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Abstract

Background: The aim of the study was to assess the attentional requirements of steady state

treadmill walking in human subjects using a dual task paradigm. The extent of decrement of a

secondary (cognitive) RT task provides a measure of the attentional resources required to maintain

performance of the primary (locomotor) task. Varying the level of difficulty of the reaction time

(RT) task is used to verify the priority of allocation of attentional resources.

Methods: 11 healthy adult subjects were required to walk while simultaneously performing a RT

task. Participants were instructed to bite a pressure transducer placed in the mouth as quickly as

possible in response to an unpredictable electrical stimulation applied on the back of the neck. Each

subject was tested under five different experimental conditions: simple RT task alone and while

walking, recognition RT task alone and while walking, walking alone. A foot switch system

composed of a pressure sensitive sensor was placed under the heel and forefoot of each foot to

determine the gait cycle duration.

Results: Gait cycle duration was unchanged (p > 0.05) by the addition of the RT task. Regardless

of the level of difficulty of the RT task, the RTs were longer during treadmill walking than in sitting

conditions (p < 0.01) indicating that an increased amount of resources are required for the

maintainance of walking performance on a treadmill at a steady state. No interaction (p > 0.05) was

found between the attentional demand of the walking task and the decrement of performance

found in the RT task under varying levels of difficulty. This finding suggests that the healthy subjects

prioritized the control of walking at the expense of cognitive performance.

Conclusion: We conclude that treadmill walking in young adults is not a purely automatic task.

The methodology and outcome measures used in this study provide an assessment of the

attentional resources required by walking on the treadmill at a steady state.

Background
A technique extensively used to study the neural processes
involved in the control of walking in animals or in
humans is walking on a treadmill [1]. This technique has

also been proposed during the past decade as a training
approach [2,3] to promote the recovery of locomotor
function after a lesion of the central nervous system. It has
been clearly demonstrated that non primate adult animals
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are able to "walk" and even adjust their gait patterns on a
treadmill after transection of the spinal cord, for review
see [4,5]. In this case, walking is not under any supraspi-
nal control and is therefore completely automatic. The
neural system responsible for this automatism in animals
is thought to be located at spinal level and is referred to as
the central pattern generator (CPG). This generator, which
is activated by peripheral afferents (muscles, articulations
and cutaneous), is thought to be stimulated through
treadmill training [1]. This notion that the treadmill may
stimulate automatic walking is, since the work of Barbeau
et al [6], the underling rationale for its use in rehabilita-
tion. However, in the intact animal, there is nothing to
suggest that supraspinal control is not present. In contrast
to the abundance of data gained from invertebrates, rats
and cats, which has lead to the general assumption of a
CPG underlying the central control of locomotion, there
is relatively little known about spinal networks acting like
CPGs in humans [7,8]. Contrary to the chronic adult spi-
nalized cat, patients with a complete spinal cord injury
(SCI) are unable to achieve a level of unassisted stepping.
Most likely, cortical influences are stronger in human
bipeds than mammalian quadrupeds [9]. This could
mean that supraspinal processes are more predominant in
humans than in cats [1,5,10]. Therefore, this raises the
question regarding human locomotion on a treadmill: In
healthy adults, is walking on a treadmill at a steady state
an 'automatic' motor task or is it under voluntary control?

A common method used to quantify the automaticity of
motor skills is the dual-task paradigm [11]. Dual task per-
formance involves the execution of a primary task, which
is the major focus of attention, and a secondary task per-
formed at the same time [12]. If the two tasks can be per-
formed as well simultaneously as separately, then at least
one task seems to be automatic. On the other hand, if one
task (e.g. walking) is performed less well when it is com-
bined with the other task (e.g. talking), then both tasks
must be non-automatic [13]. Performance decrement in
the secondary task as a result of the simultaneous per-
formance of a primary task is termed a dual-task interfer-
ence effect. Hence, the extent of the decrement in the
secondary task when performed with the primary task
compared to when performed alone provides a measure
of the attentional demands (cognitive regulation) of the
primary task [14-16]. The interdependence between cog-
nition and locomotor control is complex and depends on
numerous factors, for a review see [17,18]. These factors
include: the difficulty of the motor task [19], the type of
cognitive task used [17], the age of the individual [11,19]
and the resource allocation to a task in order to maintain
performance at a certain level [20,21]. For example, Li and
colleagues [20] investigated the link between sensorimo-
tor (walking over the ground) and cognitive (memoriz-
ing) performance in younger and older adults when task

difficulty was manipulated. They demonstrated that
although older adults showed significant effects of
divided attention in the cognitive domain, the attentional
cost for walking was comparable for the two age groups.
This finding is related to the issue of task priority [21,22],
in that walking and maintaining balance control are pri-
oritized at the expense of cognitive performance. Only a
few studies [12,23] have investigated the degree of inter-
ference between steady state walking on a treadmill and a
cognitive task. The amount of attention required to walk
on a treadmill has not been previously examined and is
the topic of this investigation.

To quantify the attentional resources allocated to walking
on the treadmill at a steady state, we used a dual-task par-
adigm in which the secondary task was a reaction time
(RT) task performed at two levels of difficulty. One meas-
ure proposed among the cognitive tasks used to evaluate
the attentional cost of a locomotor task, is reaction time
[24-26]. While the attention resources model is always
invoked in the interpretation of a dual task interference
[15,17], some studies [27,28] show that modifications of
a postural task can be provoked by respiration (structural
interference) and not caused by competing demands for
limited attentional resources (capacity interference). For
this reason, we chose an unusual RT task for which the
response modality was biting on a pressure sensor. This
modality has no respiratory involvement (ex. vocal
response) or motor action of the upper limb (ex. push
button) for which we could suppose that there are shared
execution pathways with locomotion [5,29].

The aim of the present study was to determine the amount
of resources allocated to the control of steady state tread-
mill walking in healthy adult subjects. By varying the RT
task difficulty, we wanted to make sure that attentional
resources were allocated, in priority, to the control of the
walking task.

Methods
Subjects

The subjects in this study were eleven healthy adults
(mean age: 25.3 years, range: 22–37) with no known neu-
rological, orthopaedic or cognitive impairments. All the
subjects were graduate students who were familiar with
treadmill walking. Informed consent was obtained from
each subject prior to their participation in the study. All
procedures were performed with the approval of the local
ethics committee and complied with the standards
defined in the Declaration of Helsinki (2000).

Tasks

Each subject was asked to walk steadily on a treadmill
without holding on to the handrail and while looking
straight ahead at a wall that was approximately 3 meters
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away. Self-adopted walking speed over the floor (meas-
ured with a stopwatch on a 10 m walkway) was used as
the basis for calculation of preferred treadmill speed for
each subject. The treadmill speed was maintained con-
stant during the trial. A foot switch system composed of a
pressure sensitive sensor (Interlink model FSR 151) was
placed under the heel and forefoot of each foot to deter-
mine the gait cycle duration. The gait cycle was defined as
initial heel contact of one foot to the next initial contact
of that same foot. All signals were digitalized at 1000 Hz,
transmitted to a PC.

The secondary RT task consisted of biting a pressure trans-
ducer (Interlink model FSR 151) placed in the mouth in
response to an unpredictable electrical stimulation (single
stimulus, duration: 10 ms) applied by an electrode on the
back of the neck. This modality was chosen so that the
response pathways would be as independent as possible
from the motor pathways of locomotion. The perception
threshold of the stimulation was determined for each sub-
ject and before each experimental condition. The stimulus
intensity was then doubled to ensure that it was clearly
perceived and remained constant during the trial. Stimuli
were manually triggered by an examiner at a frequency
ranging from 2,000 to 5,000 ms.

Two levels of difficulty of the RT task were used. The simple

RT task consisted of responding to a single stimulus as rap-
idly as possible. The complex RT task consisted of a recog-
nition RT. Stimuli of different strength (weak, strong)
were individually determined for each subject. Subjects
were instructed to bite the pressure transducer placed in
the mouth as rapidly as possible only when a weak stim-
ulus was presented. If subjects did not adhere to these
instructions, the response was considered to be an error.
The number of errors for each condition was noted for
each subject.

Procedure

We assessed the attentional requirements for the control
of steady state treadmill walking according to the princi-
ples of the dual task paradigm [30]. According to this par-
adigm, subjects perform a secondary cognitively
demanding task while engaged in a primary task. When
attention is focused on the primary task, the amount of
attentional resources allocated to that task increases in
order to maintain or increase performance. Such an
increase in allocation of attention leads to depletion of
the resources devoted to the other, non priority task [14].
Therefore, disruption in the performance of the secondary
task is regarded as a probe to evaluate the attentional
resources needed to preserve or improve performance of
the primary motor task [14,19]. In our study, the second-
ary task was the RT task and the primary task was to walk
at steady state on the treadmill.

Each subject was tested under five different experimental
conditions: simple RT task alone and while walking, rec-
ognition RT task alone and while walking, walking alone.
Single-task refers to control conditions where either RT
task or walking is assessed alone and dual-task, to experi-
mental conditions where RT task and walking are per-
formed simultaneously. In single task cognitive
conditions, subjects performed the RT tasks while seated,
as a baseline measurement for the performance of the sec-
ondary task. To ensure that subjects did not neglect walk-
ing performance at the expense of the RT task
performance, participants were also submitted to a con-
trol condition in which they were simply asked to walk on
the treadmill without performing any additional task. All
conditions were presented in random order across sub-
jects.

At the onset of each session, subjects practiced walking on
the treadmill at a comfortable speed for 10 minutes. 20 RT
stimuli were delivered systematically at the start of each
trial to enable the subjects to familiarise themselves with
the conditions of the RT task. Visual verification of the sta-
bility of the RT was carried out before beginning record-
ing.

Statistical analysis

The RT was defined by the interval between the electrical
stimulus and the start of the response (biting the pressure
sensor). For each condition, all reaction times longer than
100 ms were accepted. 30 accepted RTs were necessary to
constitute a trial.

To determine whether the walking task performance was
affected by the addition of the RT task, the gait cycle dura-
tion was compared between the "control" (without the RT
tasks) and the experimental (with the RT tasks) walking
conditions using a one-way analysis of variance (ANOVA)
with repeated measures.

To determine the effects of task conditions (sitting vs
walking on the treadmill), difficulty of the RT task (simple
vs complex) on the RT task performance and associated
interaction, a two-way analysis of variance with repeated
measures was used.

The within-subjects variability was neutralized by a block-
ing design technique [31] for all the statistical analysis.
The normality assumption was checked by examining the
residuals. The limit of significance was defined at 0.05

Results
Effect of the cognitive task on treadmill walking 

performance

The duration of the gait cycle for each subject in the three
conditions: walking, walking with simple RT, walking
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with complex RT are reported in table 1. No differences
were observed for the gait cycle duration between the
three walking conditions (F(2, 16) = 0.90; p > 0.05). This
result indicates that the walking task performances were
not modified under the dual task conditions compared
with the single task condition and confirmed our opera-
tional assumption that the treadmill walking task
remained the primary task throughout the experiment.

The attentional demands on steady state treadmill walking

RT data were examined under the 2 experimental condi-
tions (sitting vs walking on the treadmill) x 2 levels of dif-
ficulty of the RT (simple vs complex) repeated measures
ANOVA. Results showed main effects of experimental
conditions (F(1, 30) = 7.36, p < 0.01) and levels of diffi-
culty of the RT (F(1, 30) = 352.87, p < 0.001) but there
was no significant interaction between the main factors
(F(1, 30) = 0.52, p = 0.48).

The mean (±SD) RTs measured during sitting and walking
on the treadmill were 225 ± 36 ms and 259 ± 45 ms under
simple condition; 419 ± 63 ms and 439 ± 52 ms under
complex condition. The performance in the RT task
decreased under the complex condition confirming that
the difficulty in the RT task was explicitly manipulated.
The RTs were significantly longer when walking on the
treadmill than when sitting, suggesting that some addi-
tional attentionnal resources were allocated to the tread-
mill walking task.

The absence of an interaction between the experimental
conditions and difficulty of the RT task indicates that the
significant difference in RT between the walking and sit-
ting conditions was similar for the simple and the com-
plex RT task conditions (Fig 1).

Discussion
The aim of this study was to determine, using a dual task
paradigm, whether the control of treadmill walking in
healthy subjects requires attentional resources. Results of
the present experiment clearly show longer RTs during the
walking condition than during the sitting conditions
regardless of the level of difficulty of the RT task.

Possible causes of dual-task interference

The increase of the RTs observed during the walking task
may be explained by the theory of attention related to a
capacity model where resources are shared [21,30,32,33].
In the resource framework, dual task interference could be
attributed to either structural or capacity limitations [34].
Interference between structures can occur when two tasks
share the same perceptual or executive pathways.

The experimental design we used was chosen deliberately

to ensure that the response pathways for each task were as
independent as possible [30]. We believe that is improba-
ble that the two tasks shared the same response pathways
for two reasons. First, we found no changes in gait param-
eters between the simple and the dual task conditions
[27,28]. Secondly, the finding that the greatest dual task
interference occurred with the complex RT task condition
rather implies that the two tasks compete for the same
limited resources [21,35]. If the interference was related to
structure, performances of the RT task would be similar
while walking for the simple and complex RT task condi-
tions [34]. Furthermore, in a previous study using the
same design [36], we reported specific changes in RT task
performance which were related to the phase of the gait
cycle. Young adults demonstrated longer RTs during the
double limb support phases than during the single limb
support phases when walking at a steady state on the

Table 1: Individual characteristics of the gait cycle step duration in 9 healthy subjects in different walking conditions on the treadmill. 2 

subjects were omitted for technical reasons

Subject Number Treadmill speed (Km/h) WTdM alone WTdM with simple RTs WTdM with complex RTs

1 3,6 1167 ms 1154 ms 1183 ms

2 4,3 1192 ms 1209 ms 1213 ms

3 3,8 1244 ms 1235 ms 1226 ms

4 4,3 1062 ms 1077 ms 1067 ms

5 5 1114 ms 1100 ms 1115 ms

6 3,4 1254 ms 1236 ms 1216 ms

7 4,1 1324 ms 1296 ms 1287 ms

8 3,3 1186 ms 1193 ms 1245 ms

9 3,1 1233 ms 1235 ms 1296 ms

mean - 1197,33 ms 1192,78 ms 1205,33 ms

SD - 78,30 70,60 74,88

CV - 6,54 5,92 6,20

Abbreviations: SD = standard deviation, CV = coefficient of variation, WTdM = walking on the treadmill.
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treadmill. It seems highly unlikely that structural limita-
tion would occur at certain instants and not others.

An alternative explanation for the findings we present,
however, is that the observed changes in RT are unrelated
to the information processing demands associated with
the control of walking on the treadmill, and that, instead,
decreased RT task performance exemplifies the general
attenuation of afferent signals associated with Pieron's
law. Evidence in many studies suggests that our ability to
detect signals from sensory stimulation is reduced during
movement [37-39]. Pieron's law dictates that RT decreases
in a hyperbolic fashion with increased stimulus intensity,
regardless of the difficulty of the RT task [40,41]. Follow-
ing this law, the weaker the stimulus, the longer the reac-
tion time. Consequently, if the movement induced a
general attenuation of the perception of the stimulus
intensity, then the elevated RTs may not be indicative of
changes in the attentional demands associated with gait,
but instead, may reflect a reduction in perception of the
strength of the stimulation.

In the current study, stimulus intensity was reset before
each condition; at levels twice that of the level of initial
perception in order that the subjects could clearly perceive
it 100% of the time. It remained constant in each condi-
tion and moreover, was always higher during the walking
condition than in the sitting condition. We therefore
believe that the interference did not occur at the stimulus
perception stage.

Thus, following the principles of the dual task paradigm
[30], we interpreted the observed changes in RT to reflect

the attentional demands associated with walking on a
treadmill.

The cognitive load of walking on a treadmill

Our young adult subjects demonstrated longer RTs during
walking than during the sitting condition; performing the
RT task did not affect their gait patterns. These findings
confirm those of Abernethy et al [12], demonstrating that
steady state treadmill walking requires some attentional
resources and suggests that locomotor control is not com-
pletely automatised.

It is interesting that increasing the difficulty of the RT task
had no impact on performance of the walking task.
According to resource theories [21], performance decre-
ment observed in the RT task in which difficulty is explic-
itly manipulated is considered to demonstrate resource
allocation [14,18,20,22,42,43] in order to meet the pri-
mary task demand. This pattern suggests that subjects pri-
oritize walking performance at the expense of any
secondary information processing task and provides an
independent index of the attentional resources required
by walking on the treadmill at a steady state.

Limitations

The longer RT in the dual task condition might be specific
to the subjects' ability to walk on a motor driven tread-
mill. It is possible that treadmill walking requires atten-
tional resources because of the necessity of dynamic
balance control linked to the use of the treadmill, as has
been recently suggested by Grabiner and Troy [44].

However, the voluntary control demonstrated in steady
state treadmill walking could also be a reflection of volun-
tary control required in walking on the ground. As
claimed by Nielsen [10], the supra spinal structures which
contribute to voluntary modifications of the gait pattern
are also implicated in the control of human walking. This
claim warrants further investigation by comparison of
walking on a treadmill and on the ground under a cogni-
tive load.

In summary, treadmill walking in young adults requires
attentional resources and is not a purely automatic task.
Gait parameters were not modified by the addition of a RT
task or according to the level of difficulty of the RT task
indicating that the subjects prioritized the control of walk-
ing at the expense of cognitive performance. The method-
ology and outcome measures used in this study provide
an assessment of the attentional resources required for
steady state treadmill walking.
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Mean reaction times and standard error (SE) as a function of difficulty for sitting (white circle) and stabilised walking on the treadmill (black circle) in eleven healthy subjectsFigure 1
Mean reaction times and standard error (SE) as a function of 
difficulty for sitting (white circle) and stabilised walking on 
the treadmill (black circle) in eleven healthy subjects.
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