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Abstract  

Background 

Longitudinal studies with binary repeated outcomes are now widespread in 

epidemiology. The statistical analysis of these studies presents difficulties and 

standard methods are inadequate. 

Methods 

We consider strategies for modelling binary repeated responses and focus on two 

specific issues: the choice between marginal and random-effects models, and the 

choice of the time point origin. These issues are addressed using the example of self-

reported disability in older women assessed annually for 6 years. The indicator of 

disability "needing help to go outdoors or home-confined" is used. 

Results 

In view of the observed associations between the responses for consecutive years, the 

baseline response was considered as a covariate. We compared the marginal and 

random-effects models first when only the influence of time and age is analysed and 

second when individual risk factors are studied in an aetiological perspective. There 

were substantial differences between the parameter estimates. They were due to 

differences between specific concepts related to the two models and the large 

between-individual heterogeneity revealed by the analysis. 
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Conclusion 

A random-effects model appears to be most suitable for the analysis of self-reported 

disability in older women. 
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Background  

In developed countries, disability in older persons is a major concern for public health 

authorities. Progress in medical care together with improved living conditions have 

led to longer life spans. One adverse consequence is that the number of very old 

people who are disabled is also increasing. The study of the succession of the 

different stages of disability, and of the ability to recover, together with the analysis of 

the risk factors for disability, are important issues for research in gerontology.  

Longitudinal studies are more appropriate than cross-sectional studies which suffer 

various limitations due to biases such as the selective removal of disabled persons by 

institutionalisation, or differences in the proportions of disabled persons between age 

groups, also confounded with changes across generations [1]. Several authors [2] have 

analysed repeated measures of disability by comparing two by two time points. This 

method involves a very large number of tests and leads to partial results for fixed 

periods. The statistical analysis must take four main characteristics of  the 

longitudinal data into account: 1) time may be an explanatory variable, 2) repeated 

observations for a subject are likely to be correlated, 3) the covariables may be time-

dependent (they may vary through time for a subject), 4) missing data in the 

successive responses may induce a bias. Several statistical models developed for 

longitudinal data have become more popular and there is software available for some 

of them. The problem of the choice of which to use remains. 

Here, we present a strategy to model binary repeated responses and to explain how to 

choose between marginal and random-effects models. The evolution of disability in 

older persons is used as an example to illustrate each step. 
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Methods 

Example 

The French EPIDOS study is a prospective multicentre study of the risk factors for 

hip fractures in 7575 women aged 75 years or older, included in 1992-1993 and 

recruited by mailing based on large population-based listings including electoral rolls 

[3]. Once in the study, these women were contacted by mail or telephone every four 

months to collect information about any falls and new fracture events. They had to 

complete a mail questionnaire annually investigating hospitalisation, new health 

events, changes in weight, type of housing, ability to go outside, activities of daily life 

(ADL), instrumental activities of daily life (IADL), medications used, and subjective 

health. This follow-up was initially planned for 4 years and then was extended to 6 

years. In this paper we analyse the data from Montpellier (southern France), one of 

the 5 participating centres. We used the data from all the subjects included at this 

centre (1548 women) to analyse the evolution of disability. 

The annual questionnaire was in some cases missing. This was mainly due to illness 

or to family events such as the death of the spouse. The women then postponed their 

answer. 

Various indicators have been proposed to assess disability [4]. Needing help for going 

outdoors represents a first evident level of functional limitation. It is easy to identify 

and concerns both men and women. Therefore we chose "needing help to go outdoors 

or home-confined" as an indicator of disability. The annual response variable is 

binary. 
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( )( ) ( )( )logit E | =logit P =1| = 'ij ijY Yij ij ijX X X β

( )( )logit P =1| =ijY ij ij iX X 'β

Marginal and random-effects Models  

In longitudinal studies, multiple assessments of the same subject at different time 

points are used and the within subject responses are then correlated. This correlation 

must be accounted for by analysis methods appropriate to the data [5]. Several models 

have been proposed for the analysis of such data. Most of them are extensions of the 

well-known logistic regression that is a particular case of the generalized linear 

models with a logistic link function [6]. They are usually classified into marginal or 

random-effects models. Random-effects models are also called generalized linear 

mixed models or multilevel models or conditional models. However, this last term is 

ambiguous as several authors use it only for conditional maximum likelihood 

estimation [5] that we do not consider in this paper. Unlike linear models, the 

interpretation of the coefficients of these two types of model differs (see below). The 

choice of one or the other depends on the objectives of the study. 

Let Yij denote a binary outcome (in our example: needing help to go outdoors or home 

confined) corresponding to the jth response (jth year in the study in our example, j=1 

to ni) of the ith subject (i=1 to K). Let also Xij be a design matrix of covariates (1 x p 

vector, with first element being 1 for the intercept). The covariates may be fixed (for 

example age at baseline), or take different values at each year of the study (for 

example time or hospitalised for the last year). The marginal model, also called the 

population-averaged model [7], estimates the model thus: 

 

whereas the random-effects model, also called the "subject-specified models" [7], 

estimates the model as follows: 
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( ) ( )logit E( | , )ijY = =' * ' * '
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( )logit E( | , , )ijY ′ ′= *
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Thus, the marginal model supposes that the relationship between the outcome Y and 

the covariate X is the same for all the subjects, and the random-effects model allows 

this relationship to differ between subjects. To highlight this point, the random-effects 

model may also be written:  

 

 or:  

 

where the random effects Ui are assumed to vary independently from one subject to 

another according to a common distribution. This distribution is often supposed to be 

normal with mean 0 and variance D. Zij is often a subvector of Xij, which means that 

random effects apply only to a part of the covariates and the intercept. The variance, 

D, has to be estimated and represents the extent of the unexplained between-

individual variability. 

It is important to note that the p x 1 vectors β in the marginal model and β* in the 

random effects model are not equal. Hence, the estimators estimate different 

things [8] and the magnitude of the difference between β and β* is function of the 

variance, D [9].  

Moreover, dependencies between observations over the time are handled differently 

in the two models.  In the marginal model, it is popular to fit the vector of parameters, 

β, using the Generalized Estimating Equations (GEE) proposed by Liang and Zeger 

[10] wherein the covariance matrix is structured by using a working correlation matrix 

R(α) fully specified by the vector of parameters,α . This working correlation is 

assumed to be the same for all the subjects, reflecting an average dependence among 

the repeated observations for all subjects. In contrast, the random-effects model 

allows this within-subjects dependency to vary from one subject to another, by the 
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( ) 0logit E( | , )ij iY U′= *
ij i ijX U X β +

( ) 0 1logit E( | , )ij i iY U U time′= +*
ij i ijX U X β +

means of the random part of the covariable linear combination. In the simplest case, 

only a random intercept is introduced  

 

Ui0 being an individual parameter of propensity to become disabled, constant through 

the time. For a given subject, whatever the interval of time between two responses, 

the strength of dependency is then the same. If a random slope for the time covariable 

is added  

  this individual strength of association increases or decreases with the width of the 

interval. 

In the marginal model, several specific choices of the structure of the working 

correlation matrix R(α) are possible. For example, R(α)  is called m-dependent if 

corr(Yij,Yik)=αt for t = 1, 2, …, m and corr(Yij,Yik)=0  for t > m; R(α)  is exchangeable 

if corr(Yij,Yik)=α  for j ≠ k, and it is unstructured if corr(Yij,Yik)=αik. An advantage of 

the marginal model, demonstrated by Liang and Zeger, is that β and their robust 

variance are consistent (the estimator converges towards the parameter being 

estimated as the sample size increases) even when the correlation structure is 

misspecified. However, choosing the working correlation structure closest to the true 

structure increases the statistical efficiency of the parameter estimator. Consequently, 

it is recommended to specify the working correlation as accurately as possible, based 

on the knowledge of the longitudinal process [11]. 

Concerning the estimating procedures, the GEE method for marginal models is not 

difficult to implement and is now available in the major statistical analysis packages. 

The procedures are more complex for the random-effects model. The most attractive 

of them directly maximizes an approximate integrated likelihood. With non-linear 
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models computational-intensive integration methods, such as Gauss-Hermite 

quadrature,  are necessary to evaluate the likelihood [12].  

Different assumptions are required for the two models regarding missing data. The 

marginal model using the GEE requires a missing data process completely at random 

(MCAR). Under this assumption, missingness does not depend on individual 

characteristics (observed or not). In contrast, random models only need the less 

stringent assumption of missing at random (MAR). In this process, the probability of 

missingness depends only on observed variables (previous covariates or outcomes) 

[13]. All marginal models do not require the MCAR assumption. For example, Robins 

et all [14] proposed methods to allow for data that are MAR in marginal models, but 

these methods are more complicated to implement. 

The interpretation of the coefficients β and β* also differs. Consider, for instance, the 

covariate X "living alone". The odds ratio OR*=exp(β*) represents the odds of the 

outcome (needing help to go outdoors or home confined) for a person living alone 

compared to the same person supposed not to live alone. It can be seen as an odds 

ratio adjusted on unobserved individual characteristics. Under the marginal model, 

OR=exp(β) represents the averaged odds of the sub-group living alone compared to 

the sub-group not living alone. 

 

In the following sections we will first describe the data and then focus on the specific 

problems inherent to longitudinal analyses: how to choose the time point origin and 

how to take into account the influence of time on responses. Then, we will present an 

example of an estimation of risk factors including covariates fixed across time for a 

single subject, and time-dependent covariates.   
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Results  

Description of the data 

The mean (SD) age at inclusion was 80 years (3.7) and only 10 percent of the 

included women were aged 90 years or over. The proportion of women reporting 

disability (Table 1) increased only moderately with time except for the first year 

during which it jumped from 29 percent to 39 percent. The sequence of the seven 

successive states of disability (path) differs between the women. Only 268 women (17 

percent) were able to go outside without help from the beginning to the end of the 

study, 77 (5 percent) were disabled throughout the 6 years. The frequencies of each of 

the other paths are very small: 1 or 2 percent. During the 6 years, recovery from 

disability was observed at least once in 498 women (32 percent). This relatively high 

proportion of women recovering from a disabled state is why we chose to perform a 

repeated measures analysis and not to use statistical methods analysing time before 

entering disability, such as Cox regression.  

The study was initially planned to last 4 years, some women refused to continue in 

years 5 and 6, and the number of those returning the completed questionnaire 

decreased most quickly between years 4 and 5 (Table1). Some women gave 

intermittent answers. For example, of the 970 women still providing a response in 

year 6, at least one observation in the previous years was missing for 150 (15 

percent). The missingness partly depended on unobserved individual events (illness or 

family events) and is unlikely to be MCAR. The use of the marginal model is 

therefore questionable because an averaged effect is only poorly meaningful.  

The true time between yearly assessments and inclusion varied from one woman to 

another and the range tended to be higher at the end of the follow-up. Consequently, 
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time is considered  as a continuous covariable. Vital status was known throughout the 

6 years for all the participants, even those who no longer sent back the questionnaires. 

The total number of deaths was 294 (19 percent) by the end of the study.  

 

Choice of the time point origin 

The response 0iY  given by the ith subject at baseline may be handled in two ways. It 

can be considered either as a part of the longitudinal response, and thus the response 

vector has 7 elements corresponding to the times 0, 1, …, 6 years, or as a baseline 

covariate, in which case the response vector has 6 elements. These two possibilities 

correspond to different structures for the raw data and are displayed in Tables 2 and 3.  

In the models studied (marginal or random-effects model), the association between 

two successive responses is supposed to have the same structure through the whole 

survey. If the association between baseline disability and the other responses differs 

from the association between the follow up responses, then it is better to consider the 

baseline response as a covariable.  

 In our example, as in many cohort studies, the baseline examination was exhaustive. 

The women were proposed clinical and functional examinations (series of standard 

tests of physical performance) and a bone densitometry at the hospital. However, only 

those who felt well enough to undergo these tests were examined, probably 

introducing a selection bias at inclusion. During the follow-up, the women were only 

asked to complete a mailed questionnaire that even physically dependent persons 

could answer. The profile of our sample changed through time, with the women 

becoming more and more physically dependent. At the beginning, many of the 

disabled women were probably only slightly disabled and thus there was the 
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possibility of recovery.  As time passed more women were severely disabled,  and 

stayed so until the end of the study. Thus, the association between the responses for 

consecutive years is likely to be stronger in the last years. Also, the baseline response 

may be considered as a special case, less related to the following disabled states. 

To check this, we examined the table of the odds ratios of being disabled for the year j 

(Yij) according to disability the previous years (Yi(j-t)). The association between two 

successive time points beyond baseline was stronger than that with the baseline 

response (Table 4). For instance, in the lower diagonal giving the association between 

two observations separated by one year, the odds ratio between year 1 and the 

baseline is 5.3 whereas it is greater than 16 between year 2 and 1, and between the 

following pairs of years. In view of these results, the baseline response was 

considered as a covariate and the data were structured as shown in Table 3.  

There was also a tendency for correlations to decrease with increasing time 

differences (Table 4). For example, the odds ratio is 16.3 between year 1 and year 2 

and 10.0 between year 1 and year 5.  This observation allows a better selection of the 

correlation structure, avoiding the use of an exchangeable working correlation matrix 

in marginal models, and introducing a random slope in random effect models.  

 

Analysis of time and age evolution 

The objective here is to evaluate the impact of time on the proportion of disabled 

women. We chose to use the age at entry (fixed covariable) and the time since 

baseline to characterize this phenomenon. Another solution would be to use the age at 

every response (as a time varying covariable) but our option allows the introduction 
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of an interaction between the age at entry and the time since baseline to test whether 

the effect of time is more pronounced in the oldest women. 

In view of the missingness process resulting in the sample differing at every 

assessment, and the possible selection bias at entry, the search for individual 

relationships using the random-effects model is more suitable than using population 

averaged associations. However the two models are interesting to compare to show 

that the estimate parameters can be different, and to explain these differences. 

We used two methods to characterize the changes in disability over time: the marginal 

model with the GEE approach and the random model with likelihood integration. The 

random model had Gaussian random effects and errors. We used the SAS procedures 

GENMOD with the REPEATED statement and an unstructured working correlation 

matrix and also NLMIXED with the Gauss-Hermite quadrature integration method 

[12]. For the SAS code refer to Appendix (see Additional file 1). In the random 

model, we determined the structure of the covariance introducing successively two 

random effects: random intercept and random slope for the time covariate.  

In all the models, the following fixed effects were then tested: time since baseline 

(continuous variable), time square, age at entry (in years exceeding 74), interactions 

age x time and baseline inability to go outside without help. Only the time square 

effect was not significant, and was removed from the model. We also introduced an 

indicator variable for women dying within the 6-year period. This is a simple way to 

take into account dropouts due to death, a difficulty often encountered in longitudinal 

studies in the elderly. The use of this time-fixed indicator was possible since 

information about death was known for the six years for all the women. The 

NLMIXED procedure converged and provided estimations only when the initial 

parameters were close to the final solution. We calculated successive models, 
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beginning with a simple model with only a random intercept, and at each step we used 

the previous estimate parameters as initialisation for the next estimation. 

The results of the comparison between the 2 modelling strategies are shown in Table 

5. The general conclusion is the same for the 2 models but the estimated parameters 

are different. For instance, the most important factor, baseline inability, is very 

significant in both, but  parameter estimates differ from 1.54 to 3.18. The significant 

increase in risk of being disabled with age and time since baseline is illustrated in 

figure 1, presenting the averaged probability of disability, 5 years after the inclusion, 

in women able to go outside without help at baseline and who did not die during the 

study. In our cohort, recruited in 1992-1993, the probability of restricted mobility, 5 

years later, was high, especially after the age of 80 years. Figure 2 shows the changes 

with time in two groups aged 75 and 85 years at entry. There was a significant 

interaction between age at entry and time, and consequently the risk of disability is 

accelerated in the oldest women. 

Differences between the estimators of the marginal and random-effects parameters are 

expected (see above). The marginal model expresses averaged relationships without 

taking into account the fact that the same subjects are considered at each time point, 

whereas the random-effects model gives relationships conditionally on having certain 

individual characteristics modelled by the random effects. In the case of only a 

random intercept, Nehaus et al [9] demonstrated that the estimates from the marginal 

model are systematically lower than those from the random model. This characteristic 

is shown in figures 1 and 2, where the curves from the marginal model are flatter than 

the others. The differences between the estimates of the two approaches are largely 

dependent on the inter-individual heterogeneity. This heterogeneity can be assessed in 

the random models by looking at the intercept and slope variances.  
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( )7.25×1.96×2

In the random model, the random intercept variance is high. The estimate is 7.25, 

indicating that the variability of this individual additional intercept has a 95 percent 

width of 10.6  . If we consider the variability given by the fixed 

covariates (age varying from 75 to 85 years, baseline disability and death each 

varying from 0 to 1) the width is 6.14 (0.16x10+3.18+1.36). Hence the variability 

explained by these three fixed variables is lower than the unexplained between-

individual variability. Similarly, the random slope variability has a 95 percent width 

of 1.66, whereas the variability explained by the age has a 95 percent width of 0.40 

(0.04x10). 

The probability of being disabled is therefore much more due to the woman’s 

uncharacterised "frailty" than to age or to baseline disability. This wide between-

individual heterogeneity explains the differences between the parameter estimates of 

the marginal and random-effects models. 

 

Analysis of risk factors 

Changes with time expressed as age at entry and the time since baseline were 

modelled in the previous section. The marginal and random-effects models can also 

be used to identify other risk factors for disability. It would also be interesting to test 

how the estimating algorithms behave when numerous covariables are jointly 

introduced. 

We compared two multivariate models adjusted on the covariates presented in the 

previous section (age, time, interactions between age and time, baseline disability, 

still alive at the 6-year period) (see table 6). When numerous covariables are put in the 

model, the NLMIXED procedure may fail to integrate the likelihood or give non-
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stationary estimations. This non-optimal estimation can be diagnosed by checking the 

gradient (vector of first derivative) of the negative log likelihood function for each 

parameter. These gradients are systematically provided by SAS in the results. If one 

of them is not close to zero, then the solution cannot be considered to be valid. These 

problems of convergence were not encountered with the set of covariables shown in 

table 6. Two categories of covariables were tested: variables collected at baseline 

(living at home alone, body mass index (BMI), visual acuity measured with Snellen 

letter test chart on a decimal scale, and perceived health) and variables that vary with 

time (hospitalised at least once during last year, temporarily bed-confined during last 

year and number of falls during last year). Adjusted on all the others, all these factors 

were significant. 

 

Discussion  

We present the steps for choosing a model able to characterize disability taken as a 

binary response.  

Several important points have to be considered in the analysis of repeated binary data. 

First, the choice between the marginal and random-effects models depends mainly on 

the aims of the study. If the goal is to predict a mean prevalence of disability over 

time in elderly people by sex or age group, the marginal model is suitable. In contrast, 

if the goal is to study the individual risk factors for aetiological considerations, the 

random-effects model is more suitable because it allows adjustment on non-observed 

individual characteristics, and a better understanding of the underlying mechanism.  
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Second, the missing data process has to be examined. The marginal model using GEE 

assumes that the sample is representative of the whole population at each time point 

and the missing data is MCAR. This is unlikely to be the case in our example. The 

random-effects model assuming an MAR process is more appropriate. By the end of 

the study, half of the 37% of missing data were due to deaths and most were 

predictable from the previously collected data. The same probably applies to missing 

data due to chronic illnesses. Nevertheless, we cannot exclude the possibility that 

unobserved level of disability in our example may influence a part of the missing 

process. The magnitude of the potential bias introduced by non-random missingness 

should therefore be examined. A sensitivity analysis to assess the impact of missing 

data on subsequent statistical inference would be worthwhile [15], but is beyond the 

scope of this paper.  

Another important point is to determine whether the disability indicator at baseline 

should be considered as a response or as a covariate. In epidemiological cohorts, the 

conditions in which responses are collected at baseline and during the follow-up are 

often different. The first response is often considered as a covariate but this choice has 

to be confirmed in view of the analysis of dependency between the responses. 

The structure of the covariance between the repeated responses has also to be chosen. 

In the marginal model, the inferences on the parameter estimates are asymptotically 

valid under any assumed structure but it is better to choose a structure corresponding 

to the data. In contrast, in the random model, the fixed and random parameters are 

simultaneously estimated and the choice of the covariance structure influences the 

final results. For the mixed model applied to gaussian responses, it is recommended 

[16] (i) to consider first the more general model with all the relevant covariables, (ii) 

to specify a model for the covariance structure (i.e. to specify the random effects), and 
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to estimate the parameters, and (iii) to try to reduce the fixed effect portion. In 

practice, the estimating procedures that we used do not allow introduction of a 

complex covariance structure due to computational time and unstable estimations. 

Other more flexible methods allowing multiple levels of clustering, such as Markov 

chain Monte Carlo methods, can be used but are more complex to handle [17]. 

The calculation procedures for random models need to be improved. The method of 

estimation with likelihood integration requires excessive computation. An alternative 

strategy to fit mixed models is the penalized quasi-likelihood (PQL) approach [18, 19]  

(GLIMMIX macro in SAS) but this method provides highly biased estimates of 

mixed-effects parameters with binary responses [20, 21]. 

The analysis of disability evolution with age at entry and time, as well as the study of 

other risk factors, show that the differences between the estimates for the two models 

can be large. However, the interpretation of the estimate parameters is different. In the 

marginal model, the exponential of an estimate parameter is a population-averaged 

odds ratio for disability and concerns the sub-population that shares a characteristic 

relative to the sub-population not sharing this characteristic. In the random model, the 

exponential of an estimate is an odds ratio for a woman that has a characteristic 

relative to this same woman if she were free of this characteristic. The random model 

takes into account the underlying dependence relationship. Furthermore, the 

assumptions about the distributions are different, and the fact that the conditional 

distribution is binomial does not imply that the marginal distribution is also binomial 

[22]. 

In our example, the search for risk factors for disability prevention, and the 

characteristics of our sample, such as the missingness process and the number of 

drop-outs after 4 years, render the random-effects models more appropriate. The 
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marginal model has a tendency to waste information and does not measure the 

association of within-subject covariate change with change in the response, the 

associations typically of particular scientific value in longitudinal studies. 

Conclusions  

In epidemiology, many rich databases are now available from longitudinal studies 

with binary repeated events. Traditional analyses comparing time points two by two 

have serious limitations. Marginal models are easy to implement and represent a first 

solution, but the random models, although more complex, use all available data and 

are more suitable for explicative studies. 
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Figures 

Figure 1: Age at baseline and probability of disability at 5 years in women without 

disability at entry and surviving to the end of the study,  

GEE marginal model               , random model  
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Figure 2: Changes through time evolution of the probability of disability in women 

without disability at entry and surviving to the end of the study, aged 75 and 85 years 

at entry,  

GEE marginal model               , random model  
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Tables 

Table 1  - Description of the data by year of assessment 

 Inclusion 
 

Year 1 
 

Year 2 
 

Year 3 
 

Year 4 
 

Year 5 
 

Year 6 
 

Total number of women with 

disability assessment  

 

1548 

 

1503 

 

1450 

 

1409 

 

1294 

 

1020 

 

970 

Percent of disabled women 29% 39% 41% 46% 47% 48% 52% 

Time since inclusion (yrs) 

Median 

Range  

  

0.99 
0.91, 1.67

 

1.98 
1.95, 2.44 

 

2.97 
2.93, 3.37 

 

3.95 
3.87, 4.53 

 

4.96 
4.87, 6.35 

 

6.12 
5.88, 6.94 

Number of deaths for the 

preceding year 

 23 34 40 63 58 76 
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Table 2  - Structure of the raw data when the baseline response is taken as a part of 

the response 

yi0 ti0 ………..xi0l………. ………..zi0l……….. 
yi1 ti1 ………..xi0l………. ………..zi1l……….. 
yi2 ti2 ………..xi0l………. ………..zi2l……….. 
yi3 ti3 ………..xi0l………. ………..zi3l……….. 
yi4 ti4 ………..xi0l………. ………..zi4l……….. 
yi5 ti5 ………..xi0l………. ………..zi5l……….. 
yi6 ti6 ………..xi0l……….. ………..zi6l……….. 

 
Response Time Covariates  

l=1, … p 
Time dependent covariates   

l=1, ….q 
 
 

Table 3  - Structure of the raw data when the baseline response is taken as a baseline 

covariate 

yi1 ti1 yi0 ……..xi0l……. ……..zi0l…….. ……..zi1l…….. 
yi2 ti2 yi0 ……..xi0l……. ……..zi0l…….. ……..zi2l…….. 
yi3 ti3 yi0 ……..xi0l……. ……..zi0l…….. ……..zi3l…….. 
yi4 ti4 yi0 ……..xi0l……. ……..zi0l…….. ……..zi4l…….. 
yi5 ti5 yi0 ……..xi0l……. ……..zi0l…….. ……..zi5l…….. 
yi6 ti6 yi0 ……..xi0l…….. ……..zi0l…….. ……..zi6l…….. 
 

Response Time Response 
at t0 

Covariates  
l=1, … p 

Baseline values of the time 
dependent covariates   

l=1, ….q 

Time dependent covariates   
l=1, ….q 
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Table 4 - Odds ratios of being disabled at each year according to disability at the 

previous years 

 Inclusion 
 

Year 1 
 

Year 2 
 

Year 3 
 

Year 4 
 

Year 5 
 

Year 6 
 

inclusion  5.3 5.1 5.7 4.1 4.3 4.8 

Year 1   16.3 12.2 11.1 10.0 9.5 

Year 2    18.2 14.3 13.1 11.4 

Year 3     16.7 17.3 13.1 

Year 4      20.2 15.8 

Year 5       20.7 
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Table 5  - Marginal model and random-effects models analysing the influence of time 

and age 

 Marginal model 

GEE  

Random model 

likelihood integration 

 Estimate SE p value Estimate SE p value 

Intercept -1.83 0.12 < 0.0001 -3.61 0.25 < 0.0001 

Time (years) 0.12 0.03 < 0.0001 0.17 0.06 0.002 

Age at baseline* 0.09 0.02 < 0.0001 0.16 0.03 < 0.0001 

Age* x time 0.01 0.004 0.003 0.04 0.009 < 0.0001 

Baseline disability 1.54 0.10 < 0.0001 3.18 0.22 < 0.0001 

Death during the study 0.68 0.12 < 0.0001 1.36 0.26 < 0.0001 

Random intercept variance - - - 7.25 0.68 < 0.0001 

Random slope variance - - - 0.18 0.04 < 0.0001 
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Table 6  - Marginal model and random-effects models analysing time-fixed and time 

varying covariates 

 Marginal model* 

GEE  

Random model* 

likelihood integration 

 Estimate SE p value Estimate SE p value 

Baseline       

Living alone  -0.31 0.09 0.0004 -0.66 0.18 0.0002 

BMI (kg/m2)       

< 25 (ref) 0   0   

25 – 29  0.30 0.10 0.002 0.69 0.20 0.0005 

≥ 29 0.75 0.12 < 0.0001 1.46 0.23 < 0.0001 

Visual acuity        

≤ 2/10 0.64 0.20 0.001 1.21 0.35 0.0006 

> 2/10 (ref) 0   0   

Perceived health       

Bad or very bad 0.76 0.15 < 0.0001 1.43 0.28 < 0.0001 

Follow-up       

Hospitalised  (past year) 0.26 0.05 < 0.0001 0.49 0.11 < 0.0001 

Temporarily bed 

confined (past year) 

0.39 0.07 < 0.0001 0.73 0.15 < 0.0001 

Number of falls ≥ 2 

(past year) 

0.23 0.08 0.004 0.49 0.15 0.0013 

*adjusted on time since inclusion, age at inclusion, age x time, baseline disability and death 
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APPENDIX 
 
SAS code : 
 
proc GENMOD data=example descending ; 
class num   ; 
model disab = time age agetime died disab0 / dist = bin 
                                             link = logit ; 
repeated subject=num / type=un corrw ; 
run ; 
 
 
proc nlmixed data=example qmax=100  ; 
parms beta0=-3.6 beta1=0.2 beta2=0.2 beta3=0.02 beta4=1.4 beta5=2.9 
s2u=8 s2v=0.2 ; 
eta = beta0 + beta1*time + beta2*age + beta3*agetime + beta4*died + 
beta5*disab0 + u + v*time ; 
expeta = exp(eta); 
p = expeta/(1+expeta); 
model disab ~ binary(p); 
random u v~ normal([0,0],[s2u,0,s2v]) subject=num; 
run; 
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