
HAL Id: inserm-00091291
https://inserm.hal.science/inserm-00091291

Submitted on 5 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Assessment of Plasmodium falciparum resistance to
ferroquine (SSR97193) in field isolates and in W2 strain

under pressure.
Wassim Daher, Christophe Biot, Thierry Fandeur, Helene Jouin, Lydie
Pelinski, Eric Viscogliosi, Laurent Fraisse, Bruno Pradines, Jacques S.

Brocard, Jamal Khalife, et al.

To cite this version:
Wassim Daher, Christophe Biot, Thierry Fandeur, Helene Jouin, Lydie Pelinski, et al.. Assessment of
Plasmodium falciparum resistance to ferroquine (SSR97193) in field isolates and in W2 strain under
pressure.. Malaria Journal, 2006, 5, pp.11. �10.1186/1475-2875-5-11�. �inserm-00091291�

https://inserm.hal.science/inserm-00091291
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


BioMed Central

Page 1 of 8

(page number not for citation purposes)

Malaria Journal

Open AccessResearch

Assessment of Plasmodium falciparum resistance to ferroquine 
(SSR97193) in field isolates and in W2 strain under pressure
Wassim Daher1, Christophe Biot2, Thierry Fandeur3, Helene Jouin1,4, 
Lydie Pelinski2, Eric Viscogliosi1, Laurent Fraisse5, Bruno Pradines6, 
Jacques Brocard2, Jamal Khalife1 and Daniel Dive*1

Address: 1Inserm U547, Institut Pasteur, 1 rue du Pr Calmette, B.P. 245, 59019 Lille, France, 2Unité de Catalyse et Chimie du Solide – UMR CNRS 
8181 Synthèse Organométallique et Catalyse, Ecole Nationale Supérieure de Chimie de Lille, 59652 Villeneuve d'Ascq cedex, France, 3UMR 
Université-INRA d'Immunologie Parasitaire, Faculté des Sciences Pharmaceutiques, 31, avenue Monge, Parc Grandmont, 37200 Tours, France, 
4Immunologie Moléculaire des Parasites, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France, 5Sanofi-Aventis Recherche, Discovery 
Department, 31000 Toulouse Cedex, France and 6Institut de Médecine Tropicale du Service de Santé des Armées, Unité de Parasitologie, Bd Charles 
Livon, Parc le Pharo, BP 46, 13998 Marseille Armées, France

Email: Wassim Daher - wassim.daher@pasteur-lille.fr; Christophe Biot - christophe.biot@ensc-lille.fr; Thierry Fandeur - thierry.fandeur@univ-
tours.fr; Helene Jouin - sprobert@numericable.fr; Lydie Pelinski - Lydie.Pelinski@ensc-lille.fr; Eric Viscogliosi - Eric.Viscogliosi@pasteur-lille.fr; 
Laurent Fraisse - Laurent.Fraisse@sanofi-aventis.com; Bruno Pradines - bruno.pradines@free.fr; Jacques Brocard - jacques.brocard@univ-
lille1.fr; Jamal Khalife - Jamal.Khalife@pasteur-lille.fr; Daniel Dive* - daniel.dive@pasteur-lille.fr

* Corresponding author    

Abstract

Background: Ferroquine (FQ), or SSR97193, is a novel antimalarial drug currently in phase I clinical trials. FQ is

a unique organometallic compound designed to overcome the chloroquine (CQ) resistance problem. FQ revealed

to be equally active on CQ-sensitive and CQ-resistant Plasmodium falciparum laboratory strains and field isolates.

FQ is also curative on rodent malaria parasites. As FQ will be tested in patients, the potential for resistance to

this drug was evaluated.

Methods: The relationship between CQ-resistant transporter gene genotype and susceptibility to FQ were

studied in 33 Cambodian P. falciparum field isolates previously studied for their in vitro response to CQ. In parallel,

the ability of the CQ-resistant strain W2, to become resistant to FQ under drug pressure was assessed.

Results: The IC50 values for FQ in field isolates were found to be unrelated to mutations occurring in the P.

falciparum chloroquine resistance transporter (PfCRT) or to the level of expression of the corresponding mRNA.

In vitro, under a drug pressure of 100 nM of FQ, transient survival was observed in only one of two experiments.

Conclusion: Field isolates studies and experimental drug pressure experiments showed that FQ overcomes CQ

resistance, which reinforces the potential of this compound as a new antimalarial drug.

Background
Drug resistance, particularly to CQ is an important limit
to the control of P. falciparum, mainly in sub-Saharan
Africa and South-east Asia. CQ is believed to act by con-
centrating in the parasite digestive vacuole and inhibiting

the mechanism of detoxification of ferriprotoporphyrin
IX that is produced during the digestion of haemoglobin,
leading to parasite death. This detoxification takes place
in the food vacuole and partly in the cytosol [1,2]. It was
shown that CQ-resistant parasites expelled much more
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rapidly the CQ from RBC than CQ-sensitive parasites, and
many observations indicated that a P. falciparum trans-
membrane protein (PfCRT) was involved in this efflux [3-
7]. Mutations of PfCRT have been described in all CQ-
resistant P. falciparum isolates. Moreover, the reduction of
PfCRT expression in vitro by genetic manipulation in P.
falciparum resulted in an increase in CQ susceptibility [8].
The genetic profile of CQ resistance in malaria parasites
showed a particular mutation in PfCRT (K76T) that has
been associated with CQ resistance in genetically modi-
fied P. falciparum strains and in field isolates [4-6].

Due to the ability of Plasmodium to develop resistance to
antimalarial agents, an extensive search for new com-
pounds has been initiated. An atypical strategy based on
the incorporation of a metallocenic moiety into the CQ
skeleton (Figure 1) has led to the identification of FQ
(SSR97193), a new drug candidate exhibiting a powerful
anti-malarial activity. Indeed, FQ was more potent than
CQ in the inhibition of growth of P. falciparum in vitro and
on P. berghei in vivo [9-11]. Recent studies, evaluating the
in vitro susceptibility of African field isolates to FQ
revealed that FQ IC50 ranged from 1 to 62 nM (8 to 1007
nM for CQ) in Franceville and Bakoumba (south-east
Gabon) [14], between 0.43 to 30.9 nM in 103 isolates
where 95% were resistant to CQin Libreville (Gabon)
[15], and from 0.55 to 28.2 nM in 55 isolates where 55%
of isolates were CQ-resistant in Senegal [13]. In these
studies, a correlation was found between responses to FQ
and CQ.

Incidently, a previous study performed on Cambodian
isolates with different levels of in vitro resistance to CQ
failed to reveal an association between the K76T mutation
in PfCRT protein and susceptibility to FQ, although a cor-
relation was observed between in vitro responses to both
drugs [17]. Sequencing full length pfcrt cDNA of 42 iso-
lates showed that other mutations than those already
described can occur in the PfCRT protein. Six different
PfCRT haplotypes were identified but the relation
between these PfCRT haplotypes and susceptibility to FQ
of isolates was not examined [18].

Ferroquine is currently in Phase 1 trials and its activity on
P. falciparum uncomplicated malaria is planned to be eval-
uated in patients. For this reason, it was of interest to
investigate whether a potential resistance to this drug may
occur. For this purpose, a compilation was made of 155
results obtained from Cambodian isolates tested for their
susceptibilities to CQ and FQ. Among them, pfcrt gene
sequence and mRNA level expression were available for
33 isolates showing a large variation in FQ IC50. This led
us, on one hand, to search a possible correlation between
all mutations occurring in PfCRT protein and FQ suscep-
tibility. On the another hand, we investigated wether the
expression level of this gene may affect response to FQ. In
parallel, the W2 strain, known to present a high capacity
to acquire drug resistance, was submitted to FQ pressure
at a sub-lethal dose [19-21].

Methods
Reagents

Chloroquine diphosphate was purchased from Sigma.
Ferroquine (SSR97193) base was obtained from Sanofi
Aventis (France) and RPMI 1640 culture medium was pur-
chased from Invitrogen. Human erythrocytes and plasma
were obtained through the EFS (Etablissement Français du
Sang, France).

Parasites

The 3D7, HB3 and Dd2 strains of P. falciparum used as a
control for sensitivity to CQ and FQ were cultured as pre-
viously described [22]. For drug pressure experiments, a
subclone of P. falciparum clone W2 was provided by Dr. B.
Pradines (URBEP, Marseille, France). Parasites were
grown in vitro in O+ human red blood cells in RPMI 1640
medium (Invitrogen) supplemented with 10% AB human
serum (EFS), and 0.01 mg/ml gentamicin under an
atmosphere 90% nitrogen/5% oxygen/5% carbon diox-
ide.

Field isolates

Complete data concerning CQ IC50, FQ IC50 and PfCRT
protein sequences and pfcrt mRNA expression level were
available for 33 of 155 patients previously recruited for in
vivo trials of mefloquine-artesunate, by the Cambodian
Ministry of Health. For these 33 patients a study concern-
ing the relation between PfCRT mutations, expression of
pfcrt mRNA and CQ resistance had already been per-
formed [17,18].

Antimalarial activity measurements

A microplate assay measuring [3H] hypoxanthine incor-
poration in parasite nucleic acids and derived from the
method of Desjardins was used to test FQ antimalarial
properties on laboratory strains [23]. P. falciparum labora-
tory strains, were selected on the basis of their susceptibil-
ity to CQ (3D7 and HB3 were sensitive, Dd2 was

Structure of chloroquine and ferroquineFigure 1
Structure of chloroquine and ferroquine.
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moderately resistant and W2 was resistant). Culture con-
ditions and test procedures were as previously described
(0.5% haematocrit; 0.5% parasitaemia) [11,12]. Ranges
of drug concentrations used were 3.9–500 nM for CQ and
1.95–250 nM for FQ. IC50 were calculated from response
curves by linear interpolation.

Nucleic acid extraction from W2 clone and PfCRT 

polymorphism

W2 clone RNA was extracted from freshly infected eryth-
rocytes with an Rneasy extraction kit (Quiagen). The pfcrt
gene was amplified by reverse transcription (RT)-PCR and
then sequenced, as previously described [24].

Phylogenetic analysis of the PfCRT protein

In order to obtain a more accurate phylogeny of the PfCRT
protein, a Bayesian phylogenetic analysis of PfCRT
sequences was performed. For 3D7, Dd2 and HB3 clones,
sequences were obtained from databanks (GenBank
accession numbers: 3D7: CAD50842; Dd2: AAF26926;
HB3: AAF60275). PfCRT sequences from field isolates
were reported previously [18]. In total, 37 full-length
PfCRT amino acid sequences were aligned using the
BioEdit v7.0.1 package [25]. Alignment was facilitated by
the fact that i) PfCRT protein sequences were extremely
conserved (96–98% identity) and ii) none of these
sequences exhibited any gaps or insertions, yielding 427
sites for analysis. The alignment used in this study is avail-
able upon request to the corresponding author. Phyloge-
netic analysis of this protein data set was carried out using
software "MrBAYES", version 3_0b4 [26]. Bayesian analy-
sis was performed using the Jones-Taylor-Thornton (JTT)
amino acid replacement model [27]. Starting trees were
random, four simultaneous Markov chains were run for
100,000 generations, burn-in values were set at 15,000
generations (based on empirical values of stabilizing like-
hoods), and trees were sampled every 100 generations.
Bayesian posterior probabilities were calculated using a
Markov chain Monte Carlo (MCMC) sampling approach
implemented in MrBAYES 3_0b4 [28].

Exposure of parasites to FQ pressure

Among the 33 field isolates tested for FQ susceptibility
(see table 2 and [18]), two showed an IC50 higher than
100 nM (numbers 719 and 742) and one at 80 nM
(number 747). Consequently, a concentration of 100 nM
was selected for FQ pressure experiments, corresponding
to the in vitro threshold adopted for resistance in field iso-
lates studies [13,15,16]. The protocol, previously pro-
posed by Cooper to obtain the CQ resistant P. falciparum
strain 106/1, was used [21]. Before FQ pressure, parasites
were grown to 5% parasitaemia at about 3% haematocrit
in 60 ml of media. This parent culture was then split
equally into 10 flasks in the first experiment and into 15
flasks in the second experiment, with fresh medium and
red blood cells to bring the volume in each flask to 35 ml
and about 3% haematocrit. Medium was replaced daily
(or twice daily when parasitaemia was more than 5%).
When parasitaemia had returned to about 7% to 15%, the
culture medium was replaced by fresh medium contain-
ing 100 nM FQ (FQ medium). For the first week after drug
application, cultures were monitored by Giemsa-stained
thin blood films. Medium changes were performed daily
under the same drug pressure conditions. After one week
of FQ pressure, 50% of red blood cells were replaced, and
fresh FQ medium was added. Then, FQ medium was
replaced every three days and 50% of red cells were
replaced every six days by fresh cells, for the duration of
experiment (two months).

In the first experiment, 0.86 × 1010 parasites were exposed
to 100 nM of FQ. A rapid decrease in the parasite popula-
tion was observed and Giemsa smears were negative after
four days. No parasites were detected throughout the two
months of monitoring. In the second experiment, the
number of parasites cultivated was about 4 fold higher
than in the first experiment (2.76 × 1010 parasites).

Estimation of parasite populations by flow cytometry

To count the low parasite populations detected on Giemsa
stained smears, an intraerythrocytic parasite double stain-
ing method using hydroethidine (HE) and thiazole
orange (TO) was used as previously described [29]. Flow

Table 1: Susceptibilities of four P. falciparum strains to CQ and FQ. IC50 and IC90 are given ± the standard deviation. The number of 

experiments is in brackets

IC50 (nM) IC90 (nM)

Strain HB3 CQ 21.83 ± 4.5 (10) 45.74 ± 13.9 (10)

FQ 20.17 ± 6.0 (10) 28.61 ± 7.3 (10)

Strain Dd2 CQ 61.81 ± 28.7 (4) 166.75 ± 45.2 (4)

FQ 18.88 ± 4.3 (4) 28.40 ± 7.9 (4)

Strain 3D7 CQ 12.6 ± 5.9 (33) 35.9 ± 16 (30)

FQ 7.5 ± 3.3 (36) 13.1 ± 7.6 (36)

Strain W2 CQ 148.8 ± 60.3 (34) > 500 (34)

FQ 13.2 ± 4.1 (38) 29 ± 11.5 (35)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAD50842
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAF26926
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAF60275


Malaria Journal 2006, 5:11 http://www.malariajournal.com/content/5/1/11

Page 4 of 8

(page number not for citation purposes)

cytometric data acquisition and analysis were done on a
FacsCalibur (Becton-Dickinson, San Jose, CA, USA). List
mode data from 50,000 cells for control cultures and 106

cells for treated cultures were stored and processed with
the CellQuest software.

Results
Responses to ferroquine of laboratory strains and field 

isolates and relation with PfCRT polymorphism or pfcrt 

gene expression

Four laboratory strains of P. falciparum (for which PfCRT
sequences was known) were tested for their susceptibility
to CQ and FQ. As expected (Table 1), CQ IC50 measure-
ments showed that HB3 and 3D7 were CQ-sensitive, that
Dd2 was moderately resistant to CQ, while W2 was the
most CQ-resistant. In addition, all strains presented lower
IC50 to FQ (7.5 nM to 20.17 nM) than to CQ except for
HB3 which responded equally to the two drugs.

Concerning the complete set of 155 isolates tested in
Cambodia for FQ susceptibility, five isolates (3.22%) had
an IC50 > 70 nM and two (1.3%) had an IC50 > 100 nM.
Comparison of IC50 of field isolates showed a significant
correlation (r2 = 0.3016) between CQ and FQ responses.
Among this 155 isolates, data concerning pfcrt gene
sequence and gene expression measurements done by
Real Time PCR were available for 33 of them. In the subset
selected for the present study, 51% of isolates were CQ
sensitive (see legend of Table 2 of the present report and
[18] for further details). The IC50 geometric mean (GM)
observed were respectively 103.4 nM (range: 11.4 to 674
nM) for CQ and 31.5 nM (range: 7.50 to 120.2 nM) for
FQ. Moreover, the five isolates displaying a FQ IC50 higher
than 70 nM, and previously found in the total 155 isolates
were present in this subset. This explains the higher corre-
lation (r2 = 0.58) between CQ and FQ responses observed
for these 33 isolates. It was previously shown that there
was no correlation between the K76T mutation and sus-
ceptibility to FQ in a group of Cambodian isolates [17].
On another hand, a relationship was demonstrated
between the level of resistance to CQ and peculiar PfCRT

haplotypes [18]. In order to examine whether all muta-
tions occurred on PfCRT protein could be responsible of
higher FQ IC50, A Bayesian phylogenic analysis was per-
formed on available data [18]. The reconstructed phylo-
genic tree (data not shown) identified five groups
numbered 1 to 5, each highly supported by a Bayesian
posterior probability of 100%. Mutations in the PfCRT
protein corresponding to these five groups are shown in
Table 2 (group 1 represents the CQ sensitive laboratory
strains or isolates and other groups the CQ resistant one).
In this table, data concerning CQ and FQ IC50 are reported
(calculation of geometric means for FQ IC50 were carried
out for groups 1, 3 and 5). A large overlap observed
between IC50 values, including the group 1, suggesting
that none of PfCRT haplotypes analyzed could account for
the variation in FQ sensitivity in the population studied.
To study the possible role of PfCRT expression on FQ sus-
ceptibility, the relation between FQ IC50 and expression
levels of pfcrt gene in field isolates using real time PCR
(data not shown) was studied. The correlation observed
(r2 = 0.0011) was not significant indicating that the
expression level of pfcrt mRNA was not correlated with the
FQ IC50. These results are in line with those related to pre-
vious studies concerning expression level of pfcrt mRNA
and CQ response [18].

Experimental in vitro FQ pressure on W2 strain

Some IC50 values indicated a decreased response to FQ in
rare field isolates ([17] and the present study). Conse-
quently, induction of resistance in a P. falciparum labora-
tory strain under continuous 100 nM FQ pressure was
tried using the experimental approach already used to
obtain the CQ resistant clone 106/1 [21]. Previous studies
had shown that P. falciparum clones exhibited wide varia-
tions in ability to acquire resistance to drugs [19]. The W2
strain acquired resistance to some drugs with 10 to 100
fold higher frequency than other clones [19]. In previous
studies on African isolates [13,15,16], a resistance thresh-
old of 100 nM was adopted for FQ. Among the 33 field
isolates subset used in this study, some of them displayed
FQ IC50 close or higher than 100 nM. This concentration

Table 2: Amino acid variations observed in PfCRT protein in 33 Cambodian isolates and laboratory strains within the phylogenic 

groups determined by Bayesian analysis. Composition of groups are as follows (laboratory clones and field isolates identified in [18]: 

group 1: 608, 792, 3D7, HB3; group 2: 738; group 3: 602, 613, 634, 702, 734, 736, 770; group 4: 722, 742; group 5: Dd2, W2, 536, 572, 631, 

637, 643, 647, 654, 665, 666, 671, 683, 685, 691, 693, 716, 717, 719, 739, 747, 749, 794.

Residue numbers

groups 74 75 76 144 148 194 220 271 326 333 356 371 N IC50 CQ (nM) IC50 FQ (nM)

Group 1 M N K A L I A Q N T I R 4 19.88 (11.4–33.7) 26.59 (7.5–57.6)

Group 2 I D T A I T S E N S I R 1 156.8 37.3

Group 3 I D T F I T S E N S I R 7 95.51 (33.2–169.2) 26.34 (15.7–37)

Group 4 I E T A L I S E N T I I 2 (91.8, 466.7) (38.1, 120.2)

Group 5 I E T A L I S E S T T I 22 149.17 (58.1–674) 39.13 (7.5–115)



Malaria Journal 2006, 5:11 http://www.malariajournal.com/content/5/1/11

Page 5 of 8

(page number not for citation purposes)

was then selected for the pressure experiment. FQ pressure
was initiated in two different experiments using the W2
strain. No parasites were observed throughout the two
months of the first experiment, starting from 0.86 × 1010

parasites. During the second experiment, starting from
2.76 × 1010 parasites, parasites were undetectable based
on Giemsa smears observations at day five due to the very
low survival rate, but the follow up of cultures under 100
nM of FQ showed very few parasites on Giemsa smears at
day 36. These parasites were viable because they converted
hydroethidine into ethidium, which enabled a monitor-
ing of their evolution in subcultures in the presence or
absence of FQ, using double staining flow cytometry (Fig-
ure 2) [29]. In fact, this very low number of surviving par-
asites were unable to grow efficiently either in the
presence or in the bsence of FQ and disappeared five
weeks after the initiation of subcultures (Figure 3).

Discussion
Ferroquine (SSR97193), currently in Phase I, is soon to be
tested in patients with uncomplicated P. falciparum
malaria. Therefore, investigations into potential resistance
to this drug candidate are necessary. Among all studies
already devoted to the effects of FQ on field isolates,
apparent lower responses to this drug were observed
mainly in areas of multidrug resistance [17]. The present
study shows that the frequency of these decreased
responses concerns about 3.22% of 155 Cambodian iso-
lates if resistance threshold is fixed at 70 nM and about
1.3% if it is fixed at 100 nM. In the present study on P. fal-
ciparum field isolates or laboratory strains, it was possible
to distinguish five polymorphic groups in PfCRT protein
by a Bayesian phylogenic analysis. The examination of CQ
and FQ IC50 in these five groups (Table 2) indicates that

none of the different genotypes is directly associated with
a decreased sensitivity to FQ. On the other hand, the level
of expression of pfcrt mRNA is not correlated with the var-
iations in FQ IC50. Insertion of the ferrocene moiety in the
CQ lateral side chain results in modifications in the vol-
ume and shape of the molecule, as well as in its lipophilic-
ity (logP = 5.1 versus 4.6 for CQ), its weak base properties
and its electronic profile [10,11]. It is possible that these
changes confer a low affinity of FQ (in comparison with
CQ) for PfCRT which appears to be extremely structure-
specific [30,31]. As a consequence, CQ resistant strains
should be no more likely than others to develop FQ resist-
ance. The drug pressure experiments done on W2 dis-
proved this hypothesis. It has been impossible to recover
a clone able to develop even in the absence of FQ in the
culture medium. It seems that for surviving parasites, the
cost of resistance to FQ may be too high in term of fitness
[32-34]. In experimental conditions used, the frequency
of parasites able to transiently survive to a sub-lethal dose
of FQ is about 1 out of 1010. By comparison, experimental
CQ pressure on the P. falciparum strain 106/1, which
lacked only one mutation (K76T) on Pfcrt gene to acquire
CQ resistance, led to a frequency of resistant parasites of
about 10-9 [21]. This mutation, which is due to a transver-
sion of A to C and targeting the second base of the codon,
is considered to be rare. Another study on the DHFR gene
showed that the mutation rate of the gene at a given posi-
tion occurred at less than 2.5 × 10-9 mutation/DHFR gene/
replication [35]. It was proposed that the resistance to CQ
occurred four times in total over the whole history of this
drug [36]. Because more than one mutation has been nec-
essary to provide a viable resistant genotype, it can be
expected that a hypothetical resistance to FQ would
develop at a low frequency.

Detection of parasites by flow cytometry analysisFigure 2
Detection of parasites by flow cytometry analysis. Parasites were double stained with hydroethidine and thiazole orange 
as described previously [28]. Fluorescence was expressed in Fluorescence Arbitrary Units (FAU) defined by the equipment. A: 
red blood cell profile. B: Untreated control culture. Red blood cells containing double stained (viable) parasites were visualized 
in R1. C: Parasites were cultivated without FQ pressure for 8 days. R1 represents the region where the parasite population is 
detected. Cells outside R1 (left) were unparasitized red blood cells. 38 parasites were counted in a total red blood cell popula-
tion of 106. D: Parasites were cultivated without FQ pressure for 36 days. Only 2 parasitized RBC were counted in R1 out of 
106 red blood cells.
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Another known candidate for mediating potential resist-
ance to FQ might be the P-glycoprotein homolog 1
(Pgh1) protein encoded by the pfmdr1 gene. All studies
pointed to an absence of correlation between FQ and
mefloquine responses in field isolates from Cambodia
[17], Senegal [16] or Gabon [15]. However, the question
of pfmdr gene polymorphism or its copy number in iso-
lates should be addressed to definitely rule out the possi-
bility of a link between this marker and the response to FQ
[37].

Analysis of the PlasmoDB database showed that other
transporters were present in the parasite and might be
involved in potential resistance to antimalarials [38-40].
It cannot be excluded that a resistance to FQ could

develop in the future from a transporter encoded by one
of these genes.

Recently, it has been suggested that the rapid develop-
ment of drug resistance in the W2 strain could also be
related to a defective DNA repair in this parasite [41].
Using this strain and despite this ability, it was not possi-
ble to select a viable FQ-resistant line. This may be due to
the number of mutations which may be necessary to pro-
mote the binding and the transport of FQ by a putative
transporter.

Conclusion
The present results show that FQ susceptibility of 33 Cam-
bodian P. falciparum field isolates was not related neither
to phenotype of PfCRT protein nor to the level of gene
expression. This indicates that CQ-resistant parasites as
well as susceptible may be succumbing to FQ and con-
firms previous results observed on laboratory strains and
field isolates. Pressure experiments done on W2 strain
showed that the frequency of occurrence of FQ resistance
is low in the experimental conditions used and that the
cost of FQ resistance for the parasite is probably very
expensive in term of fitness. This may be a limiting factor
for spreading of potential FQ resistant parasites. In previ-
ous studies, it was shown that FQ security index, based on
its cytotoxicity on L5178Y lymphoma cells, remained
close to 700 whatever the CQ resistance level of P. falci-
parum used, when CQ security index falled from >1850 to
>400 according to the CQ resistance of the strains [11].
FQ, given subcutaneaously or orally cured equally mice
infected by CQ-sensitive or CQ-resistant P. vinckei vinckei
strains at a dose of 8.4 mg·kg-1·day-1 for four days with
no adverse effects observed [11]. On the basis of these
promising results, together with its capacity to kill P. falci-
parum in vitro and to protect against rodent malaria, FQ is
likely to provide a valuable new treatment to bypass the
CQ resistance of P. falciparum.
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