This confusion ranged from 2% to
5% between DEFINE and the other methods, while for all
other comparisons, it was less than 0.05%. These results
did not change when B-strands were described by 'E'
(extended-strand participating in a -ladder) and 'B' (res-
idue in isolated B-bridge) [9] labels for DSSP and STRIDE
rather than only 'E'.

These results show the difficulties related to defining an
appropriate length for a-helices, B-strands and coils and
locating their ends [26]. These inaccuracies in defining the
repetitive structures have direct repercussions on the defi-
nition of loops. Figures 2 and 3 use the example of the
ribosomal protein S15 from Bacillus Stearothermophilus
(PDB code 1A32; another example, proto-oncogene
Mtcp-1, PDB code 1A1X, is given [see Additional file 1 and
Additional file 2]) to show the multiple secondary struc-
ture assignments that can ensue. 79% of the residues are
assigned to the same state, rather more than for many
other proteins. The repetitive structure caps remain quite
confusing (cf. Figure 3), however, despite good agree-
ment. For instance, the C-cap of the first helix is defined
over three residues, depending on the assignment method
(positions 13 to 15). The connecting zone between helices
2 and 3 is fuzzy. DSSP and STRIDE assign positions 44—
48, PSEA 45-50 and PCURVE 45-47 as coils whereas
DEFINE assigns positions 47-50 as a small -strand. In
this example, we see that the 16 Protein Blocks (PBs),
labeled a-p, describe every part of the protein structures
specifically. This description includes the repetitive struc-
tures, their edges, and the coils that the secondary struc-
tures define only as non-helicoidal and non-extended.
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Figure |

Protein Blocks. From left to right and top to bottom, RASTER 3D [42,43] images of the |6 Protein Blocks of the structural
alphabet. Each prototype is five residues in length and corresponds to eight dihedral angles (¢,y). The PBs m and d can be
roughly described as prototypes for the central a-helix and the central B-strand, respectively. For each PB, the N cap extrem-
ity is on the left and the C-cap on the right.
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Table I: Agreement index C; between secondary structure
assignment methods. The index values measure the proportion
of residues assigned to the same state by two methods.

STRIDE PSEA DEFINE PCURVE
DSSP 95.29 80.77 61.22 79.43
STRIDE - 81.24 62.25 79.10
PSEA - - 65.55 83.43
DEFINE - - - 64.86
=*1AZZA

i1 50 &0 T B{

Figure 2

Comparison of methods for secondary structure
assignment. Example of 5 assignments for the ribosomal
protein SI5 from Bacillus Stearothermophilus (PDB code

I A32). The figure shows the amino acid sequence (AA), the
secondary structure assignments by (DSSP), (STRIDE),
(PSEA), (DEFINE), (PCURVE) with 'H' for the a-helix, 'E' for
the B-strand and 'C' for the coil, (cons.) is a simple consensus
with a star (*¥) if the five methods agree or a dot (.) if they do
not, (PB) is the Protein Block assignment with ZZ for the
extremities (not assigned, i.e., the PB is centered on the cen-
tral residue).

Each PB is a fragment five residues long that corresponds
to a local fold and is defined by eight dihedral angles. PBs
m and d correspond roughly to the core of a-helices and
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B-strands, respectively. In the example in Figure 2, several
series of PB m accurately describe the helix cores. Where a
secondary structure assignment method assigned a pB-
strand (PSEA, positions 14-17, DEFINE positions 16-18
and 47-50), the PB assignment gave PB b, or PB ¢ and e,
all close to B-strand geometry. Thus, PBs may explain the
ambiguity of the assignments. In this case, PBs b, ¢ and e
can take the variability of the B-strand into account. The
structural alphabet was more structurally informative (16
states instead of 3 states) and better approximated the
protein backbone. It is thus a relevant alternative for
describing loops.

Describing short loops in terms of Protein Blocks

Loops are defined as protein fragments that connect two
series of PBs m and/or d and contain no repetitive PBs.
Short loops have a length of 2 to 6 PBs. The short loop
databank contains 3,319 fragments: 644 for mm/mm, 801
fordd/dd, 989 for dd/mm and 886 for mm/dd. Table 2 sum-
marizes the properties of the PBs in the overall databank
as well as in the loop and short loop databanks. We
focused on the frequency of occurrence of PBs in these
regions and on the main transitions between successive
PBs, since previous studies observed only a limited
number of transitions [19,23]. Table 2 points out the spe-
cificities of the transitions of some PBs in the short loops
(for comparison, this information on the PBs in the com-
plete databank is given [see Additional file 3]).

We observed that PBs k, I, n, 0 and p were relatively more
specific to short loops. Their frequencies were 1% higher
in short loops than in all loops. Inversely, the frequency
of PB b dropped from 9.0% in all loops to only 3.7% in
short loops. Moreover, it was slightly less frequent in the
short loops than in the overall databank (4.4%). The fre-
quencies of the other PBs were the same in loops and
short loops.

The transition frequencies between successive PBs varied
substantially between the complete databank and the
short loops. We noted three main categories. (i) The prin-
cipal transitions became more pronounced for most PBs
(i.e., 11). For example, the transition from PB a to PB ¢
increased by more than 20% (50.9% versus 71.8%), c to d
more than 20%, e to h more than 10%, f to k (24%) and !
to m (15%). For PBs h, i, k, n, 0, and p, the increase was
smaller, ranging from +2 to +10%. (ii) For two PBs, the
first preference transitions were inverted. The second most
common transition of PB g (PB ¢) in the databank took
over first place for short loops, and its frequency climbed
from 28.0% to 39.7%. PB j was the fuzziest PB (rmsd =
0.74 A) and had a high number of "main" transitions (6
with a transition rate greater than 10%). In the short
loops, its third most common transition, PB I, becomes
first (and its rate went from 16.1% to 25.0%). (iii) PB b
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(a) (b) (c)

(d) (e) (f)

Figure 3

Representation of the secondary structure assignments. Example of the ribosomal protein S15 from Bacillus Stearother-
mophilus (PDB code 1A32) with (a) DSSP, (b) STRIDE, (c) PSEA, (d) DEFINE, (e) PCURVE and (f) Protein Blocks. In the last
case to simplify the representation, helices are associated to PB m and strands to PB d. The visualization is done with RASTER
3D [42,43] and MOLSCRIPT [44]. The a-helices are in red, the -strands in green and the coils in blue.

Table 2: Description of Protein Blocks in short loops. The analysis is carried out in the short loops regions, i.e. 2 to é residues between
two successive mm and/or dd. Listed for each protein block (PB; labeled from a to p), are: the frequency of occurrence (frq) in the
complete databank (DB), the loops databank (Loops), and the short loops databank (Short loops), the four main PB transitions and the
distribution in the secondary structures (o-helix, coil and p-strand) of the central residue, as assigned by PSEA.

PB frq. transitions (%) secondary structures
DB (%) Loops (%) Short loops (%) Ist 2nd 3rd 4th a (%) coil (%) B (%)
a 3.9 79 82 71.8 (o) 17.9 (d) 6.6 (k) 0.0 70.7 29.3
b 4.4 9.0 37 40.7 (0 25.7 il 15.7 (0 0.4 95.8 38
c 8.1 7.5 16.3 82.3 (d) 12.9 lti] 0.0 55.6 44.4
d 18.9 - -
e 25 5.1 4.9 90.1 (h) 0.0 36.4 63.6
f 6.7 13.6 11.8 85.2 (k) 134 (b) 0.0 753 24.7
g 1.1 22 1.8 39.7 () 30.2 (h) 14,0 (o) 13.7 il 13.8 827 35
h 24 49 43 65,0 (i) 21.9 () 7.3 (k) 1.3 754 23.3
i 1.9 39 3.1 84.4 (a) 9.2 (0 0.9 93.7 5.4
j 0.8 1.6 1.4 25,0 [0} 20.5 (b) 18.0 (a) 14,0 (k) 1.7 79.5 8.8
k 5.4 1.0 12.9 81.2 () 7.6 (o) 6.5 (b) 61.5 38.0 0.5
I 5.4 1.0 12.1 839 (m) 5.3 (¢ 74.1 25.7 0.2
m 30.2 - -
n 2.0 4.1 5.1 95.6 (o) 87.2 1.9 0.9
o 2.8 5.7 6.6 83.3 () 82 (m) 63.8 36,0 0.2
p 35 7.1 78 64.6 (a) 23.6 (o 6.1 (m) 13.5 83,0 35
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changed completely. Its main transition in the databank
(PB d) dropped into fourth place. In fact, the transition
from PB b to PB d was found mainly at the end of long
loops going to B-strands. In short loops, PBs ¢, f and | were
preferred. Hence, the rate of the second leading transition
(PB ¢) increased from 17.9% to 40.7% and the third (PB
1) from 15.7% to 25.7%.

We analyzed the distribution of the classic secondary
structures in our short loop definitions. The secondary
structure assignments (with PSEA [7]) changed substan-
tially from their distribution in the entire databank. The
frequency of PBs g, ¢ and e in B-strands increased by 5%,
2% and 9%, respectively, and the frequency of PBs k, I, n
and o in a-helices by more than 12%. The frequency of PB
b in coils increased from 85.4% to 95.8%. Other methods
of secondary structure assignment yield similar results.

Analysis of the sequence-structure relationship

Figure 4 reports the amino acid occurrence matrices, nor-
malized into Z-scores, and their asymmetric Kullback-Lei-
bler index (KLd [27]) for two PBs, ¢ and ], calculated from
the complete databank and from the short loop set. The
PBs are five residues in length (noted from -2 to +2 and
centered in 0). We showed in a previous study [19] that
prediction can be improved only by enlarging the
sequence window to 15 residues (noted from -7 to +7 and
still centered in 0). We therefore computed the occurrence
matrices for fragments of 15 residues. Positive Z-scores
(respectively negative) correspond to overrepresented
(respectively underrepresented) amino acids and provide
information for each amino acid at each position. The KLd
analyzes the contrast between the amino acid distribution
observed in a given position of the occurrence matrix and
the reference amino acid distribution in the protein set.
Hence, it measures the sequence information content and
highlights the most informative positions.

We observed two types of behaviors for the 14 PBs: for
most (i.e., 11) the KLd values increased at every position
while for the other three, decreased values compared with
the entire databank were seen at some positions. PBs ¢ and
I are representative examples of these two cases. Globally,
we observed some significant contrasts in the Z-score
matrices, quantified by the higher KLd measure in some
positions of the sequence window. PB ¢ showed clear spe-
cificity: proline was overrepresented and glycine
underrepresented in positions 1 and 2, both in the com-
plete databank and in the short loop set (cf. Figures 4a and
4e). For PB c in the complete databank, the maximal KLd
was 0.15 in position (-2), but in the other central posi-
tions (-1 to +2), corresponding to the informative
sequence zone, KLds ranged from 0.04 to 0.05 (cf. Figure
4c). KLd levels were lower in the flanking regions. All PB ¢
positions in the short loops had markedly increased spe-

http://www.biomedcentral.com/1471-2105/5/58

cificities (cf. Figure 4g). The value of the maximal KLd
increased from 0.15 to 0.23, and doubled for the other
central positions, for a KLd range of 0.09 - 0.11.

PB I behaved distinctively. Its amino acid distributions in
the short loop set differed from those in the entire data-
bank (cf. Figures 4b and 4f). The informative region was
restricted to only three positions (-2, -1, 0) with KLd val-
ues of 0.23, 0.13 and 0.13 respectively (cf. Figure 4d). In
the short loops, position (+2) increased significantly, to
0.11 and became equivalent to position (-1). Position (0)
lost specificity (-0.01), but position (-2) remained most
specific, increasing to 0.03 (cf. Figure 4h).

Table 3 summarized the 149 amino acid over- and under-
representations observed in the short loop set, fewer than
in the overall databank. This was due mainly to the
number of occurrences, by definition lower in the short
loops. Nevertheless, 20% of the significant amino acids
had not previously been found. Nearly all PBs had at least
one amino acid over- or under-represented. As expected,
in most cases, it was glycine (9 times), although 8 other
types of amino acids were involved. We note two specific
examples: (i) the overrepresentation of methionine in
position (+1) of PB p (the only methionine overrepre-
sented in all the short loops), and (ii) the underrepresen-
tation of glycine in position (-2) of PB f, although it was
overrepresented in the global distribution.

Predicting with PBs in the short loops

Table 4 summarizes the predictions. A training set corre-
sponding to 2/3 of the dataset was used to learn the
sequence-structure relationship for all predictions, and a
test set corresponding to the remaining 1/3 to evaluate the
results. We ran three different sets of predictions: the first
two used occurrence matrices computed from the com-
plete databank, and the third, matrices computed only
from the short loop regions. We computed Q,,and Q,,
ratios to analyze the quality of the predictions. Q,4 corre-
sponds to the total number of true predicted PBs over the
total number of predicted PBs. The Q, , value is specific for
loops, i.e., PB m and d are not taken into account.

The first prediction (init) is the conventional Bayesian pre-
diction, run with all 16 PBs. It yielded a global prediction
rate Q,, equal to 35.2%. This value is close to that in our
previous study (Q;, = 34.4% [19]) and far superior to the
value of 7.5% obtained with random assignment. The Q,
value equals 36.0% for both the short and long loops.
This computation shows that the non-repetitive PBs were
predicted as accurately as the PBs m (39.3%) and d
(27.7%). Prediction was thus not biased in favor of the
most populated blocks.
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Analysis of PBs c and I in short loops. The left part corresponds to PB c and the right to PB I. (a), (b), (e) and (f) are the
amino acid Z-scores, with (blue): Z-score < (-4.4), (green): (-4.4) < Z-score < (-1.96), (yellow): (-1.96) < Z-score < 1.96,
(orange): 1.96 < Z-score < 4.4 and (red): Z-score > 4.4. For prediction purpose, a five-residue PB (numbered from -2 to +2) is
encompassed in a longer fragment of |15 amino acids in length (numbered from -7 to +7). (c), (d), (g) and (h) are the asymmet-
ric Kullback-Leibler distributions. (a) and (c) correspond to PB ¢, (b) and (d) to PB [ in the complete databank. (e) and (g) cor-
respond to PB c and (f) and (h) to PB I in the short loops.
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Table 3: Description of Protein Blocks in short loops. For each position (indexed from -4 to + 4) of the 16 protein blocks (PBs), the
highest amino acid over-representations (Z-score > 4) and under-representations (Z-score < -4) are labeled by the symbols (+) and (-),
respectively. The new over- and under-representations specific to the short loops are displayed in bold and italics respectively. For
analysis purpose, a five-residue PB (numbered from -2 to +2) is encompassed in a longer fragment of length 9 (humbered from -4 to +4).

PB -4 -3 -2 -1 0 | 2 3 4

a + N G \ \
- IVLAPT P G G

b + F \ D P

4 + G G VL IVP IVP
- v IVL PG GD GE GD

d +

e + \ \ \ G G G
- VL

f + G F \ IVL STD P SDE G
- G GD K G VLPG

g + P G

h + \ G

i + P G K

j + G

k + | STD P DE A E
- VLAR G PG P

) + PSTD P DE LA E A
- VLA PG GD

m +

n + LA G
- G G VLA

0 + LA AE G P \4
- G PG VLAPT G

b + A AE G M P \

G PG AP G

The second prediction (short loops 1) used, as previously,
the occurrence matrices computed from the complete
databank, but focused only on predicting the short loop
regions (cf. Short loop description). Hence, only 14 PBs were
considered. The prediction rate Q,, reached 41.2%, signif-
icantly greater than the random rate (8.0%). Prediction
rates increased for most PBs, especially those associated
with the o-helix ends: PB n (+10.8%), PB o (+8.7%), PB p
(+9.2%). The increase in the prediction rates for the PBs
associated with f-strand edges was slightly lower.
Prediction rates fell for five PBs — approximately 1% for
four (PBs e, g, h and i) and 9.6% for one, PB j.

The last prediction (referred to as short loops 2) used spe-
cific learning with the sequence-structure relationship in
the short loops to define the occurrence matrices of the 14
PBs involved. The Q,, value increased by 1.3% and

yielded better distribution between the PBs. Hence, only
four PBs had poorer prediction rate than with the initial
prediction. They were all associated with coil-assigned
structures. PBs g h and i lost 1.9%, 1.7% and 1.4%,
respectively. The prediction rate for PB j decreased dra-
matically, from 47.3% to 25.0%. Rates for the PBs associ-
ated with repetitive PB m, i.e., PBs n and p, returned to
values slightly closer to those for the complete databank,
with accuracy increasing by 4.4% for PB n and 7.5% for PB
p. This prediction approach also favored the protein
blocks associated with PB d: the prediction rate increased
by 5.8% for PB b, 16.0% for PB ¢ and 7.0% for PB e. More-
over, the prediction rate for PB f increased from 37.1% to
44.1%. Thus, the short loop 2 method improved the predic-
tion of most PBs, but was limited by the bad performance
of PBj.
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Table 4: Prediction results. Predictions are given for each PB
(noted from a to p), together with the prediction rate for the 16
PBs (Q,,) and without the repetitive PBs (Q,,) in loops (i.e., PBs
m and d). The first prediction (init) considered all the sequence
positions. The second (short loops I) was the same but only for the
short loop regions, i.e., 2 to 6 residues between two mm and/or dd
series. The third (short loops 2) included specific learning for the
short loops.

BP init short loops | short loops 2
a 59.9 66.3 63.2
b 13.2 15.4 19.0
c 27.0 31.7 43.0
d 27.7 -- --
e 37.1 359 44.]
f 28.8 33.0 40.7
g 28.1 27.1 26.2
h 41.1 39.3 394
i 36.3 35.7 349
j 47.3 37.7 25.0
k 37.8 388 383
| 38.0 423 39.2
m 39.3 -- --
n 50.9 61.7 55.3
0 49.6 58.3 50.5
p 333 42.5 40.8

Qe 35.2

Q4 36.0 41.2 42.5

Discussion

We have observed that the secondary structure assignment
methods can produce highly discordant results. In most
cases, only 80% of the residues are assigned to the same
state. The capping regions of repetitive secondary struc-
tures are particularly mismatched. The difficulties of
describing clearly repetitive regions have often been
pointed out [28-30].

PBs allow more precise description than do the secondary
structures. In addition, they overlap. Accordingly, a small
modification of PB assignment has fewer consequences
than changing a secondary structure assignment; for
example, a PB m is relatively similar to a PB n whereas an
a-helix should be highly distinct from a coil. Analysis of
series of PBs prove their structural relevance [23]. All these
points justify the use of our structural alphabet to describe
and analyze short loops. A recent approach has shown
that most short loop fragments can be approximated cor-
rectly in the Protein DataBank [31].

The behavior of PB b in short loops differs from that in all
loops: it appears to be a B-strand N-cap mainly involved
in long loops. This point may partly explain its poor pre-

http://www.biomedcentral.com/1471-2105/5/58

diction rate in the short loops. Similarly, we observe that
most of the rates of leading transitions are lower in the
complete databank than in the short loops. This indicates
that the less frequent transitions are associated with
longer loops, i.e., fragments of more than 6 PBs.

Analysis of the sequence-structure relationship shows that
most of the PBs in short loops have specific amino acid
distributions that differ in many cases from the reference
PB distribution. Nonetheless, as noted with PB [ (see Fig-
ure 4), some positions lose amino acid specificity.

Because of the limited number of short loops in our non-
redundant databank, we ran three different sets of predic-
tions so that we could carefully observe the behavior of
the PBs. (i) The global prediction shows that the loops
were predicted as accurately as the repetitive structures
(Q16=35.2% and Q, = 36.0%), i.e., this method did not
introduce artificial bias resulting in preferential prediction
of repetitive regions. (ii) The sequence-structure relation-
ship in the short loops was strongly determinist and thus
significantly improved the prediction (Q,, = 41.2%). The
use of the global occurrence matrices, however, induced
an imbalance in the prediction of certain PBs: PBs associ-
ated with the repetitive PB m enjoy many advantages over
other PBs mainly associated with the coil-state. (iii)
Accordingly, a specific approach dedicated to the short
loops yielded better, more accurate predictions, better bal-
anced between the different PBs (Q14 = 42.3%), with no
particular bias.

PB j is the only PB for which results really suffer with this
approach. It is the least frequent PB and the most variable.
Consequently, the poor prediction rate for it may be
explained by the lack of information in the databank for
it. We also have noted important over-fitting (more than
20% between the learning set and the validation set) for
this PB, substantially higher than for the other blocks.

One advantage of such an approach is that it enables us to
compute the most significant series of PBs and from this
information propose alternative 3D candidate structures.
Figure 5 shows an example of short loop prediction with
the PB probabilities associated with a given sequence win-
dow and the corresponding possible 3D structures.

Conclusions

Loop prediction, despite the considerable work devoted
to it and the numerous methods developed, remains a dif-
ficult research topic [14,32,33]. Prediction methods are
often used in comparative modeling and propose one "com-
plete" loop [14,33]. Here, instead of describing entire
loops, we predict locally each position of the loops. This
Bayesian approach can be used to propose not just one,
but many different loops. Because each PB at each posi-
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Figure 5

Example of prediction: scoring PB combinations. This figure presents the prediction of positions 34 to 43 of cupredoxin
amicyanin (Protein DataBank code [41]: IBXA) with short loops prediction. The true 3D representation is given in (a) with the
corresponding amino acid and PB sequences. The prediction gives a probability for every PB at each position. The score (and
associated probability) at each position are reported in (b). Only scores more than | (superior to random) are indicated. The
most probable series of PBs is therefore eojac. The comparison between ehiac from cupredoxin amicyanin and eojac taken from
positions 53 to 62 of cyclophilin A (PDB code: |AWU) gives a root mean square deviation (rmsd) equal to 2.2 A. From (b) we
can compute other high scoring PB series. Two of them are given: ehiac from monoclonal 2E8 FAB antibody (PDB code: |2ES,
positions 10—-19) and ehjac from Apo intestinal fatty acid-binding protein (PDB code: 1A57, positions 65-74) with associated
rmsd of 0.3 A and 2.5 A respectively. We used MOLMOL [45] for the image visualizations.
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tion is associated with a corresponding probability score,
correlated in turn with the prediction accuracy [19,23], a
loop prediction approach could be extremely useful. It
can help to probe and sample the flexibility of loops. It
can be useful too in ab initio loop prediction [34,35],
recently shown to be important for some docking meth-
ods for protein-protein [36] and protein-DNA interaction
[37].

Methods

Data sets

The main set of proteins (PAPIA), based on the PAPIA/
PDB-REPRDB database [40], comprises 717 protein
chains and 180,854 residues [41]. It has been used in pre-
vious work [23] and is available at http://www.ebgm.jus
sieu.fr/~debrevern. The set contains no more than 30%
pairwise sequence identity. The selected chains have X-ray
crystallographic resolutions less than 2.0 A and an R-fac-
tor less than 0.2. Each structure selected has a rmsd value
larger than 10 A from all representative chains. Each chain
was carefully examined with geometric criteria to avoid
bias from zones with missing density. An updated
databank has been built with the same criteria; it is com-
posed of 1,403 proteins and 320,005 residues.

Protein Blocks

They correspond to a set of 16 local prototypes, labeled
from a to p (cf. Figure 1), 5 residues in length and based
on ®, ¥ dihedral angle description [19]. They were
obtained by an unsupervised classifier similar to Kohonen
Maps [38] and Hidden Markov Models [39]. The PBs m
and d can be roughly described as prototypes for central a-
helices and central B-strands, respectively. PBs a through ¢
primarily represent f-strand N-caps and PBs e and f, C-
caps; PBs g through j are specific to coils, PBs k and I to a-
helix N-caps, and PBs n through p to C-caps. This struc-
tural alphabet allows a reasonable approximation of local
protein 3D structures [19,23] with a root mean square
deviation (rmsd) now evaluated at 0.42 A.

Short loop description

We defined the short loops as PB series 2 to 6 PBs long.
These series must be composed of non-repetitive PBs, i.e.,
all PBs except d and m. They must have flanking regions
composed of series of PBs mm and/or dd.

Secondary structure assignments

Secondary structures were assigned with five distinct pro-
grams: DSSP [3] (CMBI version 2000), DEFINE [5]
(version 2.0), PCURVE [6] (version 3.1), STRIDE [4] and
PSEA [7] (version 2.0). DSSP and STRIDE use more than
three states, so we reduced them: the a-helix contains 'H',
'G'and 'T, the B-strand contains 'E' and the coil everything
else. Default parameters were used for each.

http://www.biomedcentral.com/1471-2105/5/58

Agreement rate

To compare two distinct secondary structure assignment
methods, we used an agreement rate denoted C; and
defined as the proportion of residues associated with the
same state (a-helix, B-strand and coil).

Z-score
The amino acid occurrences for each PB were normalized
into a Z-score:

with nfgs the number of times amino acid i was observed

in position j for a given PB and nf]h the number expected.

The product of observations in position j and its fre-

quency in the entire databank equals nfh] Positive Z-

scores (respectively negative) correspond to amino acids
that are overrepresented (respectively underrepresented);
threshold values of 4.42 and 1.96 were chosen (probabil-
ity less than 10->and 5.10-2 respectively).

Asymmetric Kullback-Leibler measure

The Kullback-Leibler measure or relative entropy [27],
denoted by KLd, makes it possible to compute the contrast
between two amino acid distributions, i.e., that observed
in a given position j and the reference distribution in the
protein set (DB). The relative entropy KLd(j|PB,) in the
site j for the block PBx is expressed as:

=20 Dp(aa. :i|PBx) O
. - =1 D]—D
KLd(j| PBy) IZI P(aa; =i|PB, )'lngp(aaj =i{DB)

where P(aa; = i|PB,) is the probability of observing the
amino acid i in position j (j = -w, ...,0, ..., +w) of the
sequence window, given protein block PBx, and, P(aq; =
i|DB) the probability of observing the same amino acid in
the databank (named DB).

Thus, it enables us to detect the "informative" positions in
terms of amino acids for a given protein block [19].

Prediction

In a strategy of structure prediction from sequence
[19,23], we must compute for a given sequence window
S,={aa,, ..., aa,, ..., aa,,}, the probability of observing a
given protein block PBx, i.e., P(PBx | S,,). For this pur-
pose, each PB is associated with an occurrence matrix of
dimension [ x 20 centered upon the PB, with =2 w +1 (in
the study, w = 7). Using the Bayes theorem to compute
this a posteriori probability P(PBx | S,,) from the a priori
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probability P(S,, | PBx) deduced from the occurrence
matrix allows us to define the odds score R,:

_jztw P(aa; = i|PB, )

R:=

= P(aa]- = i|DB)

The highest score R, corresponds to the most probable PB
[19,23]. The Q,, value computed is the total number of
true predicted PBs over the total number of predicted PBs.
We also computed a Q,, value, specific for loops, i.e., the
PB m and d are not taken into account in the accuracy rate
computation.
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