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Abstract

Background: Cluster randomization design is increasingly used for the evaluation of health-care,

screeening or educational interventions. At the planning stage, sample size calculations usually

consider an average cluster size without taking into account any potential imbalance in cluster size.

However, there may exist high discrepancies in cluster sizes.

Methods: We performed simulations to study the impact of an imbalance in cluster size on power.

We determined by simulations to which extent four methods proposed to adapt the sample size

calculations to a pre-specified imbalance in cluster size could lead to adequately powered trials.

Results: We showed that an imbalance in cluster size can be of high influence on the power in the

case of severe imbalance, particularly if the number of clusters is low and/or the intraclass

correlation coefficient is high. In the case of a severe imbalance, our simulations confirmed that the

minimum variance weights correction of the variation inflaction factor (VIF) used in the sample size

calculations has the best properties.

Conclusion: Publication of cluster sizes is important to assess the real power of the trial which

was conducted and to help designing future trials. We derived an adaptation of the VIF from the

minimum variance weights correction to be used in case the imbalance can be a priori formulated

such as "a proportion (γ) of clusters actually recruit a proportion (τ) of subjects to be included (γ≤ τ)".

Background
A cluster randomized trial involves randomizing social
units or clusters of individuals rather than the individuals
themselves. This design, which is increasingly being used
for evaluating healthcare, screening and educational inter-
ventions presents specific constraints that must be consid-
ered during planning and analysis [1,2]. Indeed, the
responses of individuals within a cluster tend to be more

similar than those of individuals of different clusters, and
we thus define the clustering effect as 1 + (m - 1)ρ, where
m is the average number of subjects per cluster and ρ the
intraclass correlation coefficient (ICC). This clustering
effect is used during the planning of cluster randomized
trials as an inflation factor to increase the sample size
required by an individual randomization trial. However,
such an approach does not take into account variations in

Published: 12 April 2006

BMC Medical Research Methodology 2006, 6:17 doi:10.1186/1471-2288-6-17

Received: 25 October 2005
Accepted: 12 April 2006

This article is available from: http://www.biomedcentral.com/1471-2288/6/17

© 2006 Guittet et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/1471-2288/6/17
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16611355
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Medical Research Methodology 2006, 6:17 http://www.biomedcentral.com/1471-2288/6/17

Page 2 of 15

(page number not for citation purposes)

cluster size, which might differ greatly. Indeed, as illus-
trated by Kerry et al [3], cluster size may depend on, for
example, (i) the potential of recruitment of the cluster
(i.e., the number of subjects belonging to each cluster),
(ii) the eligible fraction of subjects, which may vary
among clusters, or (iii) the ability of physicians to recruit
subjects within each cluster. Such an imbalance in cluster
size reduces the power of the trial and has to be taken into
account in the sample size calculation.

Kerry et al [3] assessed the theoretical efficacy of 3 weight-
ings of the inflation factor but in the context of cluster
level analysis, so summary statistics are estimated at the
cluster level and the unit of analysis remains the cluster.
Manatunga et al [4], however, assessed a correction on the
basis of the assumed distribution of cluster sizes in the
context of marginal models, but the authors' simulations
covered a range of ICCs larger than those usually observed
in cluster randomized trials.

Our aim was therefore to assess these proposed correc-
tions in the framework of cluster randomized trials in
which the unit of analysis remains the subject, embedded
in the cluster. We first describe the random effects model
used to simulate clustered data; then display the simula-
tion design used to evaluate the loss of power due to
imbalance in cluster size and the findings. Corrections of
the variance inflation factor to allow for cluster size ine-
quality evaluated by simulation and robustness of these
corrections to misspecification of the ICC is assessed.
practical guidelines for the planning stage of cluster rand-
omized trials are drawn and perspectives for future
research.

Methods and results
Theoretical background

The mixed effects model

Let us supposed a continuous outcome distributed
according to the following mixed-effects model:

Yijk = θi + βij + εijk  (1)

where Yijk is the observed response for the kth subject in

the jth cluster of the ith group, θi is the overall mean in the

ith group, βij is the random effect associated with the clus-

ter effect and εijk is the residual effect. The βij and εijk are

assumed to be independent and normally distributed as

(0; ) and (0; ) respectively.

The ICC quantifies the degree of similarity between the
responses of subjects in the same cluster and is defined as
the proportion of the total outcome variation between
clusters:

Sample size calculations

Considering g clusters of m individuals to be randomized
in each group, the total number of subject N per group is
given by [2]:

where ∆ is the absolute mean difference between groups

(i.e., ∆ = |θ0 - θ1|), σ2 is the total variance defined as (

+ ) and t(1 - α/2),2(g - 1) and t(1 - β),2(g - 1) is the 100 × (1 -

α/2) and 100 × (1 - β) percentiles of the Student t-distri-

bution with 2(g - 1) degrees of freedom. Considering the

effect size, defined as the relative difference between

groups (i.e., ES = |θ0 - θ1|/σ = ∆/σ), expression (3) can be

re-written as:

Impact of cluster size inequality

Simulation study

Monte Carlo simulations were used to assess the impact of
imbalance in cluster size on both power and type I error.
A 2 × 4 × 4 factorial plan was used, considering 2 effect
sizes (0.25, 0.50) to be detected with fixed numbers of
clusters (5, 10, 20, 40) and 4 a priori postulated values of
the ICC (0.005, 0.02, 0.05, 0.10). The ICC values were
chosen according to previously published estimates [5-
15], and the number of clusters is in agreement with that
from a recent review of cluster randomized trials in pri-
mary care settings in which the median number of rand-
omized clusters was estimated at 34 [13]. The α and β
values were fixed at 0.05 and 0.20, respectively, in any
case.

Once the sample size was calculated, correlated data were

simulated, according to model (1). From a practical point

of view, data were generated as the sum of a fixed effect (θ0

or θ1 if the control or experimental group, respectively)

and realizations of the 2 random variables βij and εijk. For

convenience and without loss of generality we set θ0 equal

to 0 and (  + ) equal to 1. These constraints then

allow for defining θ1 as the effect size ES,  as ρ and 

as (1 - ρ).
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Cluster size

For any combination of ES, g and ρ, we simulated rand-
omized trials with, on the one hand, constant cluster size
and, on the other, imbalance in cluster size. In the absence
of cluster sizes publications, three types of imbalance were
considered:

1. A moderate imbalance:

For each group, each of the N subjects had an equiproba-
bility of being in any of the g clusters randomized in this
group. From a practical point of view, for any of the N
subjects, we randomly selected with equiprobability the
cluster to which it belongs, before adding the appropriate
realizations of random variables βij and εijk.

2. A "Pareto" imbalance

Following the economic Pareto's principle, we considered
the situation in which 80% of the subjects actually belong
to only 20% of the clusters. From a practical point of view,
we thus defined 2 strata within each group: the strata of
large clusters (e.g., 20% of the g clusters) and the strata of
small clusters. Eighty percent of the N subjects were in the
large cluster strata, while the 20% remaining were in the
small cluster strata. Then, within each stratum, subjects
were randomly assigned with equiprobability to one of
the clusters.

3. A Poisson imbalance

Cluster sizes were finally defined according to a Poisson
distribution, which has already been used in such a con-
text [16,17]. We thus considered a Poisson distribution
with parameter m defined as N/g and defined the cluster
size of any cluster before generating the associated obser-
vations.

In this latter situation, and contrary to the 2 previous
ones, the total number of patients per group varies and is
equal to N only on average. Moreover, in the 3 types of
cluster size inequality, the actual number of clusters per
group could be smaller than g, because clusters could be
empty.

For any combination of ES, g and ICC, and for any situa-
tion (balance or any type of imbalance in cluster size),
5000 replications of data were simulated by use of SAS 8.1
software.

Analysis

Data analysis involved no stratification on cluster size. We
used the MIXED procedure in SAS [18,19] to assess
restricted maximum likelihood (REML) estimates of vari-
ance components. The Wald test statistic was then used to

test the significance of the intervention effect with the Stu-
dent t-distribution, with g0+g1-2 degrees of freedom as the
reference distribution, where g0 and g1 are the actual num-
bers of nonempty clusters in the control and intervention
groups, respectively.

The empirical type I error and power were calculated as
the proportion of significant trials (defined as a p value
smaller than the nominal α level) when θ1 equals 0 and
ES, respectively.

Results
Results are expressed as absolute bias and mean square
error on the one hand, and empirical' type I error and
power on the other. Table 1 displays the results associated
with an a priori postulated effect size of 0.25, while Table
2 displays the results associated with a 0.50 effect size. In
7 situations, data sets could not be generated for the fol-
lowing combinations ES/ICC/g: 0.25/0.020/5, 0.25/
0.050/5, 0.25/0.050/10, 0.25/0.100/5, 0.25/0.100/10,
0.25/0.100/20 and 0.50/0.100/5. Indeed, when the
number of clusters is small and/or the ICC high, even an
infinite cluster size may not allow for achieving 80%
power [20].

No significant bias was induced by inequality in cluster
size (since the relative bias was no more than about 1.5%,
in absolute value), while the mean square error was barely
increased in cases of severe imbalance (Pareto imbal-
ance).

When the number of clusters is small, type I errors were
estimated at a lower level than the nominal one, even with
no imbalance in cluster sizes. A symmetrical result was
also observed for power, which was estimated at a lower
level than the nominal one. This result was of greater mag-
nitude for small ICCs and for greater effect size, which cor-
responded to situations in which the total number of
subjects to be included is reduced. Otherwise, although
moderate and Poisson imbalances were of no influence, a
Pareto's imbalance was associated with an increase in
both type I and type II errors. As an example, if one is will-
ing to detect a 0.25 effect size and plan a randomized trial
with 10 clusters per arm with an a priori postulated ICC of
0.02, a Pareto imbalance leads to type I and type II errors
of 9% and 38%, respectively, and nominal values fixed at
5% and 20%. This result is of greater magnitude for large
ICCs and a small number of clusters.

Thus, while moderate imbalances (based on an equiprob-
ability hypothesis) and Poisson's imbalances can be
neglected at the planning stage, a more severe imbalance
(such as the Pareto's imbalance) should be taken into
account, thus leading to an adjustment in sample size cal-
culations.
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Table 1: Bias, mean square error, empirical type I error and power in cluster randomized trials according to several types of imbalance 

in cluster size – Effect size = 0.25

Simulation parameters1 Type of 
imbalance

Bias Mean Square 
Error

Empirical 
type I error2

Empirical 
power2

Intraclass 
correlation 

coefficient (ρ)

Number of 
clusters in 

each arm (g)

Total number 
of subjects in 
each arm (N)

0.005 5 485 None -0.0020 0.0062 0.0328 0.7756

Moderate -0.0015 0.0062 0.0300 0.7800

Poisson 0.0003 0.0061 0.0368 0.7814

Pareto 0.0002 0.0100 0.0664 0.6432

0.005 10 326 None 0.0005 0.0070 0.0326 0.7868

Moderate 0.0009 0.0073 0.0402 0.7838

Poisson -0.0010 0.0070 0.0356 0.7884

Pareto 0.0043 0.0100 0.0566 0.6968

0.005 20 282 None -0.0010 0.0072 0.0320 0.7942

Moderate 0.0014 0.0075 0.0398 0.7878

Poisson -0.0010 0.0076 0.0408 0.7802

Pareto 0.0000 0.0090 0.0486 0.7258

0.005 40 265 None 0.0006 0.0078 0.0444 0.7848

Moderate 0.0011 0.0082 0.0458 0.7936

Poisson -0.0017 0.0082 0.0484 0.7772

Pareto 0.0000 0.0086 0.0466 0.7572

0.020 10 629 None -0.0017 0.0070 0.0448 0.8012

Moderate 0.0017 0.0073 0.0544 0.7974

Poisson 0.0009 0.0074 0.0510 0.7992

Pareto -0.0022 0.0118 0.0904 0.6236

0.020 20 353 None -0.0004 0.0073 0.0452 0.8000

Moderate 0.0006 0.0074 0.0408 0.7980

Poisson -0.0007 0.0075 0.0458 0.7968

Pareto 0.0009 0.0115 0.0660 0.6546

0.020 40 290 None 0.0017 0.0080 0.0518 0.7932

Moderate 0.0001 0.0077 0.0466 0.7944

Poisson -0.0003 0.0077 0.0466 0.7912

Pareto 0.0003 0.0101 0.0556 0.7008

0.050 20 743 None -0.0007 0.0075 0.0436 0.7916

Moderate -0.0018 0.0077 0.0540 0.8026

Poisson -0.0003 0.0078 0.0536 0.7950

Pareto -0.0022 0.0115 0.0562 0.6256

0.050 40 361 None -0.0012 0.0080 0.0528 0.7944

Moderate 0.0031 0.0080 0.0510 0.7926

Poisson -0.0001 0.0080 0.0502 0.7904

Pareto -0.0023 0.0121 0.0604 0.6242

0.100 40 652 None 0.0021 0.0076 0.0504 0.7966

Moderate 0.0013 0.0078 0.0458 0.8118

Poisson -0.0022 0.0078 0.0506 0.7946

Pareto -0.0031 0.0121 0.0546 0.6006

1N is the number of subjects per intervention arm, calculated under the assumption of constant cluster size
2 The nominal values for type I and type II error rates were fixed at 0.05 and 0.20, respectively.
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Table 2: Bias, mean square error, empirical type I error and power in cluster randomized trials according to several types of imbalance 

in cluster size – Effect size = 0.50

Simulation parameters1 Type of 
imbalance

Bias Mean Square 
Error

Empirical 
type I error2

Empirical 
power2

Intraclass cor-
relation coef-

ficient (ρ)

Number of 
clusters in 

each arm (g)

Total number 
of subjects in 
each arm (N)

Type of 
imbalance

0.005 5 89 None 0.0025 0.0238 0.0190 0.7648

Moderate 0.0010 0.0243 0.0204 0.7622

Poisson 0.0014 0.0243 0.0214 0.7596

Pareto -0.0064 0.0393 0.0256 0.6250

0.005 10 73 None -0.0011 0.0288 0.0328 0.7660

Moderate -0.0015 0.0290 0.0322 0.7718

Poisson -0.0007 0.0298 0.0318 0.7662

Pareto -0.0005 0.0344 0.0352 0.7090

0.005 20 67 None -0.0011 0.0303 0.0384 0.7764

Moderate -0.0038 0.0296 0.0318 0.7700

Poisson -0.0012 0.0301 0.0382 0.7664

Pareto -0.0004 0.0323 0.0334 0.7322

0.005 40 65 None 0.0005 0.0310 0.0446 0.7986

Moderate 0.0021 0.0322 0.0478 0.7896

Poisson 0.0028 0.0305 0.0396 0.7860

Pareto -0.0007 0.0320 0.0382 0.7518

0.020 5 119 None 0.0025 0.0238 0.0190 0.7648

Moderate -0.0011 0.0248 0.0310 0.7856

Poisson -0.0021 0.0250 0.0306 0.7786

Pareto 0.0009 0.0413 0.0674 0.6262

0.020 10 81 None -0.0031 0.0273 0.0320 0.7798

Moderate 0.0006 0.0282 0.0364 0.7772

Poisson -0.0003 0.0288 0.0378 0.7778

Pareto 0.0078 0.0394 0.0550 0.6910

0.020 20 70 None 0.0026 0.0312 0.0476 0.7838

Moderate 0.0026 0.0312 0.0476 0.7838

Poisson 0.0032 0.0306 0.0436 0.7894

Pareto 0.0003 0.0362 0.0460 0.7056

0.020 40 66 None -0.0026 0.0314 0.0498 0.7878

Moderate 0.0026 0.0312 0.0476 0.7838

Poisson 0.0049 0.0326 0.0476 0.7828

Pareto -0.0007 0.0337 0.0422 0.7328

0.050 5 423 None 0.0015 0.0246 0.0482 0.7980

Moderate -0.0001 0.0240 0.0460 0.8004

Poisson -0.0005 0.0237 0.0478 0.7988

Pareto 0.0026 0.0337 0.0768 0.6808

0.050 10 103 None -0.0006 0.0280 0.0426 0.7964

Moderate 0.0012 0.0286 0.0446 0.7952

Poisson -0.0017 0.0293 0.0440 0.7754

Pareto -0.0022 0.0466 0.0770 0.6342

0.050 20 76 None 0.0027 0.0298 0.0436 0.8020

Moderate -0.0018 0.0308 0.0452 0.7784

Poisson -0.0016 0.0323 0.0526 0.7672

Pareto -0.0056 0.0396 0.0528 0.6620
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Sample size adjustment for unbalanced trials

Adjusted variance inflation factors

The (1 + (m - 1)ρ) factor in expressions (3) and (4) defines
the variance inflation factor (VIF) that takes into account
the correlation induced by the cluster randomization. This
VIF supposes a constant cluster size (m) or is based on the
average cluster size in case of imbalance. Kerry et al [3] and
Manatunga et al [4] proposed to adjust the VIF in cases of
an imbalance in cluster size. Thus, we propose 4 correc-
tions. The first 3 are based on weights derived from the a
priori postulated distribution of cluster sizes among the g
clusters (i.e., the different values of mj, where mj is the size
of the jth cluster), and the fourth is based on the expected
mean and variance of this latter distribution.

1. Equal weights (denoted w1)[3]:

 where 

2. Cluster size weights (denoted w2)[3]:

 where 

3. Minimum variance weights (denoted w3) [3]:

4. Distribution-based correction (denoted d) [4]:

where E(m) and var(m) are the expected mean and the var-
iance of the cluster size.

We considered these 4 adjustments when a Pareto's
imbalance is a priori supposed to be observed. Since mod-
erate imbalances have been shown to be of no influence,
we assumed a constant cluster size within each stratum
associated with the Pareto's imbalance. The adjusted VIF
then becomes (Appendix A):

with  and T = t(1 - α/2),2(g - 1) + t(1 - β),2(g
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0.050 40 67 None -0.0019 0.0313 0.0468 0.7880

Moderate -0.0012 0.0294 0.0516 0.7740

Poisson 0.0000 0.0335 0.0504 0.7712

Pareto 0.0022 0.0376 0.0516 0.7026

0.100 10 213 None 0.0006 0.0263 0.0426 0.8056

Moderate 0.0015 0.0289 0.0530 0.7940

Poisson -0.0007 0.0287 0.0538 0.8004

Pareto -0.0027 0.0438 0.0730 0.6394

0.100 20 89 None -0.0029 0.0303 0.0470 0.7888

Moderate -0.0020 0.0324 0.0530 0.7760

Poisson -0.0004 0.0316 0.0488 0.7744

Pareto 0.0064 0.0492 0.0674 0.6276

0.100 40 70 None 0.0038 0.0331 0.0510 0.7890

Moderate 0.0031 0.0337 0.0506 0.7738

Poisson 0.0020 0.0332 0.0456 0.7658

Pareto 0.0019 0.0433 0.0536 0.6641

1N is the number of subjects per intervention arm, calculated under the assumption of constant cluster size
2 The nominal values for type I and type II error rates were fixed at 0.05 and 0.20, respectively.

Table 2: Bias, mean square error, empirical type I error and power in cluster randomized trials according to several types of imbalance 

in cluster size – Effect size = 0.50 (Continued)
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with 

with  being the positive solution of the following

equation:

with 

The distribution-based and cluster size weights correction
are equivalent [21]. We therefore no longer consider the
distribution-based correction and focus on the 3 weighted
corrections proposed by Kerry et al [3].

Simulation study

Monte Carlo simulations were performed to determine to
what extent the proposed corrections could lead to ade-
quately powered trials. We thus calculated the sample size
needed assuming a Pareto repartition, using each of the
adjusted VIFs. For each situation, we then simulated clus-
ter randomized trials with a Pareto imbalance to estimate

empirical type I error and power. The same approach as
that explained in the preceeding was used.

Results

Results are displayed in Tables 3 and 4 for effect sizes of
0.25 and 0.50, respectively. For the cluster size weights
correction, several situations existed in which the sample
size calculations showed that 80% power could not be
reached, thus preventing the generation of associated data
sets. If sample size calculations were possible, this correc-
tion led to sample sizes barely greater than the sample size
obtained with the minimal variance weights correction
and empirical type I error and power near the nominal
value. This result is consistent for the different values of
ES, ρ and g in Tables 3 and 4, except for the combination
0.25/0.02/20. Actually, for fixed values of ES, couples of
values for (g, ρ) lead to null values of the denominator of
mw2. If ES is fixed at 0.25, the couple (20, 0.0233) is one
of these. For ρ just under this critical value (0.020 in our
case), mw2 begins to diverge, and when ρ is greater, mw2

can no longer be calculated. Equal weights correction led
to a much greater sample size than minimum variance
weights, particularly when the ICC is small, and the
empirical power obtained was therefore much higher than
its nominal value: it may even reach 99% if the nominal
value were fixed at 80%. The minimum variance weights
correction required the smallest increase in sample size
and resulted in the smallest difference between empirical
and nominal power. Empirical type I errors were also near
the nominal 5% level, except when both the number of
clusters and the ICC are small.
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Table 3: Required sample size and empirical Type I error and power when using corrected variance inflation factors with an a priori 

hypothesized Pareto imbalance in cluster size – Effect size = 0.25

No correction Equal weights Cluster size weights1 Minimum variance weights

Intraclass 
correlation 

coefficient (ρ)

Number of 
clusters in 

each arm (g)

Sample 
size

Empirical 
probabilities

Sample 
size

Empirical 
probabilities

Sample 
size

Empirical 
probabilities

Sample 
size

Empirical 
probabilities

Type I 
error

Power Type I 
error

Power Type I 
error

Power Type I 
error

Power

0.005 5 485 0.0664 0.6432 1569 0.1028 0.8606 - - - 1037 0.0948 0.7992

10 326 0.0566 0.6968 1057 0.0784 0.9386 515 0.0704 0.8106 464 0.0704 0.7806

20 282 0.0486 0.7258 917 0.0624 0.9770 336 0.0450 0.7934 331 0.0458 0.7850

40 265 0.0466 0.7572 861 0.0512 0.9918 287 0.0424 0.7842 286 0.0474 0.7706

0.02 10 629 0.0904 0.6236 2043 0.0638 0.8196 - - - 1731 0.0624 0.7968

20 353 0.0660 0.6546 1147 0.0614 0.8924 1852 0.0576 0.9432 677 0.0752 0.7976

40 290 0.0556 0.7008 942 0.0582 0.9486 435 0.0558 0.8092 401 0.0514 0.7960

0.05 20 743 0.0562 0.6256 2414 0.0564 0.8140 - - - 2165 0.0480 0.7976

40 361 0.0604 0.6242 1173 0.0500 0.8598 - - - 770 0.0550 0.8048

0.10 40 652 0.0546 0.6006 2116 0.0542 0.8090 - - - 1881 0.0500 0.8036

Sample size calculations were performed considering type I and type II error rates fixed at 0.05 and 0.20, respectively.
1 In some cases, 80% power was not reachable
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Robustness of sample size adjustment for unbalanced trials 

with misspecification of the ICC

Method

We assessed the robustness of the different sample size
adjustments for Pareto-like unbalanced trials with mis-
specification of the ICC. We considered an effect size of
0.25, a priori postulated ICCs of 0.005 and 0.020 and the
combinations of number of clusters and cluster sizes pre-
viously used (see sample sizes in Table 3). Then, for each
weighting method, (i.e., for each total number of subjects
of each arm Nw1, Nw2, Nw3) we plotted the expected power
calculated for a pre-specified ICC as a function of the real
ICC (which will be a posteriori assessed). This power was
calculated by use of the variance inflation factor VIFw3

derived from minimum variance weights, because it
allows for calculating an expected power that does not dif-
fer from the empirical one by more than 3.8% in the situ-
ations explored in Table 3 (data not shown). For
reference, we also plotted the expected power (calculated
with the usual VIF) as a function of the real ICC in cases
of no imbalance in cluster size.

Results
Results are displayed in Figures 1 and 2 for an effect size
of 0.25 and a priori postulated ICC values of 0.005 and
0.020, respectively. As expected [20], in any situation, the
power decreases as the ICC increases, and this result is all
the more important when the number of clusters is low.
In the planning situations explored, minimum variance

weights and cluster size weights curves are very close,
except when 20 clusters per intervention arm are rand-
omized and the ICC is a priori fixed at 0.020, but this latter
situation is extreme, as discussed previously. Otherwise,
the power associated with equal weights remains greater
than that associated with minimum variance weights in
any situation. However, this finding probably just reflects
that the use of this weighting system leads to higher
required sample sizes than the use of a minimum variance
weights system (cf Tables 3 and 4) and therefore higher
power. In any case, imbalance in cluster size is associated
with a higher sensitivity to the a priori-specified ICC than
constant cluster size. For example, let us consider the case
of 20 clusters per intervention arm: if the ICC is a priori
postulated at 0.005, but in reality equals 0.015, the power
associated with constant cluster size decreases from 0.80
to 0.75 only, whereas the power associated with Pareto
repartition decreases from 0.80 to 0.68 (with the mini-
mum variance weighting system). However, all weighting
systems show great sensitivity to the actual value of the
ICC. Consider the former example (ES = 0.25, g = 20 and
Pareto repartition, increase in ICC from 0.005 to 0.015),
the power associated with equal weights will decrease
from 0.98 to 0.90, and the power associated with cluster
size weights from 0.80 to 0.68. Thus, if little prior knowl-
edge is available concerning the value of the ICC, the sen-
sitivity analysis involving several values of ICC is of major
importance, particularly when imbalance in cluster size is
expected.

Table 4: Required sample size and empirical Type I error and power when using corrected variance inflation factors with an a priori 

hypothesized Pareto imbalance in cluster size – Effect size = 0.50

No correction Equal weights Cluster size weights1 Minimum variance weights

Intraclass 
correlation 

coefficient (ρ)

Number of 
clusters in 

each arm (g)

Sample 
size

Empirical 
probabilities

Sample 
size

Empirical 
probabilities

Sample 
size

Empirical 
probabilities

Sample 
size

Empirical 
probabilities

Type I 
error

Power Type I 
error

Power Type I 
error

Power Type I 
error

Power

0.005 5 89 0.0256 0.6250 288 0.0536 0.9330 111 0.0270 0.7156 108 0.0324 0.6906

10 73 0.0352 0.7090 236 0.0528 0.9768 79 0.0306 0.7370 79 0.0306 0.7370

20 67 0.0334 0.7322 218 0.0470 0.9912 70 0.0390 0.7524 70 0.0390 0.7524

40 65 0.0382 0.7518 210 0.0394 0.9970 66 0.0400 0.7558 66 0.0400 0.7558

0.02 5 119 0.0674 0.6262 387 0.1072 0.8642 - - - 256 0.0954 0.7946

10 81 0.0550 0.6910 261 0.0900 0.9346 127 0.0654 0.7990 115 0.0672 0.7856

20 70 0.0460 0.7056 226 0.0684 0.9752 83 0.0492 0.7680 82 0.0482 0.7680

40 66 0.0422 0.7328 212 0.0534 0.9908 71 0.0390 0.7540 71 0.0390 0.7540

0.05 5 423 0.0768 0.6808 1375 0.0578 0.8130 - - - 1311 0.0556 0.7962

10 103 0.0770 0.6342 335 0.0824 0.8600 - - - 230 0.0920 0.7952

20 76 0.0528 0.6620 245 0.0652 0.9284 136 0.0706 0.8252 115 0.0628 0.7872

40 67 0.0516 0.7026 217 0.0590 0.9712 83 0.0578 0.7694 81 0.0488 0.7772

0.15 10 213 0.0730 0.6394 691 0.0548 0.8042 - - - 631 0.0572 0.8002

20 89 0.0674 0.6276 290 0.0644 0.8646 - - - 193 0.0638 0.7888

40 70 0.0536 0.6641 225 0.0564 0.9316 122 0.0506 0.8208 104 0.0578 0.7838

1In some cases, 80% power was not reachable
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Practical implications

General considerations

Cluster size inequality may induce a loss of power and
must be taken into account at the planning stage by using
the minimum variance weights correction. From a practi-
cal point of view, 2 situations must be distinguished. First,
when entire clusters are randomized such as in cluster-
cluster trials [22]. the cluster size distribution is a priori
known and cluster size inequalities are therefore easy to
be taken into account at the planning stage. Second, if
physicians have to recruit patients to each cluster accord-
ing to selection criteria, cluster size distribution cannot a
priori be known. In this latter situation, a sensitivity anal-
ysis must be performed considering several hypotheses on
cluster size distribution for an optimal sample size deter-
mination.

Adaptation of the VIF for a Pareto like imbalance

Let us assume that the cluster size inequality corresponds
to a Pareto-like distribution, say that in each arm a pro-
portion (γ) of clusters actually recruit the proportion (τ)
of patients to be recruited (which implies γ ≤ τ). If γ and τ

are fixed at 20% and 80%, respectively, we have the Pareto
imbalance defined previously; if γ and τ are equal, the
cluster size imbalance is absent or moderate (and can then
be neglected). The sensitivity analysis then consists of var-
ying the parameters (γ) and (τ), thus allowing for imbal-
ance increases with the absolute difference between the 2
values. The inflation factor calculated with the minimum
variance weights correction will be the following (Appen-
dix B):

To illustrate the discrepancy between nominal and real
power if an imbalance of the form "γ clusters actually
recruit τ patients" is not taken into account, we performed
the following calculations. We used formula (4) (i.e.,
assuming a constant cluster size) to derive the number of
subjects needed. Then, using expression (9), we calculated
the expected power with such a sample size, with a pro-
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Real power of cluster randomized trials according to the discrepancy between the a priori postulated and a posteriori estimated intraclass correlation coefficients (ICCs)Figure 1
Real power of cluster randomized trials according to the discrepancy between the a priori postulated and a posteriori estimated 
intraclass correlation coefficients (ICCs). The ICC is a priori postulated at 0.005 and sample sizes (N) and associated powers 
were calculated: 1°) assuming Pareto repartition of cluster sizes and using 3 corrections of the variance inflation factor (equal 
weights, cluster size weights and minimum variance weights), 2°) assuming constant cluster size (reference).
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portion of γ clusters actually recruiting a proportion τ of
the patients to be included.

Figures 3 and 4 display the results for several combina-
tions of ES/ICC/g and γ/τ under the assumption of no
empty cluster. The upper part of Figures 3 and 4 is empty,
since an 80% power cannot be reach for the associated
combinations of ICC and g. Moreover, γ is smaller than or
equal to τ, which explains why any upper part of matrices
associated with an ICC/g combination is empty. As
expected, the bigger the cluster size inequality, the more
important the discrepancy between nominal and real
power. For example, let us consider a trial aimed at detect-
ing a 0.25 effect size in which 10 clusters are to be rand-
omized in each arm. Assuming an ICC of 0.005 and a
balance in cluster size, this study would require 326 sub-
jects to be recruited in each arm to reach 80% power. If
10% of the clusters recruit 50% of the subjects, the power
barely declines, to 77%; if a major imbalance such as 90%
of the patients are to be recruited by 10% of the clusters,
the power would fall to 54%. The latter phenomenon is
all the more acute with a low number of clusters; critical

situations in which a substantial loss in power may be
expected are displayed in Figures 3 and 4. Red levels
approximately follow diagonals representing constant τ-γ
differences. It can be shown (appendix C) that the gini
coefficient, a quantitative measure of site accrual inequal-
ity [23], comes down to the absolute difference between τ
and γ when a proportion γ of clusters actually recruit a
proportion τ of patients to be recruited. Our results show
that varying this summary measure of imbalance is
enough for performing a sensitivity analysis and that there
is no need to specify both τ and γ.
Assigning a value of 1 to τ creates a situation in which a
proportion (1-γ) of clusters is empty. In this situation
achieving the required sample size supposes to increase
the average cluster size of the γg clusters by a factor 1/γ.
However one has to be aware that such a strategy will
indeed allow achieving the pre-specified sample size, but
it will not allow to reach the nominal power. Indeed it is
known that for a fixed total number of subjects, the higher
the number of clusters, the higher the power [1] which
means that reducing the number of clusters will translate

Real power of cluster randomized trials according to the discrepancy between the a priori postulated and a posteriori estimated intraclass correlation coefficients (ICCs)Figure 2
Real power of cluster randomized trials according to the discrepancy between the a priori postulated and a posteriori estimated 
intraclass correlation coefficients (ICCs). The ICC is a priori postulated at 0.020 and sample sizes (N) and associated powers 
were calculated: 1°) assuming Pareto repartition of cluster sizes and using 3 corrections of the variance inflation factor (equal 
weights, cluster size weights and minimum variance weights), 2°) assuming constant cluster size (reference).
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in a loss in power even if the pre-specified sample size is
achieved. Therefore, in case it is anticipated that empty
clusters may occur, sensitivity analyses have to be con-
ducted using formula (4) on the basis of the hypothesized
number of active clusters g' = γg.

Discussion
A moderate inequality in cluster sizes has little effect on
power and can thus be neglected at the planning stage.
However, a major imbalance in cluster sizes, like the
"Pareto" imbalance, (i.e. 80% of the subjects belong to
only 20% of the clusters) is associated with a loss in
power, and the phenomenon is all the more important
when the number of clusters is low and/or the ICC is high.
In these situations, the minimum variance weights correc-
tion has good properties and allows for achieving the

nominal power. This result, obtained in the extreme situ-
ation of a Pareto imbalance, suggests that this correction
can be used to derive sample size or power in any situa-
tion where, in each group, cluster sizes can be separated in
two strata, the small cluster stratum and the big cluster
stratum. The higher sensitivity of severely unbalanced tri-
als to the a priori-postulated value of the ICC compared to
that of balanced trials emphasized the necessity of a sen-
sitivity analysis on this parameter. We derived an adapta-
tion of the VIF, which should be used when the imbalance
is a priori hypothesized to be "a proportion of γ clusters
will actually recruit a proportion τ of the subjects to be
included".

A limit to this approach remains the degree of imbalance
being usually difficult to foresee at the planning stage,

Power of cluster randomized trials if an imbalance in cluster size is not taken into account when planningFigure 3
Power of cluster randomized trials if an imbalance in cluster size is not taken into account when planning. The imbalance is a 
priori hypothesized to be "a proportion of γ clusters will actually recruit a proportion τ of the subjects to be included" (γ ≤ τ) – 
The intraclass correlation coefficient is fixed at 0.005 and 0.02.
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except when, for instance, families or practices are rand-
omized and clusters as a whole are included in the trial. In
these latter situations, one may a priori know precisely the
cluster size repartition and therefore use the minimum
variance weights correction as initially specified by Kerry
et al [3]. However, if, within each cluster, the physician
has to recruit patients to be included in the trial, cluster
size distribution may then be difficult to hypothesize. It is
all the more difficult since cluster sizes are usually not
reported in published clustered randomized trials. We
therefore proposed to consider that cluster sizes distribu-
tion can be divided in each arm in two strata: a stratum of
small clusters, and another of large clusters. This hypoth-
esis may be debatable. However, since a moderate ine-
quality of cluster size is of minor effect, it seems a rather
useful and simple way to consider the risk of cluster size
inequality at the planning stage, particularly since no pre-

cise data on cluster size inequality are available. Another
limitation is that our work focused on normally distrib-
uted continuous outcomes. More work is needed to
extend our results to non-normal distributions, especially
with binary variables. Finally, we restricted our work to
cases of no differential recruitment between arms, thus
considering that imbalance is the same in the two arms.
Such a hypothesis may be questionable in cluster rand-
omized trials: since inclusion is posterior to randomiza-
tion, this may indeed induce differential recruitment and
imbalance in patient characteristics, which may lead to
questioning the results of the study [24].

Table 6: 

Number of 
clusters by 

intervention arm

Number of patients 
belonging to the 

clusters

Mean cluster size

Small 
clusters

(1-γ)g
(1 - τ) g

Big 
clusters

γg τ g

m 1

1

−
−

τ
γ

m

m τ
γ

m

Power of cluster randomized trials if an imbalance in cluster size is not taken into account when planningFigure 4
Power of cluster randomized trials if an imbalance in cluster size is not taken into account when planning. The imbalance is a 
priori hypothesized to be "a proportion of γ clusters will actually recruit a proportion τ of the subjects to be included" (γ ≤ τ) – 
The intraclass correlation coefficient is fixed at 0.05 and 0.10.

Table 5: 

Number of 
clusters by 

intervention arm

Number of 
patients 

belonging to 
the clusters

Mean cluster size

Small 
clusters

0.8g
0.2 g (0.2 g)/(0.8g) = 0.25

Big 
clusters

0.2g
0.8 g (0.8 g)/(0.2g) = 4

m m m

m m m
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Conclusion
In conclusion, our study demonstrates that severely
imbalanced trials with continuous outcomes may be
highly underpowered. If such imbalance in cluster size
can be anticipated at the design stage, minimum variance
weights correction should be used to inflate the required
sample size. A priori estimation of the expectable imbal-
ance would be facilitated if more details on cluster sizes
were given in published cluster randomized trials, as was
recently advised in the extension of the CONSORT state-
ment for cluster randomized trials [25]. Moreover, such
publication of cluster sizes would be of particular interest
to assess the real power of the trial conducted.
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Appendix A: corrected variance inflation factor 
(VIF) for an a priori postulated Pareto imbalance
Four corrections have been proposed for adjusting sample
size in cases of imbalance in cluster size. Considering the
specific situation of a Pareto imbalance, the general form
of these corrections can be simplified.

Characteristics of the Pareto imbalance

g refers to the number of clusters within each arm and 

is the average cluster size

Equal weights (denoted w1) [3]

With an equal weights correction, the VIF is expressed as:

 where 

With a Pareto imbalance, this equation is expressed as:

where  (the average cluster size for which an equal

weights correction is used) is defined as:

which leads to :

where ES refers to the effect size and T = t(1 - α/2),2(g - 1) + t(1

- β),2(g - 1)

Cluster size weights (denoted w2) [3]

 where 

With a Pareto imbalance, we can write the equation as:

So the VIF is reduced to:

and

Minimum variance weights (denoted w3) [3]

With a Pareto imbalance, the equation can be written as:
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with

which leads to  being the positive solution of the fol-

lowing equation:

Distribution-based correction (denoted d) [4]

So we have:

with

that is to say:

One then recognizes the results obtained using the cluster
size weights correction.

Appendix B: minimum variance weights-
corrected variance inflation factor (VIF) for an a 
priori postulated Pareto-like imbalance
Characteristics of the Pareto-like imbalance

g refers to the number of clusters within each arm and 

is the average cluster size

Minimum variance weighs VIF

So we obtain:

Appendix C: gini coefficient for an a priori 
postulated Pareto-like imbalance

Given the characteristics of the Pareto-like imbalance pre-
sented in appendix B, considering that clusters are ordered
hierarchically by increasing size, the matrix of the differ-
ence |mi - mj| can be written as:

Where 0(γg,γg) and 0((1-γ)g,(1-γ)g) are squared matrices of sizeγg and (1-γ)g respectively and 1(γg,(1-γ)g) and 1((1-γ)g,γg) are
matices of size γg × (1-γ)g and (1-γ)g × γg respectively, con-
taining only 1 s.

Thus:
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